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PME came into existence at the Third International Congress on Mathematical
Education (ICME 3) held in Karlsruhe, Germany, in 1976. It is affiliated with the
International Commission for Mathematical Instruction.

The major goals of the International Group and of the North American Chapter
(PME-NA) are:

1 To promote international contacts and the exchange of scientific in-
formation in the psychology of mathematics education;

2 To promote and stimulate interdisciplinary research in the aforesaid
area with the cooperation of psychologists, mathematicians and math-
ematics teachers;

3 To further a deeper and better understanding of the psychological
aspects of teaching and learning mathematics and the implications
thereof.
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Preface

This program began with a meeting of interested volunteers in November
1994 at Baton Rouge during the PME-N A meeting. The results of the suggestions
made were taken to a meeting of the local program committee at The Ohio State
University where the overarching theme of research on teaching and learning
mathematics in diverse settings and the subthemes of diversity, constructivism and
algebra were selected. These emphases are achieved in the plenary papers.
Constructivism from a social perspective in the paper by Paul Cobb and Erna Yackel
takes account of diverse learning idiosyncrasies. Fairness in dealing with diver-
sity in characteristics and background of the learners was addressed in the paper
by Suzanne Damarin. Reform in algebra toward making algebra more accessible
to all students is addressed in the paper by James Kaput. No reaction paper to the
Cobb and Yackel paper was requested because the opening plenary session ended
with questions posed by the speaker, Paul Cobb, for roundtable discussions. Reac-
tions to the paper by Suzanne Damarin were prepared by Ruth Cossey and Edward
Silver from their perspectives of the work in which they are involved. Reactions
to Jim Kaput's paper were written by Gail Burrill and Elizabeth Phillips who are
involved in aspects of change in algebra curriculum.

Included in these Proceedings are 84 research reports, two discussion groups,
40 oral reports and 43 poster presentation entries. The one-page synopses of dis-
cussion groups, oral reports and poster presentations are organized by topic along
with the research reports following the pattern begun with the Proceedings of the
1994 PME-NA meeting. Proposers expressed first choice: 124 research reports (2
withdrawals), 12 oral presentations, 35 poster presentations, and two discussion
groups. Proposals for all categories were blind reviewed by three reviewers with
expertise in the topic of the submission. Cases of disagreement among reviewers
were refereed by subcommittees of the Program Committee at The Ohio State
University. This process resulted in rejection or reassignment of about 31% of the
research report proposals and about 25% overall.

For the first time, the submissions for the Proceedings were made on disk.
These Proceedings were produced by the ERIC/CSMEE staff. The format of the
papers were adjusted to make them uniform. As papers were assigned to topic
areas for the table of contents, possible secondary or tertiary topic areas were noted.
Thus, most papers are included with more than one descriptor in the index in the
appendix in Volume 2. An alphabetical list of addresses of authors is included in
the appendix in Volume 2 with page numbers of their report or synopsis. For the
first time the electronic mail address is included in this address list. In the case of
multiple authors, submissions were made with presenting author(s) name(s) un-
derlined.

The editors wish to express thanks to all those who submitted proposals, the
reviewers. the 1995 Program Committee. the PME-NA Steering Committee for



making the program an excellent contribution to ongoing research and discussions
of psychology and mathematics education; Dean Nancy Zimpher, College of Edu-
cation, and the administration of the Department of Educational Theory and Prac-
tice at The Ohio State University, for their support; The Mathematics Education
faculty and graduate students for their endless committee work; and the
ERIC/CSMEE staff, especially Director David Haury, Linda Milbourne, and J.

Eric Bush for the production of these Proceedings.

Douglas T. Owens
Michelle K. Reed
Gayle M. Mil !saps
October, 1995
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CONSTRUCTIVIST, EMERGENT, AND SOCIOCULTURAL
PERSPECTIVES IN THE CONTEXT OF DEVELOPMENTAL

RESEARCH'

Paul Cobb, Vanderbilt University
Erna Yackel, Purdue University Calumet

Our overall intent is to clarify relationships between the psychological constructivist, so-
ciocultural, and emergent perspectives by grounding them in our attempts to understand
what might be happening in a variety of teaching and learning situations. In the first part of
the paper, we therefore outline an interpretive framework that we have developed in the
course of a classroom-based research project. At the level of classroom processes, the frame-

work involves an emergent approach in which psychological constructivist analyses of in-
dividual activity are coordinatod with interactionist analyses of classroom interactions and
discourse. At the level of school and societal processes, the perspective taken is broadly
sociocultural and focuses on the influence of individuals' participation in culturally-orga-
nized practices. In the second part of the paper, the framework is taken as background
against which to compare and contrast the three theoretical perspectives. We discuss how
the emergent approach augments the psychological constructivist perspective by making it
possible to locate analyses of individual students' constructive activities in social context.
In addition, we consider the purposes for which the emergent and sociocultural perspec-
tives might be appropriate and observe that they together span the individual students' ac-
tivities, the classroom community, and broader communities of practice.

It can be argued that one of the most significant developments in educational
research during the past decade has been the increasingly prominent role played
by constructivist and sociocultural approaches. In contrast to the initial claims
made by adherents to each perspective for the hegemony of their own views, there
appears to be a growing consensus that the perspectives are at least partially comple-
mentary (Cobb, 1994; Confrey, 1995; Hatano, 1993; Smith, in press; Steffe, 1995).
Our interest in the relationship between sociocultural theory and various forms of
constructivism is pragmatically based and stems from our involvement in a class-
room-based research and development project. In the course of our work with
teachers and their students, we addressed a variety of issues by drawing on several
different interpretive perspectives. The views we will advance in this paper about
the relationships between interpretive perspectives are therefore rooted in our ac-
tivity of attempting to understand what might be going on in a range of specific
teaching and learning situations.

In the first part of this paper, we describe the interpretive framework that we
currently use when analyzing teachers' and students' activity. Our intention in
doing so is to ground the proposed relationships between perspectives in the set-
tings from which they first emerged. At the level of classroom processes, this framc-

' The analysis reported in this paper was supported by the National Science Foundation
under grant No. RED-9353587. The opinions expressed do not necessarily reflect thc views

of the Foundation. Thc authors are grateful to Janet Bowers for numerous helpful com-
ments on an earlier draft of this paper.
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work represents an emergent or social constructivist approach that evolved from
an inival psychological construcuvist position. The framework was subsequently
extended beyond the classroom level to the school and societal levels by drawing
on sociocultural theory. In the course or the discussion, we justify the framework
by indicating the unanticipated problems that we found ourselves addressing and
the interpretive stances that we eventually took. In the second part of the paper,
this presentation of the framework is then used as a backdrop against which to
compare and contrast psychological constructivist, emergent, and sociocultural
perspectives.

The approach we will take of attempting to ground theory in practice reflects
the view that the relationship between theory and practice is reflexive (Cobb, in
press: Simon, 1995). Theory is seen to grow out of practice and to feed back to
inform and guide practice. This approach can be contrasted with more traditional
styles of presentation in which the basic principles or tenets of theoretical posi-
tions are stated, and then implications are deduced for practice. As Scholl (1983)
observes, this rhetorical style elevates theory over practice and enacts a positivist
epistemology of practice, thereby devaluing the relation between theory and prac-
tice as it is lived by reflective practitioners (Ball, 1993; Lampert, 1990; Simon &
Blume, 1994). Further, it positions researchers and practitioners in superior and
subordinate roles as producers and consumers of theory. In contrast, alternative
approaches that attempt to ground theory in practice tend to position researchers
and practitioners in morc collaborative roles and to treat their areas of expertise as
complementary (Nicholls & Hazzard, 1993). Approaches of this type also acknowl-
edge the importanc e of developing a basis for communication between research-
ers and practitioners. As a consequence, they seem to have greater potential to
contribute to current reform efforts.

The Interpretive Framework

The interpretive framework we will outline was developed in the course of an
ongoing program of developmental research (Gravemeijer, 1994). The basic de-
velopmental research cycle consists of two closely related phases (see Figure 1).
At the most global level, our goal has been to investigate ways of supporting el-
ementary school students' conceptual development in mathematics. As part of this
process, we and our colleagues have developed both sequences of instructional
activities for students and an approach to professional development for teachers.
The general methodology employed is that of thc classroom teaching experiment
conducted in collaboration with a practicing teacher who is a member of the re-
search and development team. In the past nine years,we have completed a series of
these experiments at the first-, second-, and third-grade levels. It becameapparent
in the first of these experiments that the individualistic psychological constructs
that we had intenoed to use to auount for mathematical learning were inadequate
for our purposes. As a consequence, one of our primary theoretical objectives be-
came that of exploring ways to account for students' mathematical development
as it occurs in the social context of the classroom. Anal yses of this type arc central
to the second of the two phases of the development research cycle shown in Figure

0
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DEVELOPMENT
PHASE

(guided by
discipline-specific

instructional
theory)

RESEARCH
PHASE

(guided by
specific empirical

methodology)

Figure I . Phases of the Developmental Research Cycle'

1 and feed back to inform ongoing development efforts. The interpretive frame-
work we will othline should be viewed as a response to this issue of accounting for

learning in social context. Although our focus has been on students' development,

there is some indication that the framework might be appropriate for analyses of

teachers' socially-situated activity (Simon, 1995). However, we want to avoid the

essentialist implimtion that the framework might somehow capture the structure

of individual and collective activity independent ofhistory, situation, and purpose.

Our strongest claim is that we have found the framework useful when attempting

to support change at the classroom and school levels.

The Classroom Level

It is important to clarify that when we speak of thc classroom level, we do not

mean this as a physical location. Instead, our intent is to indicate that explanations

are formulated in terms of processes that occur in the classroomsindividual in-
terpretations and actions, and face-to-face interactions and discourse. Thus, these
explanations of students' activity in the classroom do not make reference to their

panic ipation in practices outside of the classroom. The interpretive framework at

this level is shown in Figure 2.
The column heading "Social Perspective" refers to an interactionist perspective on

communal or collective classroom processes (Bauersfeld, Krummheuer, & Voigt,

1988). The column heading "Psychological Perspective" signifies a psychological

constructivist perspective on individual students' (or the teacher's) activity as they

participate in and contribute to the development of these communal processes (von

Glasersfeld, 1984, 1992). The version of social constructivism to which we sub-

The domain-specific instructional theory referred to is that of Realistic Mathematics Edu-

cation developed at thc Freudenthal Institute (Streefland, 1991; Treffers, 1987). This devel-

opmental research cycle is, in many ways, analogous to the mathematical teaching cycle

described by Simon (1995).



Social Perspective Psychological Perspective

Classroom social norms Beliefs about own role, others' roles,
and the general nature of mathemati-
cal activity in school

Sociomathematical norms Mathematical beliefs and values

Classroom mathematical practices Mathematical conceptions

Figure 2. An Interpretive Framework for Analyzing Individual and Collective
Activity at the Classroom Level.

scribe is called the emergent approach or the emergent perspective and involves
the explicit coordination of interactionism and psychological constructivism (Cobb
& Bauersfeld, 1995). In the following paragraphs, we outline the framework by
discussing social norms, then sociomathematical norms, and finally classroom
mathematical practices.

Social norms. When we conducted our first classroom teaching experiment
during the 1986-87 school year, we initially viewed learning in almost exclusively
psychological constructivist terms. This methodology was in fact devised as an
extension of the constructivist teaching experiment in which the researcher inter-
acts one-on-one with a single child and attempts to influence the child's construc-
tive activities (Cobb & Steffe, 1983; Steffe, 1983). In the case of the constructivist
teaching experiment, the goal is to account for the child's development of increas-
ingly powerful mathematical ways of knowing by analyzing the cognitive
restructurings he or she makes while interacting withthe researcher. In a similar
manner, we intended to account for individual children's learning in theclassroom
by analyzing the conceptual reorganizations they made while interacting with the
teacher and their peers. With hindsight, it is apparent that the relation between
social interaction and children's mathematical development implicit in this ap-
proach was neo-Piagetian. We assumed that conflicts in individual students' math-
ematical interpretations might give rise to internal cognitive conflicts, and that
these would precipitate mathematical learning (cf. Doise & Mugny, 1984; Ferret-
Clermont, 1980). In this account, social interaction was viewed as a catalyst for
otherwise autonomous cognitive development in that it influenced the process of
mathematical development but not its products, increasingly sophisticated math-
ematical ways of knowing.

The first unanticipated issue that we addressed in the classroom teaching ex-
periment arose within the first few days of the school year. The second-grade teacher
with whom we collaborated engaged her studerns in both collaborative small group
work and whole class discussions of their mathematical interpretations and solu-
tions. However, it soon became apparent that the teacher's expectation that the
children would publicly explain how they had actually interpreted and solved tasks

32
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ran counter to their prior experiences of class discussions m school. The students
had been in traditional classrooms during their first-grade year and seemed to take
it for granted that they were to infer the response the teacher had in mind rather
than to articulate their own understandings. The teacher coped with this conflict
between her own and the students' expectations by initiating a process that we
subsequently came to term the renegotiation of classroom social norms. Examples
of social norms for whole class discussions that became explicit topics of conver-
sation included explaining and justifying solutions, attempting to make sense of
explanations given by others, indicating agreement and disagreement, and ques-
tioning alternatives in situations where a conflict in interpretations or solutions has
become apparent. In general, social norms can be seen to delineate the classroom
participation structure (Erickson, 1986; Lampert, 1990).

A detailed account of the renegotiation process has been given elsewhere (Cobb,
Yackel, & Wood, 1989). For our purposes, it suffices to note that a social norm is
not a psychological construct that can be attributed to any particular individual,
but is instead a joint social construction. As a consequence, we would object to
accounts framed in individualistic terms in which the teacher is said to establish or
specify social norms for students. To be sure, the teacher is necessarily an institu-
tionalized authority in the classroom (Bishop, 1985). However, in our view, the
most the teacher can do is express that authority in action by initiating and guiding
the renegotiation process. The studcnts also have to play their part in contributing
to the establishment of social norms.' One of our primary contentions is in fact that
in making these contributions, students reorganize their individual beliefs about
their own role, othcrs' roles, and the general nature of mathematical activity (Cobb
et al., 1989). As a consequence, we take these beliefs to be the psychological or-
relates of the classroo.n social norms.

It is important to clarify that, in the view we arc advancing, neither the social
norms nor individual students' beliefs arc given primacy over the other. Thus, it is
neither a case of a change in social norms causing a change in students' beliefs,
nor a case of students first reorganizing their beliefs and then contributing to the
evolution of social norms. Instead, social norms and beliefs are seen to be reflex-
ively related such .hat neither exists independently of the other. We can further
clarify our position by building on Whitson's (in press) observation that what arc
seen arc human processes that can be analyzed in either psychological or social
terms depending on the issues at hand. A social analysis conducted from the
interactionist perspective documents the evolution of social norms, and an analy-
sis conducted from the psychological constructivist perspective documents stu-
dents' reorganization of thei.. beliefs. The social constructivist or emergent ap-
proach to which we subscribe draws on both these analyses and treats them as

Cooney's (1985) analysis of Fred. a beginning mathematics teacher, provides an excellent
illustration of this point. In our terms. Cooney documents the difficulties that Fred encoun-
tered when he attempted to initiate the renegotiation of social norms and institute a problem
solving approach.



complementary. In this joint perspective, the social norms are seen to evolve as
students reorganize their beliefs and, conversely, the reorganization of these be-
liefs is seen to be enabled and constrained by the evolving social norms.

Sociomathematical norms. Thus far, in describing our initial interest in class-
room social norms, we have explained why we found it necessary to go beyond an
exclusively individualistic psychological perspective. Wc should again stress that
we did not analyze social norms as an end in itself. Instead, our overriding motiva-
tion was to account for students' mathematical development as it occurred in the
social context of the classroom. In this regard, one aspect of our analysis of social
norms that proved disquieting was that it was not specific to mathematics, but
applied to almost any subject matter area. For example, one would hope that stu-
dents would challenge each other's thinking and justify their own interpretations
in science and literature lessons as well as in mathematics lessons. As a conse-
quence, our focus shifted in subsequent analyses to the normative aspects of whole
class discussions that arc specific to students' mathematical activity (Lampert,
1990; Voigt, 1995; Yackcl & Cobb, in press). Examples of such sociomathematical
norms include what counts as a different mathematical solution, a sophisticated
mathematical solution, an efficient mathematical solution, and an acceptable math-
ematical explanation.

As part of the process of guiding the development of an inquiry approach to
mathematics in their classrooms, the teachers with whom we have worked regu-
larly asked the students if anyone had solved a task a different way and then ques-
tioned contributions that they did not consider were mathematically different. It
was while analyzing classroom interactions in these situations that
soc iomathematical norms first emerged as an explicit focus of interest. The analy-
sis indicated that, on the one hand, the students did not know what would consti-
tute a mathematical difference until the teacher and other students accepted somc
of their contributions but not others. Consequently, in responding to the teacher's
requests for a different solution, the students were both learning what counts as a
mathematical difference and helping to interactively constitute what counts as a
mathematical difference in their classroom. On the other hand, thc teachers in
these classrooms were themselves attempting to develop an inquiry form of prac-
tice and had not, in their prior years of teaching, asked students to explain their
thinking. Consequently, the experiential basis from which they attempted to an-
ticipate students' contributions was extremely limited. Further, thcy had not nec-
essarily decided in advance what would constitute a mathematical difference. In-
stead, the teachers seemed to clarify their own understanding of mathematical dif-
ference as they interacted with their students. Viewed in this way, the
sociomathematical norm of mathematical difference appeared to emerge in the
course of joint activity via a process of often implicit negotiation. A similar con-
clusion also holds for the other sociomathernatical norms we have analyzed (Yackel
& Cobb, in press).

The analysis of sociomathcmatical norms has proved to be pragmatically sig-
nificant in that it has helped us understand the process by which the teachers with
whom we have collaborated fostered the development of intellectual autonomy in

8
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their classrooms. This issue is particularly significant to us in that the development

of student autonomy was a goal of our work in classrooms that was explicitly

stated from the outset. We originally characterized intellectual autonomy in terms

of students' awareness of and willingness to draw on their own intellectual capa-

bilities when making mathematical decisions and judgments. This view of intel-

lectual autonomy was contrasted with intellectual heteronomy wherein students

rely on the pronouncements of an authority toknow how to act appropriately (Kamii,

1985; Piaget, 1973). As part of the process of supporting the growth of autonomy,

the teachers with whom wc have worked guided the development of a community

of validators in their classrooms. In doing so, they necessarily had to encourage

the devolution of responsibility (cf. Brousseau, 1984). However, their students

could assume these responsibilities only to the extent that they had developed per-

sonal ways of judging that enabled them to know-in-action both when it was ap-

propriate to make a mathematical contribution and what constituted an acceptable

contribution. This required. among other things, that the students could judge what

counted as a different mathematical solution, an insightful mathematical solution,

an efficient mathematical solution, and an acceptable mathematical explanation.

However, these were precisely the types of judgments that they and the teacher

negotiated when establishing sociomathematical norms. We therefore inferred that

students constructed specifically-mathematical beliefs and values that enabled them

to act as increasingly autonomous members of classroom mathematical communi-

ties as they participated in the renegotiation of sociomathematical norms (Yackel

& Cobb, 1993). These beliefs and values, it should be noted, arc psychological

constructs and constitute what the National Council of Teachers of Mathematics

(1991) calls a mathematical disposition. We view them as the psychological corre-

lates of thc sociomathematical norms and consider the two to be reflexively re-

lated (sec Figure 2).
It is apparent from the account we have given that we revised our conception

of intellectual autonomy in the course of the analysis. At the outset, we defined

autonomy in psychological terms as a characteristic of individual activity. How-

ever, by the time we had completed the analysis, we came to view autonomy as a

characteristic of an individual's participation in a community. Thus, although the

development of autonomy continues to be a central pragmatic goal for us, we have

redefined our view of what it means to be autonomous by going beyond our origi-

nal psychological constructivist position. This shift in perspective has enabled us

to be more effective in helping teachers support the development of autonomy in

their classrooms (McClain, 1995).
Classroom mathematical practices. The third aspect of the interpretive frame-

work, that concerning classroom mathematical practices, was motivated by the

realization that one can talk of the mathematical development of a classroom com-

munity as well as of individual children. For example, in the second-grade class-

rooms in which we have worked, various solution methods that involve counting

by ones are established mathematical practices at the beginning of the school year.

Some of the students arc also able to develop solutions that involve thc conceptual

creation of units of ten and one. However, when they do so, they arc obliged to

9
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explain and justify their interpretations of number words and numerals. Later in
the school year, solutions based on such interpretations are taken as self-evident
by the classroom community. The activity of interpreting number words and nu-
merals in this way has laccome an established mathematical practice thatno longer
stands in need of justification. From the students' point of view, numbers simply
are composed of tens and onesit is a mathematical truth.

This illustration from the second-grade classrooms describes a global shift in
classroom mathematical practices that occurred over a period of several weeks.
An example of a detailed analysis ofevolving classroom practices can be found in
Cobb et al. (in press). We contend that analyses of this type are appropriate for the
purposes and interests of developmental research in that they document instruc-
tional sequences as they are realized in interaction in the classroom. They there-
fore draw together the two general phases of developmental research, instructional
development and classroom-based research, and feed back to inform ongoing de-
velopment efforts (see Figure 1).

Analyses of this type arc also of theoretical significance in that they bear
directly on the issue of accounting for mathematical learning as it occurs in the
social context of the classroom. Viewed against the background of classroom so-
cial and sociomathematical norms, the mathematical practiccs established by the
classroom community can be seen to constitute the immediate, local situations of
the students' development. Consequently, in identifying sequences of such prac-
tices, the analysis documents the evolving social situations in which students par-
ticipate and learn. Individual students' mathematical conceptions and activities
are taken as the psychological correlates of these practices, and the relation be-
tween them is considered to be reflexive. In particular, students actively contribute
to the evolution of classroom mathematical practices as thcy reorganize their indi-
vidual mathematical activities and, conversely, these reorganizations are enabled
and constrained by the students' participation in the mathematical practices.

As a point of clarification, we should stress that psychological analyses typi-
cally reveal qualitative differences in individual children's mathematical interpre-
tations even as thcy participate in thc same mathematical practices. In general,
analyses conducted from the psychological constructivist perspective bring out
the heterogeneity in the activities of members of a classroom community. In con-
trast, social analyses of classroom mathematical practices conducted from the
interactionist perspective bring out what is jointly established as the teacher and
students coordinate their individual activities. In drawing on these two analytic
perspectives, thc emergent approach focuses on both the individual and the com-
munity. This approach seeks to analyze both the development of individual minds
and the evolution of thc local social worlds in which those minds participate
(Balachcff, 1990).

Summary. We pause to makc two points about the interpretive framework as
we have outlined it thus far. The first point concerns a possible misinterpretation.
In the past, wc have sometimes been interpreted as saying that students' math-
ematical activity is essentially psychological and individualistic, but is constrained
by social and cultural processes such as social norms. We therefore emphasizethat
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we consider students' mathematical activity to be social through and through in
that it develops as they participate in classroom mathematical practices. More gen-
erally, our intent is not to classify the teacher's and students' activities into those
that are intrinsically individual and thosl that are intrinsically communal. Instead,
our proposal is to coordinate analyses of classroom processes that are conducted
in psychological and in social terms.

The second point we want to make is methodological and concerns the notion
of replicability in the context of developmental research. The results of develop-
mental rescarch consist of a variety of products and analyses. These include se-
quences of instructional activities and analyses of students' learning in social con-
text as the sequences are realized in interaction in classrooms. On the one hand,
the assumption that productive patterns of learning can occur when an instruc-
tional sequence is enacted in other classrooms is central to the developmental re-
search enterprise. On the other hand, the conception of the teacher as one who
continually adjusts his or her plans on the basis of ongoing assessments of stu-
dents' understandings implies that complete rcplicability is neither desirable nor,
perhaps, possible (cf. Ball, 1993; Simon, 1995). The enactment of an instructional
sequence is therefore assumed to involve experimentation on the part of the teacher
in the course of which the sequence as intended by its developers is deliberately
revised and modified.

Taking account of this formulation of the issue, we observe that educational
research is replete with more than its share of wildly disparate and irreconcilable
findings. The primary source of difficulty in our view is that the independent vari-
ables of traditional experimental research are relatively superficial and have little
to do with either context or meaning. Such approaches are difficult to justify if one
follows Lemke (in press) and considers that the ecology of the classroom is semiotic
and involves meaning-making in which one thing is taken as a sign for another.
Lemke calls systcms with semiotic ecologies ecosocial systems. From this point
of view, students are seen to always perceive, act, and learn by participating in the
self organization of a system which is larger than themselvesthe community of
practice established in the classroom. Learning can therefore be characterized as
"an aspect of self organization, not just of the human organism as a biological
system, but of ccosocial systems in which the organism functions as a human be-
ing" (Lemke, in press). It is precisely this sense of participation in an evolving
community of practice that is typically ignored in traditional educational research.

These considerations lead us to suggest that the relevant concept is commen-
surability rather than rcplicability. The difficulty is not so much that past findings
have been disparate, but that thcy have been irreconcilableit has not been pos-
sible to account for differences in findings when different groups of students re-
ceived supposedly the same instructional treatment. The challenge as we see it is
not that of replicating instructional sequences by ensuring that they arc enacted in
the same way in different classrooms. Instead, it is to develop ways of analyzing
both instructional sequences and students' participation in them as they arc real-
ized in interaction in different classrooms. In this regard, we note that the frame-
work as we have outlined it thus far illustrates one possible way to organize analy-
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ses of both the classroom ecosocial system and the activity of the students (and
teacher) who contribute to its development. For example, we have suggested that
the constructs of social norms, sociomathematical norms, and classroom math-
ematical practices address aspects of the classroom microculture that are relevant
to the purposes of developmental research. An analysis of classroom events orga-
nized in this way therefore might relate the emerging patterns of students' learning
to their participation in sequences of instructional activities as they are realized in
interaction. In addition, the teacher's role in guiding the development of both the
classroom ecosocial system and the activity of the children who participate in it
could become an explicit object of analysis, as could the broader institutional con-
texts in which such systems are embedded.

We should clarify that the intent of these comments is neither to recommend
that others should necessarily use the specific framework we have outlined nor to
claim that this framework resolves the commensurability issue once and for all.
Instead, it is to illustrate the potential contribution of a framework of this type that
is concerned with context and meaning. In particular, such a framework might
support greater precision in developmental research by making it possible to com-
pare, contrast, and relate different enactments of instructional sequences. This in
turn would facilitate disciplined, systematic inquiry that embraces the messiness
and complexity of the classroom.

The School and Societal Levels

In the course of our ongoing research and development activities, we have
often been able to develop explanations that proved adequate for our purposes by
referring solely to classroom processes. These analyses focus on the classroom
ecosocial system as it is portrayed in the framework shown in Figure 2. There
have, however, been occasions when we have found it essential to take account of
the broader institutional contexts in which such systems arc embedded. The elabo-
rated version of the interpretive framework shown in Figure 3 synthesizes our
reflections on these experiences. The central box replicates Figure 2 and corre-
sponds to practices at the classroom level. The ncxt box corresponds to practices at
the school level, and thc outermost box to practices at the societal level. In the
following paragraphs, we provide a grounding for thc elaborated framework. Later
in the paper, we will reflect back on the discussion and use it as a setting in which
to clarify distinctions between the emergent and sociocultural perspectives.

School level. The need to take account of broader institutional contexts first
became apparent to us when we attempted to account for our experiences of work-
ing with approximately 50 first-, second-, and third-grade teachers at two action
research sites. One of these sites was rural/suburban whereas the other served an
almost exclusively inner-city student population. Our overall goal was to help these
teachers revise the way in which they taught mathematics. To this end, we formu-
lated an initial approach to teacher development at the rural/suburban site, where it
proved to be reasonably successful. Our first priority when working with the teachers
at this site was to help them make aspects of their textbook-based instruction prob-
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Social Perspective Psychological Perspective

General societal norms Beliefs about what constitutes
normal or natural development
in mathematics

General school norms Conception of the child in
schoolbeliefs about
own and others' role in
school

Classroom social norms Beliefs about own
role, others' roles,
and general nature of
mathematics in
school

Sociomathematical norms Mathematical beliefs
and values

Classroom mathematical
practices

Mathematical
conceptions

Figure 3. An Elaboration of the Interpretive Framework to the School and
Societal Levels

lematic. We reasoned that only then would they have reason and motivation to
want to reform their instructional practices while working with us. To this end, wc
used videorecordings of both individual interviews and classroom episodes to ex-
plore the consequences of traditional instruction. Wc have previously documented
the success of this approach at the rural/suburban site. We observed, for example,
that thc teachers:

began to differentiate between correct adherence to accepted
procedures and [children's] mathematical activity that expressed
conceptual understanding.

A, the teachers began to question the adequacy of textbook
instructional activities and their current ways of teaching, they
were then willing to consider alternative instructional activities
designed to encourage meaningful mathematical activity. In do-
ing so, they demonstrated the value they placed on children's
mathematical sense-making. We did not have to convince them
that children should learn with understanding. Rather, they had
assumed that this kind of learning was occurring in their class-
rooms. A shared desire to facilitwe meaninVul learning and a
general concern for children's intellectual and social welfare



constituted the foundation upon which we and the teachers be-
gan to mutually construct a consensual domain. (Cobb, Wood,
& Yackel, 1990, p. 140, emphasis added)

With our support during the school year, the 20 teachers referred to in the above
passage radically revised the way they taught mathematics.

Shortly after this passage was written, we began working at the inner-city site.
It soon became apparent that our initial approach to teacher development was not
viable at that site. For the most part, an exploration of the consequences of tradi-
tional instruction did not lead these teachers to question their primarily drill-based
approaches. It therefore appeared that whereas the teachers at the rural/suburban
site assumed without question that students should learn mathematics with under-
standing, the beliefs and values of the teachers at the inncr city site did not appear
to be in conflict with traditional instructional practices. Subsequent efforts to sup-
port these teachers were more successful than our initial attempts in that several of
them did develop forms of practice that were compatible with current reform rec-
ommendations in mathematics education. However, as we have documented else-
where, the process by which these teachers reorganized their practices differed
significantly from that of the teachers at the rural/suburban site (Feikes, 1992;
Yackel & Cobb, 1993). This again indicates that there were differences in the two
groups of teachers' underlying beliefs and values.

In reflecting on these experiences, we have come to realize that assumptions
that we initially considered to be self-evident in fact reflect our culturally-spec:fic
beliefs and values. After working with teachers at the rural/suburban site, we had
written that "a shared desire to facilitate meaningful learning and a general con-
cern for children's intellectual and social welfare" constituted the foundation on
which we and the teachers developed a basis for communication. At the time we
wrote this statement, we assumed unquestioningly that engaging children in what
for us counts as meaningful learning would necessarily be viewed as contributing
to their welfare. However, our experiences at the inncr-city site have led us to
reconsider this assumption.

An analysis of observations made at the inner-city site during both classroom
mathematics lessons and teacher induction sessions indicates that these teachers
were deeply concerned about their students' intellectual and social welfare. How-
ever, there were crucial differences in what counted as intellectual and social wel-
fare at the two sites (Yackel & Cobb, 1993). In particular, strictly enforced disci-
pline seemed to be highly valued by teachers and administrators at the inner-city
site. In addition, we did not observe instances where rules were discussed with
students. Thus, although there were discussions of whether a rule had been vio-
lated, neither the appropriateness of the rules nor reasons for complying with them
seemed to be topics of conversation.

In accounting for these differences between the two ,ites, we have comc to the
view that what it means to be a child in school is constituted by pedagogical com-
munities (Banks, 1995; Walkerdine, 1988). Therefore this notion does not there-
fore app2ar to he fixed and universal, but is instead continually regenerated by the
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members of a pedagogical community as they participate in the practices of school-
ing. At the inner city site, for example, to be a child in school was to follow spe-
cific rules and instructions. Purther, to understand was to be able to verbalize
relevant rules. Consequently, adults showed their concern for children's welfare
by helping them learn to follow and verbalize rules. There was therefore no con-
flict at this site between the consequences of traditional mathematics instruction
and the institutionalized views about what it means to be a child in school. This in
turn implies that the teachers had no reason to revise their instructional practices.'

It is apparent that in the course of this discussion of our experiences at the two
sites, we have viewed the teachers as representatives of particular communities of
practice. As we will see, this approach of characterizing individuals in terms of
community membership is typical of the sociocultural perspective. With regard to
the implications of the analysis, wc observe that core beliefs and values implicit in
current reform recommendations are compatible with those of the teachers at the
rural/suburban site but conflict with those of teachers at the inner-city site. This,
for us, raises the very real possibility that reform efforts in whicn mathematics
educators assume that their culturally-situated commitme.ts are universal might
well result in even greater disparities in the types of mathenlatics education that
children experience than is currently the case. We therefore join Apple (1992) in
calling for mathematics educators to explicate the ideological assumptions under-
pinning their reform recommendations. Only then might wc be able to guard against
the possibility that we will unknowingly foster even greater inequities.

Societal level. The grounding for the discussion of practices at this level is
provided by an analysis reported by Yang and Cobb (1995). At thc outset, our goal
was simply to build on previous investigations of the mathematics achievement of
Asian and American students by comparing the arithmetical learning of children
in Taiwan and the U.S. However, in the course of the analysis, we came to the view
that children in the two countries were participating in very different types of learn-
ing activities, and that these activities were culturally organized at the societal
level.

With regard to the specifics of the investigai;on, the analysis covered pre-
school through second grade and dealt with arithmetical developments up to and
including the construction of place value conceptions. Consistent with previous
investigations, an analysis of videorecorded individual interviews indicated that
there were significant differences in the quality of the two groups of children's
arithmetical conceptions tt-it favored the Chinese children in Taiwan (cf. Stevenson
& Lee, 1990). In addition, an interactional analysis of classroom videorecordings
made in thc two countries indicated that there were important differences in the

We have been asked on several occasions whether the differences brtween the school
communities reflect differences in the wider communities in which they were embedded. It
would be inappropriate for us to address this issue for ethical reasons that penain to the
nature of the relationships we established with teachers and administrators at the two sites.
As a consequence, a level corresponding to the wider community beyond the school is not
included in Figure 3.



obligations that the children had to fulfill to appear competent (cf. Stigler, Fernandez,
& Yoshida, 1992). However, the most relevant differences for our current pur-
poses were those between the sequences of learning activities in which the chil-
dren in the two countries participated. These sequences were identified by analyz-
ing textbooks and by interviewing parents and teachers of the kindergarten, first-,
and second-grade students. The issues addressed in these interviews included the
types of learning activities that the teachers and parents considered most important
for children's arithmetical development, the specific concepts and methods that
children were expected to develop, the extent to which children needed either as-
sistance or directed instruction, and the parents' and teachers' expectations for
childrens' competencies at various age and grade levels.

The analysis indicated that there were important differences in the teachers'
and parents' expectations for both the learning routes that the children would fol-
low and the competencies they would develop, and in thc extent to which the
adults believed that it was necessary to provide direct support. In addition, there
appeared t..) be differences in thc internal consistency and coherence of the se-
quences of learning activities in the two countries. The American learning activi-
ties appeared to involve a major discontinuity in that the children's initial experi-
ences in situations involving single-digit numbers did not appear to constitute a
basis for their subsequent construction of place value conceptions. Significantly,
the American teachers and parents considered that place value was a challenging
concept and that it should be delayed until the second grade. In addition, the
American teachers unequivocally stated that direct instruction was required. By
way of contrast, the culturally-organized learning activities in Taiwan did not ap-
pear to have such contradictions. Further, the Chinese parents and teachers treated
place value conceptions as relatively unproblematic developments that should be-
gin in kindergarten. The tasks they posed and the questions they asked both seemed
to reflect the view that it is natural for children to conceptualize numbers as com-
posed of tens and ones at a relatively early point in their arithmetical development.
In addition, they did not consider that this relatively easy developmental stage
required direct instruction.

It is apparent from the analysis that the culturally-organized learning activi-
ties in which the Chinese students participated tended to enable the development
of conceptual understanding in arithmetic to a far greater extent than did the learn-
ing activities in which the American students participated. Further, these differ-
ences in learning activities appeared to both corroborate and bc supported by dif-
ferences in the American and Chinese parents' and teachers' beliefs about what
constitutes normal or natural development when children learn arithmetic. For
example, the American parents and teachers had good reasons for believing that
place value was a relatively late development. This belief in turn sustained peda-
gogical practices in which place value was experienced as a relatively challenging
concept. Sim ilarly, the Chinese teachers' and parents' beliefs were both expressed
in and corroborated by the culturally-organized learning activities in which they
and the children participated. It therefore seems reasonable to characterize these
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two contrasting sets of beliefs about normal development as culturally-situated
social constructions that are reflexively verified in practice.

The general position that w have arrived at is consistent with sociocultural
approaches in that the American and Chinese children's contrasting arithmetical
competencies are accounted for in terms of their participation in differing sequences
of culturally-organized learning activities (cf. Cole, 1990; Lave & Wenger, 1991;
Rogoff, 1994). Explanations of this type can be contrasted with an alternative
orientation consistent with mainstream American psychology in which culture is
treated as a cluster of variables that influences the course of essentially individual-
istic psychological processes. It should also be noted that the characterization of
beliefs about psychological development as social constructions applies as much
to widely accepted academic theories as it does to so-called folk theories (L.ave,
1988; Newman, Griffin, & Cole, 1989). This, of course, does not imply that aca-
demic theories are mere myths or fictions, or that they are nothing more than arbi-
trary social conventions. Our point is instead that these theories are culturally-
situated and that their development is guided by particular concerns and interests
(Barnes, 1977). In our own case, for example, we have come to see the emergent
approach we have outlined as grounded locally in the practices of developmental
research, and as located more globally in an encompassing activity system that
constitutes schooling in the U.S.

Summary. The interpretive framework shown in Figure 3 emerged relative to
our purposes and offers a way to organize analyses conducted from different per-
spectives. It was in fact with these analyses in mind that we have previously
discussed possible relationships between theoretical perspectives (e.g., Cobb, 1994).
The order in which we have described the various perspectives, starting with a
psychological constructivist perspective and working our way out, retraces the
developments in our thinking over the last several years. The discussion of the
framework at the classroom level focused on the relation between psychological
constructivism and the emergent perspective. The sociocultural perspective came
to the fore when we considered practices at the school and societal levels. In the
remainder of this paper, we step hack to compare and contrast these theoretical
orientations more directly.

Coordinating Perspectives

Psychological Constructivism and the Emergent Perspective

We have seen that the emergent perspective augments psychological
constructivism by coordinating it with interactionism. The relationship between
psychological constructivism and interactionism can be clarified by considering,
as an illustration, a situation in which a researcher is interacting with one student.
To the extent that a psychological constructivist analysis takes account of the in-
teraction, the focus is on the student's interpretations of the teacher's actions. An
analysis of this type is made from the perspective of the researcher, who is inside
the interaction and is concerned with the ways in which the student modifies his or
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her activity. In contrast., an interactional analysis is made from the outside, from
the point of view of an observer rather than of a participant in the interaction.
From this perspective, the focus is on regularities in the student's and researcher's
interactions, and on the consensual meanings that emerge between them, rather
than on the student's personal interpretations. As Voigt (1994) makes clear, these
consensual meanings are not psychological elements that capture the partial match
of individual interpretations, but are instead located at the level of interaction.
Examples of such constructs illustrated during the discussion of the interpretive
framework include social norms, sociomathcmatical norms, and classroom math-
ematical practices.

Despite claims made to the conirary, we contend that researchers who typi-
cally take an individualistic focus are not conducting an interactional analysis merely
because the students whose activity they are analyzing happen to be interacting
with others. The researcher is conducting a psychological analysis as long as he or
she focuses on the activity of each of the interacting individuals and fails to take
their joint activity as an explicit object of analysis (Blumer, 1969). By the same
token, it should be clear that the emergent approach does not merely involve bolt-
ing a social component onto an otherwise unchanged psychological approach.
Instead, the relation between the interactionist and psychological constructivist
perspectives is considered to be reflexive. The characterization of learning as an
individual constructive activity is therefore relativized in that these constructions
are seen to occur as students participate in and contribute to the practiccs of the
local community.

The comments that we have made thus far do not dclegitimize psychological
analyses of, say, interviews or one-on-one teaching sessions. However, we do
question whether such analyses capture individual students' conceptual undersiand-
ings independently of situation and purpose. From the emergent perspective, in-
terviews arc viewed as social events in which the researcher and child negotiate
their roles, their interpretations of tasks, and thcir understanding of what counts as
a legitimate solution and an adequate explanation (Misch ler, 1986; Schoenfeld,
1987; Voigt, 1995). As a consequence, wc believe that it is important to view the
students' activity as being socially situated even in settings such as interviews that
are typically associated with psychological paradigms. The psychological analy-
sis would then be conducted against the background of a social analysis that docu-
ments thc interactively constituted situation in which the student is acting.

We have argued thai the emergent approach is consistent with the purposes of
classroom-based developmental research. We have also clarified that analyses
conducted in line with this approach can give greater weight to either thc psycho-
logical or the interactionist perspective depending on the issues and purposes at
hand. In each case, one perspective comes to the fore against the background of
the other. This reciprocity between the psychological and the social in turn serves
to differentiate the emergent approach from sociocultural approaches.

4 4 18



Emergent and Sociocultural Perspectives

The emergent and sociocultural perspectives have a number of points in com-
mon. For example, both reflect the view that learning and understanding are in-
herently social and cultural activities. The two positions therefore reject the view
that social interactions serve as a catalyst for otherwise autonomous intellectual
development. Further, both attend to the role of symbols and artifacts in concep-
tual development. However, whereas the emergent perspective subsumes psycho-
logical constructivism, the sociocultural perspective constitutes an alternative to
approaches that attribute a primary role to individual students' constructive activi-
ties.

We have seen that from an emergent perspective, learning is a constructive
process that occurs while participating in and contributing to the practices of the
local community. In the case of the interpretive framework, for example, students
were seen to actively construct their mathematical ways of knowing as they par-
ticipated in the mathematical practices of thc classroom community. Thc link
between collective and individual processes in this approach is therefore indirect
in that participation enables and constrains learning, but does not determine it.
Participation is therefore seen to constitute the conditions for the possibility of
learning (Krummheuer, 1992). In contrast, a Vygotskian perspective such as that
advanced by van Ocrs (in press) treats the link between collective processes and
individual processes as a direct one: Thc qualities of students' thinking are gener-
ated by or derived from the organizational features of the social activities in which
they participate. This conjectured direct linkage allows sociocultural theorists to
be more directive when making instructional recommendations. For example, van
Ocrs (in press) suggests that students should imitate culturally-established math-
ematical practices when they interact with the teacher or more capable peer. Hc
goes on to argue that help should bc gradually withdrawn so that students take
over functions they could not initially perform alone, thereby internalizing the
cultural activity. This recommendation instantiates Vygotsky's frequently cited
general genetic law of cultural development.

Any higher mental function was external and social before it
was internal. It was once a social relationship between two
people.... Wc can formulate the general genetic law of cultural
development in thc following way. Any function appears twice
or on two planes....lt appears first between people as an
intermental category, and then within the child as an intramental
category. (1960, pp. 197-8)

The contrasting emphases of the sociocultural and emergent perspectives arc
reflected in differing characterizations of the teacher's role. In sociocultural ac-
counts, the teacher is typically portrayed as a representative of society who sup-
ports students' discursive reconstruction of culturally-approved meanings (cf.
Forman, in press). This view leads to a treatment of negotiation that is partially at
odds with emergent accounts of communication. From the emergent perspective,
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negotiation is a process of mutual adaptation that gives rise to shifts and slides of
meaning as the teacher and students coordinate their individual activities, in the
process of constituting the practices of the classroom community. However, from
the sociocultural perspective, negotiation is a process of mutual appropriation in
which the teacher and students continually co-opt or use each others' contribu-
tions (Newman, Griffin, & Cole, 1989). The teacher is therefore typically expected
to insert culturally-approved insights that students can co-opt, and to appropriate
students' actions into the wider system of mathematical practices that they are to
reconstruct. In this account, the teacher negotiates with students in order to medi-
ate between their personal meanings and established cultural meanings. However,
in the emergent approach, it is the local classroom community rather than the math-
ematical practices institutionalized by wider society that are taken as the immedi-
ate point of reference. From this point of view, the teacher negotiates with stu-
dents in order to initiate and guide both students' individual constructions and the
evolution of consensual mathematical meanings so that they become increasingly
compatible with culturally-approved meanings. In general, whereas sociocultural
approaches frame instructional issues in terms of the transmission of culture from
one generation to the ncxt, the emergent perspective is concerned with the emer-
gence of individual and collective meanings in the classroom.

A further contrast between the two perspectives concerns the treatment of
semiotic mediation. It is important to clarify that the emergent approach fully
accepts Vygotsky's (1987) fundamental insight that semiotic mediation is crucially
involved in students' conceptual development. The issue under consideration is
that of explaining the nature of this involvement. In line with its central tenets,
sociocultural accounts of semiotic mediation give precedence to social and cul-
tural processes over individual psychological processes. For example, in one line
of explanation most directly associated with Vygotsky, cultural tools such as con-
ventional mathematical symbols arc said to be internalized and to become cultural
tools for thinking (Davydov & Radzikhovskii, 1985; Rogoff, 1990). In a second
line of explanation associated with Lcont'cv (1978), individuals are said to appro-
priate cultural tools to their own activity. Both formulations distinguish between
students' personal meanings and sociohistorically developed cultural meanings
inherent in thc appropriate use of cultural tools. Further, both approaches contend
that students will develop particular culturally-approved meanings as they learn to
use language and other semiotic means appropriately (cf. Forman, in press). These
approaches therefore characterize symbols as primary vehicles of the enculturation
process in that they serve as carriers of meaning from one generation to the next
when students usc them while engaging in culturally-organized activities (van Ocrs,
in press). It was in this sense that Vygotsky referred to symix)Is as "objective
tools" (Bauersfeld, 1995). The underlying metaphor is again that of transfer or
transmission in that learning is characterized as a process in which students inherit
the cultural meanings that constitute their intellectual bequest from prior genera-
tions.

In the alternative emergent perspective, learning is viewed as a process of
both active individual construction and enculturation. Further, processes of signi-
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fication are considered to be integral to both classroom mathematical practices
and the activities of students who participate in them. For example, the math-
ematical practices established by a classroom community might involve reasoning
with physical materials, pictures, diagrams, computer graphics, or notations. An
analysis of classroom mathematical practices can in fact delineate emerging chains
of signification (Walkerdine, 1988) that constitute what Lemke (in press) calls the
semiotic ecology of the classroom (Cobb et al., in press). When attention shifts
from the interactionist to the psychological constructivist perspective, the physical
materials, symbols, and notations that students use are viewed as constituent parts
of their individual activities rather than as external tools (Bateson, 1973; Dewey,
1977; Prawat, in press). As a consequence, the use of particular materials and
symbols is considered to profoundly influence both the nature of the mathematical
capabilities that students develop and the processes by which they develop them.

We contend that thc account of signification offered by the emergent approach
is better suited to the purposes of developmental research in that it provides greater
precision than sociocultural approaches. For example, a sociocultural analysis of a
classroom teaching experiment might account for students' learning in terms of
their appropriation or internalization of particular semiotic means. The difficulty
from our point of view is that such an analysis does not specify in any detail the
evolving social situation of the students' development by analyzing instructional
sequences as they arc realized in interaction in a particular classroom. In addition,
this approach has difficulty in accounting for qualitative differences in individual
children's mathematical interpretations except to the extent that they can be tied to
the students' participation in different out-of-school communities of practice
(Confrcy, 1995; Hanks, 1991). In contrast, we illustrated whcn discussing the
interpretive framework that an emergent approach addresses both of these issues.
Analyses developed from this perspective therefore have implications for both the
revision of instructional sequences and the development of follow-up teaching
experiments (Cobb et al., in press).

In this discussion, we have questioned the relatively common view that a so-
ciocultural stance must be adopted if the central role of language and other semiotic
means arc to be addressed. As an alternative, we have suggested that an emergent
approach is appropriate for some purposes in that it admits a psychologisal
constructivist view of learning but sees it as inextricably bound up with processes
of signification (cf. Confrcy, 1995; Kaput, 1991; Pirie & Kicren, 1994; Sfard, 1991;
Thompson, 1992). An emergent analysis might in fact be said to "unpack" appro-
priation processes posited by sociocultural theorists by specifying how they arc
realized in interaction by members of specific classroom communities. What, at
the global level of the reproduction of culture, is viewed as a process of transmis-
sion becomes, at the local level of the classroom community, a process of emer-
gence in which students' constructive activities and the practices in which they
participate are considered to he reflexively related.

Thus far, we have focused on situations in which an emergent approach might
be particularly appropriate. We turn now to consider the sociocultural perspective
and do so by first discussing an analysis reported by Crawford (in press). In pro-
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posing to view "conscious behavior as a reflection of the socio-cultural environ-
ment in which an individual functions," Crawford makcs it clear that she is taking
a strong sociocultural perspective. One of her primary interests is to understand
situations in which "there are conflicts and inconsistencies between the values and
priorities of cultural experience at home and at school." As an illustration, she
discusses the conflicts that arise when children growing up in traditional Aborigi-
nal communities in Australia participate in school mathematics activities.

The resistance of many Aboriginal students to learning math-
ematics in schools has been interpreted as lack of ability by many
educators. In fact, for many Aboriginal people, the value con-
flicts that arise as a result of the world view that is implicit in the
elementary mathematics curriculum are substantial barriers to
learning....[For example,] the very high priority given in West-
ern culture to quantity and to quantifiable variables was not sup-
ported by everyday activities and modes of categorical thinking
in traditional Aboriginal communities. (Crawford, in press)

Crawford goes on to observe that

Aboriginal communities find the educational practice, used fre-
quently by teachers of mathematics, of asking students ques-
tions when the answer is already known to the teacher, extremely
puzzling and distasteful.

In addition, there arc "substantial differences between Aboriginal and non-Ab-
original categorical thinking even about such perceptually grounded concepts as
color." As a consequence, for Aboriginal children, "the primary colors were not
immediately evident as a means of classification lof counters and other manipula-
tive materials]."

We find Crawford's analysis compelling and suggest that, for her purposes, it
would be counter-productive to "unpack" the process by which Aboriginal chil-
dren appropriate the values and priorities of their communities. In the analysis,
these children are portrayed as "carriers" of the culturally-based understandings of
their communities. The vantage point that Crawford seems to adopt is therefore
that of an observer located outside the cultural group. From this perspective, thought
and activity within a cultural group appear to bc relatively homogeneous when
compared with differences between groups. This, it will be recalled, was also the
perspective that wc took when conducting the school-level and societal-level analy-
ses. In the case of the teachers at the two action research sites, for example, we
viewed them as representatives of different pedagogical communities whose ac-
tivity reflected the priorities and values of those communities. Similarly, in thc
comparison of the arithmetical learning in Taiwan and the U.S., the children, teach-
ers, and parents in thc two countries were viewed as "carriers" of distinct systems
of cultural beliefs and values. In the course of the analysis, we did in fact point out
the qualitative differences in the mathematical activity of children within each of

22

4 d



the two national groups (Yang & Cobb, 1995). However, these observations were
tangential to the major emphasis of the analysis and merely served to illustrate the
possibility of unpacking sociocultural processes, thereby focusing on the construc-
tive activities of individual children.

Crawford subsequently clarifies that situations involving tensions in individu-
als' needs, expectations, and goals are not limited to conflicts between home and
school experience, but also include attempts to reform instruction. In such cases,
the tension is between the needs, experiences, and goals of the innovators and the
teachers, or between those of the teachers and the students. For example, in the
school level analysis, our interactions with the teachers at the inner-city site can be
characterized in terms of a conflict between our own and the teachers' culturally-
situated beliefs about what it means to be a child in school. Further, our experi-
ences of working with the teachers at both action research sites can be seen to
involve a tension between our own and the teachers' views about the general na-
ture of mathematical activity in school. In this regard, Crawford observes that
teachers tend to teach in the ways in which they were taught. She accounts for this
phenomenon in sociocultual terms by contending that future teachers internalize
attitudes and beliefs about how mathematics is learned and about the role of the
teacher from their own participation as students in the culturally-organized activi-
ties of schooling. In conducting an emergent analysis, we, for our part, would
attempt to "unpack" this internalization process. It can be noted, for example, that
the beliefs and attitudes to which Crawford refers arc the psychological correlates
of classroom social and sociomathematical norms. Consequently, from an emer-
gent perspective, future teachers arc seen to actively construct the beliefs, suppo-
sitions, and assumptions that subsequently find expression in their pedagogical
activity when, as students, they participate in the negotiation of classroom social
and sociomathematical norms. In this account, a global process of internalization
from the sociocultural environment is recast as one of negotiation and individual
construction at the classroom level. The issue for us is not which of these two
accounts gets things right. Instead, it is to consider the situations in which one type
of analysis or the other might be more helpful. In our view, the precision of the
emergent account is appropriate for certain purposes. However, in other situations,
the globalness of sociocultural accounts has it own advantage. Ia this respect, the
two theoretical perspectives can be seen to complement each other. The sociocul-
tural approach that Crawford illustrates focuses on the social and cultural bases of
personal experience whereas analyses developed from thc emergent perspective
account for the constitution of social and cultural processes by actively cognizing
indiv iduals.

Conclusion

We have used Crawford's work as a paradigm case to illustrate the relevance
of sociocultural approaches to issues of cultural diversity and of reform at a more
global level. It should he clear from the discussion that we consider both sociocul-
tural and emergent perspectives to he viable positions. We would also note that a
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central notion common both to these two perspectives and to psychological
constructivism is that of activity. Ditterences between the perspectives concern
the positioning of the researcher and thus the way in which activity is framed.

In psychological constructivist approaches, the analytical position taken by
the researcher is inside an ongoing interaction, and the focus is on the ways in
which individual students reorganize their activity. The emergent approach coor-
dinates analyses of this type with those conductcd from the interactionist perspec-
tive. We have suggested that the analytical position taken in this latter perspective
is that of an observer of ongoing interactions located outside the local community
but inside the broader cultural community. From this vantage point, individual
activity is seen to be situated within the practices of a local community such as that
constituted by the teacher and students in the classroom. In contrast, the position-
ing of the sociocultural theorist is outside the cultural group. From this perspec-
tive, individual activity is situated in broad sociocultural practices, and learning is
characterized as a process of internalization or appropriation while participating in
these practices.

In the course of the discussion, we have clarified that the emergent, approach
coordinates the psychological constructivist and interactionist perspectives. This
led us to suggest that analyses whose primary purpose is psychological should be
conducted against the background of an interactionist analysis of the social situa-
tion in which the student is acting. The contrasts we drew between the emergent
and sociocultural perspectives paid particular attention to thc kinds of issues that
analyses conducted from each perspective might reasonably address. In addition,
we considered how the two perspectives might complement each other. These pos-
sibilities are worth pursuing in our view given that the perspectives together span
the individual student's activity, the classroom community, and broader communi-
ties of practice. The interpretive framework we have outlined represents one at-
tempt to achieve such a coordination.
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FAIRNESS IN DEALING: DIVERSITY, PSYCHOLOGY, AND
MATHEMATICS EDUCATION

Suzanne K. Damarin, The Ohio State University

But constructivism as a pedagogical orientation has to be em-
bedded in an ethical or political framework.

Nel Noddings, 1993, p. 159

This paper lics at the interpretive intersection of several lines of research,
some of them quite familiar to mathematics educators, and some of them probably
less so, or at least familiar only to some. Among the familiar discourses are cogni-
tive constructivism, soi,;ial construction, situated learning, and the psychological
study of differences between groups defined by gender, race, ethnicity, and other
variables used to categorize persons. The less familiar literatures and discourses
include cultural studies, feminist research and theorizing, and postmexiern social
sciences, among others. Within the space inscribed by these theories, discourses,
and research traditions and findings, I excavate issues surrounding thc basic ques-
tions of what knowledge and approaches can be applied in order to increase the
"fairness in dealing" with all students in and through mathematics curriculum,
instruction, assessment, and related activities. And, what arc the implications for
research in mathematics education, particularly research which invokes and pur-
sues knowledge categorized as psychological?

I choose to use thc term "fairness in dealing" specifically to displace the more
traditional ideas of equity. Educational equity (if it is achieved) connotes various
forms of measured equality in the selection, preparation, treatment, achievement,
and/or career tracks of groups of students categorized by sex, race, ethnicity, or
class (Fennema, 1990). The equity concept is limited in several regards. First, it is
measure dependent, and different measures often yield different assessments of
the extent to which equity is achieved; thus, while the quantitative nature of equity
reports lend them the aura of scientific truth, the construct validity is questionable.
Secondly, equity and its measures cannot take into account phenomena such as the
accumulating evidence that even many girls and women who have achieved excel-
lence in mathematics often feel that some unfairness was involved. Third, mea-
sured equity is a post hoc concept, measured aftcr the fact of preparation, achieve-
ment, et cetera, and offers mathematics educators no guidance as to how to work
towards its achievement. A review of the literature reveals a fourth concern:
"equity" and "excellence" arc often regarded as pitted against each other by edu-
cational policy makers and philosophers, with thc implication that one must bc
sacrificed for the other. As others have observed, if equity and excellence were
consistent in practice, we would see at least a few examples of "excellence" in
urban schools. The ick a that in a democratic society excellence must entail equity
is lost in the operational uses of the terms "equity" and "excellence".

Periodically throughout American educational history, arguments for equity
in mathematics and/or science education have been confounded with arguments
concerning the need of capitalists to increase labor pools (see Cohen, 1982; Damarin,
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1993a); thus, the idea of equity in children's access to education is confused with
the idea of giving employers access to trained workers. While there are clear
relationships between educauon and employment, this conceptual confusion de-
flects focus from the current educational needs of learners to future needs of em-
ployers. Current reform efforts in education and schooling in general, and in math-
ematics education as guided by the Standards (NCTM, 1989) in particular, focus
on the construction of knowledge by the individual student. But, the measures
used in gathering data for equity reports usually lead in directions opposite to the
"authentic assessment" of the Standards. Finally, (and perhaps consequent upon
the issues outlined above) educational activities directed toward (and by) the cur-
rent equity construct have not led to the kinds or magnitude of change intended
with the inception of systematic equity work in the 1970s. In a multicultural demo-
cratic society such as ours, the goal of universal education requires a rethinking
and recommitment to the education, in particular the mathematical education, of
all students. Toward this end, and in recognition of the power of language to
inhibit or promote change, coimider the idea of "fairness in dealing."

Fairness in Dealing

The tcrm "fairness in dealing" is one of the definitions for equity supplied by
We'Pster's Ninth Collegiate Dictionary. Although "dealing" and "fairness" arc
difficult words to define operationally, "dealing" conveys ideas of continuity in
action, reciprocity (dealing cannot be accomplished by a single actor), and nego-
tiatio,- to resolution; "fairness" entails openness, honesty, full disclosure, and of-
ten the setting aside of knowledge or information that might bias one. When Myra
and David Sadkcr (Sadkcr and Sadkcr, 1994) titled their recent book Failing at
Fairness: 1 low Our Schools Cheat Girls , they used "fairness" in this sense. Theirs
is not an equity report per se, but a summing up of more than two decades of
observational research focused on the schooling of girls; the book documents "a
curriculum of sexist school lessons becoming secret mind games played against
female children, our daughters, tomorrow's women" (p.1). Since 1973 when Myra
Sadker published her first book, Sexism in School and Society, (Frazier and Sadkcr,
1973) and launched the contemporary study of gender in education, a growing
cohort of educational and psychological researchers has conducted a great deal of
research on gender in general and on mathematics and gender, in particular (see
Fcnncma, 1993; Fennema and Hart, 1994). Despite the accumulated findings of
the latter research, and despite earnest efforts by many mathematics teachers, cur-
riculum designers, policy makers, and teacher educators to articulate research find-
ings into classrooms, the recent findings of the Sadkers, the AAUW study of school-
ing and girls (Wellesley Center, 1992; also, Orenstein, 1994), and other compre-
hensive studies indicate that little has changed for girls or women in mathematics
classes. But, the absence of some changes can motivate others, and in the arca of
gender and mathematics there is apparent today a worldwide movement (Kaiser
and Rogers, 1995) to change the conceptual bases and paradigms of research on
gender and mathematics, incorporating feminist philosophy and theories, feminist
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studies in psychology, and ideas of fairness. This paper reflects, and perhaps con-
tributes to, that change.

Considering Race and Ethnicity I

Although my assignment in this paper is to address diversity in general, the
primary discussions and arguments arc based in sex/gender/feminism for several
reasons. First, much of my own work and, therefore, my greatest knowledge and
my habitual focus arc on gender. Secondly, the body of research and theory di-
rected specifically toward mathematics and gender is larger, and perhaps more
varied in its theoretical bases, than work on mathematics and race' (or mathemat-
ics and class2). Third, I argue below that the sex/gender/ feminisms based discus-
sions presented here have clear analogues in the arca of mathematics and race, as
well as mathematics and ethnicity.

Before making that argument, it is important to notc that white feminists have
been rightly criticized for ignoring and/or denying racial differences between and
among women in much of their work I do not deny the validity of this claim, nor
its importance; I regret any and all participation on my part in this silencing. Cer-
tainly sex/gender and race operate both differently and interactively in the larger
society. Just as research and writing on women have often focused on white women,
research and writings on race and ethnicity have often ignored the multiplicity of
races and ethnicities. In this paper, my race-based examples focus on African
Americans. This choice reflects my desire to display the depth and richness of
findings concerning a particular marginalized group. I have no doubt that a com-
parable set of examples and arguments could bc given with respect to a different
group, nor that in its details the discussion would vary with culture.

For both race and sex/gender, however, the domains of "mathematical abil-
ity" and "mathematics performance" have functioned as areas in which "demon-
stration of difference" has been used both as a rationalization for, and a tool in, the
continuing suppression/ oppression of individuals based solely upon their race
and/or sex. This structural and operational sameness is at the crux of the analogi-
cal moves in this paper. Moreover, the "red thread" that runs through the feminist
analysis discussed below is the importance of recognizing and valuing lived expe-
riences and epistemological standpoints in the psychological and educational study
of cognition and in thc teaching of mathematics. That these experiences and
standpoints vary with both sex and race in relevant ways is a major point, and the
basis of the analogies and comparisons between gender and race.

' In a recent paper, Ladson-B Wings and Tate (in press) argue that, in contrast with gender
and class for which there is extensive theoretical work, race has not been adequately theo-
rized. These authors propose and argue for a critical race theory grounded in the ownership
of property.

This paper will not address issues of mathematics and class in any depth. The interested
reader is referred to Mel lin-Olsen (1987), and Frankenstein (1987, 1995) for insightful
discussions. Elsewhere, (Damarin 1993b, 1994a), I discuss some issues of class in relation
to situated cognition: the arguments there are related to those of this paper.
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Feminisms, Psychology, Gender, and Mathematics:
A (very) Brief History

Although all feminist research and theorizing begins with the goal of improv-
ing the lot of women in the world, beyond this common aim feminism is not singu-
lar in its underlying assumptions, beliefs, methods, and goals. Instead, diverse
feminists work within a range of perspectives and frameworks liberal femi-
nism, socialist fcminisms of several sorts, radical fcminisms, black womanist theo-
ries, and postmodern feminism among them.3 Until recently, most research in
gender and mathematics was carried out under thc assumptions and using the meth-
ods associated with liberal feminism which assumes (basically) that the larger
structures (e.g., capitalism, the scientific establishment, educational systems) and
concepts (e.g., mathematics, science, research, evidence) of current society are
stable, essential, and appropriate. Liberal feminists "work within the system",
attempting to improve the lot of women within conceptual, experiential, and po-
litical systems which arc otherwise left unchanged.

For research on gender and mathematics, liberal feminist reseamhers using
current concepts and methods of psychology and education have conducted ex-
perimental studies, factorial studies, and thc building of models in efforts to under-
stand observed differences in the mathematics performance of females and males,
to identify psychological variables which moderate effects, suppressing or multi-
plying the effe,cts of gender, and to prescribe, both within and outside schools,
changes in the treatment of girls which might increase mathematics performance.
Beginning with the Fennema-Sherman studies of the early 1970s (Fennema and
Sherman, 1977), and continuing into the present (e.g., Friedman, 1995) these stud-
ies have accumulated into a substantial comprehensive literature (see Fennema
and Hart, 1994). Psychological constructs such as state and trait anxicty, internal-
ity/ externality, field dependence/ independence, aggression, fear of success, and
achievement motivation, among others, contribute to the understanding of rela-
tions among the variables studied. At the same time, ncw constructs such as "math
as a male domain" (Fennema and Sherman, 1977) and "autonomous learning be-
haviors" (Fennema and Peterson, 1985) were identified by these researchers and
studied to clarify anomalous findings.

Despite thc increasing refinement of studies and findings, however, dissatis-
faction if not disillusionment with this line of research has grown among those
concerned with gender and math for several reasons. After an initial flurry of
concrete findings which suggested concrete actions, the results of this research
seem to many to have neither explanatory power comparable to the perceived

For a discussion of various strands of feminism, see Jaggar (1983), Dmovan (1986), or
any introductory text on feminist theory. Black feminist (or womanist) theory has often
been ignored in these texts, especially the earlit nes; for a discussion of these theories see
Collins (1990) on black feminist theory and Walker (1983) on black womanism. The inter-
ested reader may also wish to consult Kramarae and Spender's (1992) anthology of writ-
ings on feminist theory and practice in fields ranging from Architecture to Zoology. or
Stone's (1994) anthology on feminism and education.
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magnitude of the problem nor prescriptive power sufficicnt to create fundamental
change. Feelings that this line of research might have passed its usefulness were
exacerbated by announcements of the welcome findings that the sexes "no longer
differ" in mathematical ability or aptitude (Linn and Hyde, 1989) and by accumu-
lating evidence (Linn and Hyde, 1989; Tame, 1990) that spatial abilities are not
related to sex differences in mathematical performance. The emergence of these
findings both validated the "gut level" beliefs of many gender researchers and
served to catalyze a change in direction. In the hotel lobbies at AERA meetings,
at WME meetings, and in other places where gender and mathematics researchers
come together, a tentative, forbidden thought began to take on the dimensions of a
rallying cry: "There's nothing wrong with the women; let's stop trying to fix the
women and start to work on fixing the mathematics." Onc way of interpreting the
current agenda for research in mathematics and gender is that the problem under
study is to determine exactly what those three words, "fix the mathematics" could
possibly mean. Meanwhile, in many othcr areas of study, including psychology,
feminist researchers using different approaches were uncovering interesting find-
ings and propounding interesting theories.

Feminist Psychology

From its earliest development, psychology has been criticized by women within
the field (e.g., Woolley, 1903, 1910) who found both the psychological
conceptualization and empirical investigation of thc "feminine" and its correlates
to be without validity in that they were dissonant with the realities of womcn's
lived experience. With the rise of the current wave of feminism, these critic sms
were revived and expanded (Weisstein, 1971; Sherif, 1979). Researchers in psy-
chology and education (e.g., Eichler, 1987; Squire, 1989) examined thc conduct of
experimental research, uncovering evidence of prevalent biases at thc levels of
problem statement, sampling, instrumentation, treatment, data analysis, and inter-
pretation and reporting of results. A cataloging of these findings is well beyond
the scope of this paper, but a few examples arc instructive. In a sampling of stud-
ies of interactions between parents and their young children, most were conducted
using observations of mothers; findings of good interactions were typically re-
ported in the gender-neutral language of parenting while findings of deficient be-
haviors were uniformly discussed in thc female-specific language of mothering
and maternal activity. While this failing might be corrected by re-analysis and
interpretation of existing data or by new experimentation, there arc morc funda-
mental gender-based critiques. Psychological constructs which have prior asso-
ciations with thc masculine (e.g., aggression) tend to be studied using high-status
experimental techniques, while those associated with the feminine (e.g., anxiety)
arc studied using low status Liken-type instruments. As a result, knowledge of
"masculine" traits is reported with the certainty of cause and effect, while "femi-
nine" traits emerge as correlational, marginally significant predictors lacking in
strength. Thus, by their design, the research tools participate in thc very phenom-
enon and problem that gender researchers have sought (and are seeking) to address
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and redress. In this context, the wisdom of black feminist Audre Lorde (1984, p.
110) is evident: "the master's tools will never dismantle the master's house."

From the perspective of women, another major failing in psychological re-
search was (and is) the development, refinement and application of comprehen-
sive theories of "human" development based entirely on male data. Kohlberg's
theory of moral development has been particularly troublesome because when this
four stage theory is applied to both sexes women are most frequently found to be
in a state of arrested development (stage 3) while men proceed to the higher (fourth)
stage. In a series of studies of women's moral development, Carol Gilligan (1979,
1982) developed an alternate theory around ideas of care and responsibility. Briefly,
in hcr research and theories, a conception of the self as connected and in relation to
others, together with a theory of knowledge as connected,4 supports an ethic based
on responsibility and care, while a view of the self as autonomous and in separa-
tion from others leads to an ethic of rights and justice. While women's beliefs and
actions were in the spirit of the former, men believed and acted in relation to the
latter. Rather than a stage theory, Gilligan's is a theory of socialized differentia-
tion highly related to gender socialization.5.6

Gilligan's work has had profound influence on feminist research and theory,
and on applications of feminist theory to the (female dominated) "helping profes-
sions". Of particular interest here, this work influenced feminist psychological
study in relation to another developmental stage theory which was based entirely
on data gathered from males:7 William Perry's (1970) Forms of Intellectual and
Ethical Development. Basing their queries on Perry's stages, Mary Belenkey,
Blythe Clinchy, Nancy Goldberger and Jill Tarule studied 135 women in various
sites of post-secondary education. The resulting book, Women's Ways of Knowing,
(Mulkey, et al., 1986, henceforth referred to as WWK) outlines six phases (not
stages in the usual sense) in womcn's acquisition and organization of knowledge,
and examines implications for the transformation of teaching. Since it's publica-
tion, Women's Ways of Knowing has been very influential on the study of gender
and mathematics, as will be discussed below.

Before turning to that discussion, the recent work of two other psychologists
merits attention; Sandra Beni (1993) and Meredith Kimball (in press) have both
made extensive study of thc massive volume of scholarly literature produced by

Connected knowing is described briefly below; a more extended but still brief discussion
can be found in Recker (1995).
s The work of Nel Nodding% (1984,1992) on a caring ethic and care in schools is rooted in
philosophy, not psychology, but is important to any discussion of care in schooling. The
ethic of care has been adopted or adapted by many feminist ethicists, and seriously criti-
cized by others; a brief synopsis of the critiques can be found in Damarin (1994c).
6 The distinction between ethics of care and ethics of justice is related to the distinctions
between an approach to education of diverse students based on fairness in dealing and an
approach based on equity. Thus, this paper is within the tradition of educational thought
inspired by Gilligan's work.

Perry's subjects were Harvard student% of the 1%0%, that is, young (17 22), white, upper
middle class and upper class males.
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feminist scholars and theorists (in philosophy of science, epistemology, sociology,
history, cultural studies, literary criticism, media criticism, law, and other areas)
since the early 1980s, and have incorporated major ideas from these literatures
into their work. Sandra Bern has been engaged in gender research since the 1960's,
and is perhaps best knowt1 as co-developer (with Daryl Bern, her husband) of the
Bern Sex Role Inventory. Her current work might be called a kind of (qualitative)
mem-analysis of earlier work by herself and others in hcr generation of psycho-
logical researchers. Here, she argues that throughout this research sex/gender has
functioned as a series of transparent, but distorting, lenses through which science
looks at women and men, notably lenses of androcentrism, gender polarization,
and biological essentialism. Examining the lenses in detail, she uses feminist
epistemology and related literatures to expose the distortion, and argues that, espe-
cially if gender is to be depolarized, a revolution in psychology is needed.° Meredith
Kimball may be a harbinger of that revolution; the importance of her work lies in
her deconstruction of binary pairs which arc basic to current psychological study:
male/female, cthic of care/ethic of justice, connected/separate, gender similarity/
gender difference, among others.9

Considering Race and Ethnicity II

Because contemporary science in general, and psychology in particular, have
developed in a Euro-Amcrican tradition, and because feminist critiques are based
in the effects of absences and biases at every level, these critiques invite analogues
with respect to persons of non-white races and non-European cultures. Moreover,
the constructions, within the dominant Euro-American discourses, of blacks (and
all people of color) throughout thc history of the human sciences si,ice the time of
Darwin is a history of the "mis-measure of man" (Gould, 1981) ir the service of
social agendas of white progress and supremacy (sec Gould, 1981; Harding, 1991;
Lewontin, 1992; and many studies cited therein). The contributions of Africans
and African-Americans in particular, and of all people of color, to the development
of science and technology have been denied, ignored and erased from the public
record. The fields of Black Studies, Native American Studies, Latino Studies, and
other fields of cultural study, including ethnomathematics, have emerged in recent
decades in an effort by scholars from those cultures (primarily) to reclaim and
correct some of this history and to reclaim for people of color not only the tradi-
tions of scholarship and science consistent with their life experiences but also rec-
ognition of their accomplishments throughout history.

The importance of recognizing and meeting through instruction the culturally
specific ways in which students understand the world and their relation to it is
central to much discussion of multicultural education (Sleety and Grant, 1991;
Ranks, 1993; Socada, 1990; Delpit, 1)88, and numeious others). Like other lenses

° Bern's work provides for psychology findings comparable to those of work in biology
(e.g., Fausto-Sterling, 1985) and primatology (Haraway, 1991).
9 Within her work, Kimball pays particular attention to mathematic% Also, see Kimball
(1989).
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through which white educators peer, psychological theories reflect the world views
and epistemologies of their developers. A part of the substantial literature of black
psychology, Afroccntrie psychology is one alternative to Eurocentric theories.

Afrocentric psychology, like other articulations of Afrocentric theory, is based
in the study of the lives and history of Africans and African Americans. The cen-
trality of faith, belief, and ethics to Afrocentric "Optimal Psychology" reflects the
importance of these to the African experience and describes conceptual systems
grounded in the spiritual as opposed to the material grounding of Euro-American
psychological traditions. Importantly to mathematics education, this leads to an
epistemology based in self-knowledge through symbolic imagery and rhythm in
contrast to knowledge of the external world gained through scientific observation,
measurement, and counting. In this approach, all things are seen as interrelated
and knowledge is connected, not compartmentalized (Asante, 1987; Myers, 1988).

Study of optimal psychology can help white mathematics educators become
open to the construction of ncw ideas about how black (and perhaps other stu-
dents) organize and use knowledge. Building on the relations between optimal
and Euro-American psychological theories (discussed in Myers, 1988), we can all
gain different and fuller understandings of findings such as those of Stiff and Harvey
(1988) that black students benefit from mathematics instruction based on field
dependence. Optimal psychology invites us to view the "field" in more complex
ways and to reach a different understanding of figure/ground interrelations and
field dependence. With this new understanding, any biases which portray field
dependent thinkers as mathematically dull should disappear, and we should be
able to design more interesting and effective learning activities for field dependent
thinkers.

Gender and Math Informed by Feminist Psychology

The epistemological model explicated in Women's Ways of Knowing describes
six ways of knowing exhibited by the women studied; although they are listed and
analyzed in WWK in an order that reflects growth from total reliance on others to
self-reliance and autonomous knowing, the authors emphasize that these arc not
stages in the usual sense. Women may know differently dependent upon the knowl-
edge domain, for ex ample, and some women may be "boundary riders", mixing
elements from two phases for long periods of time. Overall, women grow intellec-
tually from one way of knowing to the next; the authors do not address knowing
prior to adulthood, and therefore questions such as whether all female knowing
begins with silence arc not addressed. Briefly described, the ways of knowing are:

(1) Silence, characterized by belief that authorities are all-powerful, in-
ability to form mental representatnms, absence of expectations of
understani I ing

(2) Received Knowing, learning by listening, accepts authority in a rote
manner ("whatever you say, doe")
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(3) Subjective Knowing, knowing "in my gut"; "it's only my opinion,
but my gut tells me ..."; assumes there arc right answers

Procedural Knowing in two forms

(4) Separate Knowing, impersonal, propositional reasoning

(5) Connected Knowing, seeking explanations for perceptions,
interested in the thoughts of othcrs

(6) Constructed Knowing, effort to integrate knowledge, appreciates
complexity

This model describes women's lives, in particular and as gleaned from the WWK
data, in several ways. Silence is seen as an effect of generations of women's so-
cialization to acquiesce to male authority. Subjective knowing identifies and valo-
rizes what has traditionally been denigrated as "women's intuition." And, con-
nected knowing identifies a kind of procedural knowing which is different from
"masculine rationality," but qualifies as reasoning. Connected knowing is de-
scribed (Gilligan 1982) as involving intuition, creativity, hypothesizing, relativ-
ism, induction, incompleteness; based on experience, it is contextual.

Researchers on gender and mathematics have used WWK in several ways. In
the most direct applications of the six ways of knowing (and the transitions be-
tween them) to mathematics classrooms, researchers and teachers interpret them
in relation to selection and/or design of representations of mathematical concepts
and in relation to planning events of instruction. Joanne Rossi Becker and Judith
Jacobs have focused on the representational problem (Becker and Jacobs, 1989;
Jacobs, 1994). Discussing the theorem "The sum of any two odd numbers is even",
Jacobs offers a representation of whole numbers by arrangements of squares in

10 horizontal (contiguous) rows and compares this representation with other which
arc common (e.g., 2n, 2n+1). Thc Jacobs representation is perceptual and gener-
alizable by connected knowers (in theory, at least), allowing students to accumu-
late instances and develop "gut level" subjective knowledge of the odds and evens,
and later the theorem itself. At issue in distinguishing this representation from
others are the accessibility of the concept to subjective knowcrs and the (percep-
tual) attributes which invite reasoning (connected knowing). The role of visual
perception in models such as this is especially interesting (and research worthy)
because only a few years ago it was thought that women were demonstrably infe-
rior with respect to visuo-spatial skills. Other direct approaches to the articulation
of WWK into thc classroom involve the development of pedagogics for connected
learning (Becker, 1995); many of the studies sited below were conducted in class-
rooms which use such an approach, as does the SummerMath program for high
school girls (Morrow and Morrow, 1995).

Feminist Pedagogy is an approach to teaching developed first in Women's
Studies which deccnters the authority of the teacher and conscientiously seeks to
bring previously marginalized students into the mainstream of classroom activity
and discussion (Culley and Portuges, 1985; Disch and Thompson, 1990) With
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their emphases on voice, Gilligan's work and WWK provide both rationale and
direction for this style of teaching; Several mathematics educators have experi-
mented with feminist pedagogy, documenting the classroom events and using the
idcas of voice, care, connectedness, and others in their analyses (Buerk, 1985,
1995, and others).

The importance of voice in all of this research is extended by some research-
ers to include writing, and the mathematics autobiography (usually written, some-
times oral) has gained an important place as a pedagogical and research tool.
Dorothy Buerk (Buerk and Szablewski, 1993; Kalinowski and Bucrk, in press) has
extended the autobiography to include journals in which math students regularly
write about their reactions, attitudes, and feelings in relation to mathematics and
reflect upon themselves as knowers of mathematics. For researchers such as Buerk,
these writings have become both research and pedagogical tools because of their
demonstrated usefulness to the student. Extending the idea of bringing the mar-
gins into the mainstream, some researchers (e.g., Erchick, in press) are including
in their conceptual frames (and/or mathematics classes) published writings about
mathematics (and about women as knowers) authored by women who are not, by
any of the usual definitions, mathematicians.

Reading across several of these studies, one is struck by the regularity with
which women (including young teenagers) reveal themselves as currently or re-
cently silent knowers with respect to mathematics, and, as importantly, that these
women almost invariably report a salient critical event in which a statement or
action by a teacher (or less frequently a family member) led to a resolve to be
silent in thc face of mathematics. Some of the events reported would make all of
us cringe, hut others are "standard fare" in the mathematics classroom.

At about 8 or 9 I had a totally intimidating teacher (the head-
master) for maths, for one term. He taught us times-tables in a
militaristic type of way; chanting out a times table, pointing at
you and expecting you to fire back an answer within a second.
If unable to answer some fate worse than death would be wait-
ing. That is how it semed when I was a completely powerless,
timid 8-year-old. Prom then on started a slippery slope down-
hill. Although I had some good and encouraging teachers along
the way, I had come to associate maths with fear and panic.

(Isaacson, 1990, p. 23)

The writing and interviews of many women in these studies reflect their past,
and often current, beliefs that math is an area in which one must learn from au-
thorities. Frequently this belief remains a reified "fact" (gut level knowledge?)
within a larger, more sophisticated way of knowing. In the following example,
women in a group interview reveal how they moved beyond received knowing,
rejecting the authority of the math teacher concerning their future mathematical
needs, while still holding the mathematics, itself, to be knowledge which is gained
Iron] authority.
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Well, they just kind of came along and gave you sets of rules,
didn't they? That's how I was taught, anyway.

And little books to look them up in.

Yeah, there's your rules. Off you go and use them ...

If you've got something, and you don't know what you're ever
going to use it for, you don't bother learning it.

That's right.
(Isaacson, 1990, p.25)

Across these studies, many women reflect on how the opportunity to talk or
write about themselves as learners and doers of mathematics has helped them to
establish a ncw relation with and understanding of the subject matter. In relation
to this finding, some researchers (Fullerton, 1995) have examined mathematics
register (see Pimm, 1987), finding that many women have no words with which to
talk about mathematics. Through writing, interviews, and group work, they "came
to voice" in mathematics."'

Examining these studies, it is interesting to see emerge in thc data repeated
mention by the participants of the very ideas that were captured in the original
Fennema-Sherman scales and studies (Fennema and Sherman. 1977). These women
often perceive math as a male domain, taught by "tathcr-figurcs" (Rogers, 1990)
and learned best by boys (Isaacson, 1990, among others). Reports on discourage-
ment from the study of mathematics by mothers, fathers, teachers, and/or peers arc
a consistent presence across nearly all the studies (though not all women inter-
viewed). Fear and panic (Isaacson, 1990) and other expressions of anxiety in the
face of mathematics are reported frequently, as are lack of confidence and expec-
tations of incompetence (Fullerton, 1995).

Thus, these studies provide a kind of retrospectiVe construct validity for the
Fennema-Sherman scales which do (still) capture salient aspects of women's ex-
pressions of their experiences, attitudes and feelit,gs with regard to mathematics;
these have not changed." What the current research does, however, is provide a

The reader schooled and practiced in quantitative research methodologies may be think-
ing that none of this has the fcel of "goo(.1 science" and "hard data", so a few comments arc
in order. First, the research itself reflects a search for connected and constructed knowing.
Where field data are gathered, the studies generally meet rigorous standards for qualitative
research. Further, working from a base in feminist theory, the researchers arc within a
tradition that includes a serious critique of mainstrean science and which asks whether there
can be a feminist science (see Damarin, 1994h, 1995a). While there is no final agrecrwmt
on this question, certain characteristics emerge as essential for any candidate for feminist
science: (1) the theorizing of gender as a variable of-consequence, (2) the valuing of women;s
experience as a scientific resource, and (1) the positioning of die researcher in the same
critical plane as the researched (Harding, 19S71 In conducting their studies, the research
ers clearly meet these criteria.
" The Fennema- Sherman scales were designed in an effort to predict succ,!ss vs. failure
and continuing vs. dropping enrollment by girls and young women in mathematics. These
scales initiated re carch directed toward building explanatory models. Although the scales
had less predictive power than hoped, they precipitated nnich research; a few of these scales
(Math its a Male Domain, Anxiety, ahd perhaps others) are still used in niodel building
studies.
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way of seeing the constructs measured as effects, not causes. Early (and some
current) research was designed on the assumption that negative experiences would
causc students to do poorly in and/or leave mathematics. The studies discussed
here reveal that, for many women, succeeding and staying in mathematics has the
effect of creating increasca opportunity to experience the negative phenomena
captured in the scales. Many of the women in the current studies are high school
and college mathematics students; some arc school teachers (Erchick, 1995) and
some are college professors (Taylor, 1990). They have endured, and sometimes
learned, a.lot of mathematics.

A note toward the future. The work of psychologist Valerie Walkerdine
(1987, 1989, 1990) provides an important parallel to the studies influenced by
Women's Ways of Knowing. Perhaps because shc analyzes her data using the con-

structs and language of Marxist feminist theory, and more recently postmodern
Foucauldian theory, her work is not very well-known to U.S. mathematics educa-
tors and gender researchers. In her work she addresses 1)oth classrooms in general
(often at the elementary level) and mathematics classrooms, in particular. Bor-
rowing analytic tools from Michel Foucault (1977), her most recent book analyzes
the education of girls as the creation of "docile bodies", a term used by Foucault to
examine the ways that persons become (arc made) controlled, self-regulating, obe-
dient subjects. Arguably, docile bodies arc received, if not silent, knowers. A full
mapping of the relations between WWK and Walkerdine's work is beyond thc
scope of this paper (and surely such a mapping would fail to be an isomorphism),
but there is a commonality in methods, content of data, and some interpretations.
Because a substantial amount of U.S., European, and Australian feminist theoriz-
ing and sociological study has "taken the posunodcrn turn," Walker-cline's work
and similar efforts arc likely to become more important to the study of gender and
mathematics in the future.

Concerning Race and Ethnicity III

Belenky, CI inchy, Goldberger and Tarulc were careful to include diverse women
in their study: black, white, and Latina women ranging widely in age, and in-
volved in educational settings ranging from a parenting skills workshop for wel-
fare mothers to an elite women's college. This diversity notwithstanding, the con-
ceptual roots of their work arc clearly Euro-American, Gilligan's theoretical frame
is based in psychoanalytic object relations theory, which assumes an autonomous
self as central. This theory is appropriate to understanding knowledge building
within a culture of individualism, but not (necessarily) within a culture which holds
community as central, and/or values community over individual. Therefore, di-
rect transfer of the theory from women to other mathematically marginal groups
would violate "fairness in dealing."

Nonetheless, elements of this work would seem to have some relevance to
race and ethnicity. First, the finding of the totaliiing effects of silencing on stu-
dents is not new to the literature, but replicates findings in relation to blacks, latinas,
Native Americans and students for whom English is a second language. Secondly,
the methods of these studies probably are transportable to work with other math-
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ematically marginal populations. Feminist pedagogy has roots in the work of Paolo
Frcire (1970); and, black feminist bell hooks' (1994) book Teaching to Trcnsgress
is, in part, an explication and expansion of this method. Mathematical autobiogra-
phies of African American, Latino/Latina and other students would undoubtedly
provide enlightening information. Moreover, given the importance attached to
self-knowledge in optimal psychology, assigning mathematical autobiographies
to black students might be both useful to these students and a start in mathematics
educators' learning about and coming to appreciate their knowledge systems and
values.

Third, half of all students of color are female, and are effected by the social
constructions of women both within their ethnic cultures and in the dominant soci-
ety. Although many black women state that race is primary to gender in defining
their life experiences, African American historian of science Evelynn Hammonds
(Sands, 1991) details how in collegiate and graduate work in physics, her sex was
the major source of hcr oppression. Mathematics and mathemmics classes may
operate in a way similar to physics.

Finally, and perhaps most importantly, connected knowing is a central aspect
of both Afroccntric epistemology and contemporary discussions in the literature
on the education of black children. Connected Knowing, as described in WWK
and elaborated in the studies is resonant with these discussions and suggests an-
other area in which common approaches to educational change might be sought by
women and blacks. Indeed, a careful look at the literatures of multicultural educa-
tion and of ethnomathcmatics would surely reveal important insights which could
bc transported to research on the education of women (reversing the direction of
the analysis and flow of inference in this paper).

Fixing the Mathematics

In the studies discussed above, the areas which emerge as in need of fixing
include some in the category of teaching techniques, with some advice (but more
questions) on how to select representations and organize instruction to teach to-
ward subjective and connected ways of knowing. Some of this advice (not reiter-
ated in this paper, but available in the studies referred to) has a familiar ring: teach-
ers/readers arc advised to use :ooperative learning groups, teach to the individual's
way of learning, adopt appr:nticeship models and other aspects of situated learn-
ing theory, teach for cognitive construction of knowledge using constructivist
methods, and so on.

Thc reader might ask, "isn't this just good teaching?" But, the question misses
the major point of the authors which is the necessity to engage in good teaching
with specific attention to girls and women.' These studies provide evidence that
because the larger society (including many of their teachers, parents, and peers)

" Specific attention to girls does not mean that hoys are to he ignored, For years, thc
literature on gender and education has shown that girls get considerably less attention in
classrooms (Maccohy and Jack lin, 1974, followed by numerous others). Unless teachers
make it a specific effort to attend to girls, this will continue.
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does not construct women and girls as competent in mathematics, young women
rrmst (re)construct themselves as (other than silent) knowcrs of mathematics. There
is also evidence in these studi,..s that writing and speaking about their experiences,
attitudes, and feelings can contribute importantly to that self-construction.

WWK, with it's discussions of silence and received knowing, demonstrates
that persons in these conditions of knowing cannot construct knowledge because
they are rule-bound creatures who believe knowledge "just is" out there with some-
one, but not them (silent knowers); or, like special treats, hall passes, and the fam-
ily car, knowledge is in the hands of the authorities who dole it out when they
deem it to be appropriate for use in the designated situation (received knowers).
Teaching these students "for constructivism" means changing their epistemolo-
gies (and self-concepts) and then teaching what we typically think of as "the math-
ematics."

"Fixing the mathematics" in the context of studies surrounding WWK, means
bringing these issues of epistemology and the self as knower into the classroom as
a part of the content of the curriculum and instructional activities. The mathemat-
ics autobiography, reflective journal, and related classroom discussion are offered
as tools which have proven useful in this repair. But, we arc warned that some
students will need to learn how to use these tools, that is they will have to bc taught
a language with which to write and speak about mathematics and their reciprocal
relation to it.

Although thc research cited here provides a compelling rationale, the general
idea is not entirely new. The Standards call for incorporating writing into math-
ematics classrooms; Dorothy Buerk has been doing so for a decade at least, and
perhaps other teachers have as well. In Caring, Net Noddings (1984) discusses
the importance of having students who hate mathematics reflect on the meaning
that withdri.iwal from math will have on their lives. Elsewhere (Damarin, 1990), I
have argued that some of the messages about women and math that circulate in the
press should be brought into classroom for discussion. In his recent book about
mathematics and popular culture, Peter Appelbaum (1995) urges us to consider
that all the messages about mathematics that we receive through the media (and hc
argues that there are many) are part of mathematics and must bc brought into the
classroom.''

If these seem likc radical demands, there are other ways in which fcminists
arc studying the question of "fixing the mathematics" which can make the usc of
mathematics autobiographies and teaching for connected knowing seem like "math
class as usual". The effectiveness (for girls) of single sex mathematics classes has
been amply demonstrated at S um me rMath and other sites, and there appears to be
an emergent movement in support of offering high school girls this option. The
movement toward Afrocentric Magnet Schools across all grade levels springs from
comparable concerns.

" Applebaum's 1-)ook has much to say about gender and mathematics and is important
reading in this arca.
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Perhaps even more radical, there is a growing number of feminist researchers,
both mathematicians and mathematics educators, who are examining the question
of fixing the subject matter oc mathematics itself. Leone Burton (1995) is working
on a redefinition and reorganiation of major strands of mathematics. In currcnt
work, I examine thc ways in which fractions (in press) and probability (in prepara-
tion) reflect and contradict gender specific experience of the world by males and
females respectively. A current issue of a women's studies journal includes a
feminist critique of statistics (Hughes, 1995). And, at a recent conference on The
Women, Gender, and Science Question. Ram Mahalingham (1995) and Bonnie
Shulman (1995) each presented a critique of the foundations of mathematics based
on feminist philosophy. For at least a decade, fcminist philosophy and critique of
science has invited this activity and provided some direction for it (see Damarin,
I995a, b). Moreover. the "ncw philosophers of mathematics" arc revealing math-
ematics as a social-cultural-historical construction (Hersh, 1994); in this context,
the patriarchal character of the social, the cultural, and the historical, as uncovered
by feminist scholars in these areas, invites increased work in these directions.

Feminist epistemologists (e.g., Harding, 1993) and other feminist philoso-
phers and sociologists encourage examination of mathematical concepts in rela-
tion to women's subjective experiences of the world. More interesting in the cur-
rent context of psychology and mathematics education, French feminist philoso-
phers with training and intellectual roots in Freudian and Lacanian psychoanalytic
theory (e.g., Irigaray, 1985 1987, 1993; Wittig, 1992) argue that all science, in-
cluding mathematics (and indeed all knowledge) is rooted in the "male imaginary"
(e.g., phallic imagery, imagery of separation from the mother, the law of the father,
etc.); the mathematics and science which result arc (in their analyses) based on
ideas of strict separation, boundaries, closure, duality, and related ideas. In the
views of Irigaray and Wiuig, true equality for women requires the grounding of
(some) knowledge in a "feminine imaginary" based upon women's experience of
their sexed (and gendered) bodies. In Irigaray's (1987) explication, a female-
grounded mathematics would be based on ideas of connection, partial closure, in
betweenness, and semi-permeable boundaries, among others. In thc absence of a
definition of what, exactly, mathematics is it is hard to examine the validity of
these claims .... hut, we do, indeed, live in interesting times.

Considering Race and Ethnicity IV

The centrality of Eurocentric thinking in this current work is evident in the
references to psychoanalytic thinking. But, Afrocentric philosophy and psychol-
ogy might also yield similar approaches to thc creation of new mathematics (and
may have done so already). Native American understandings of the world, Asian
philosophies, and root belief system of other cultures might also eventuate in
some set of concepts and procedures which is arguably mathematics. As a stimu-
lus to think about the possibility of misfit between our current mathematics and
Afrocentric epistemologies, consider the following event.
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Some years ago a black psychologist gave a workshop on opti-
mal psychology to a group of women recovering from alcohol,
drug, and other dependencies. She opened her presentation by
holding a pen firmly between her thumb and fingers, horizontal
with its length visible to the audience of whom shc asked. "Is
this pen moving or is it still?" Within the next fcw minutes, she
had elicited from the audience numerous answers involving the
rotation of the earth, the movement of molecules, the relation of
the pen to its molecules, the meaning of "still", her own (in)ability
to be perfectly still, and many other issues. Assuring the audi-
ence that their answers were good, she went on to observe that
the pen was both moving and still not either moving or still,
but both moving and still. What's more, all of our knowledge of
the Universe comes together in the pen to make it the unique
object that it is. She proceeded to describe a way of knowing
the world (and themselves within it) in all its complexity and
multiplicity, describing to the women a philosophy and a psy-
chology in which either/or yields to both/and, and in which all
things come together in each person. Choosing to focus on some
things and not others is possible, and sometimes necessary, but
focus is different from truth.

I do not know the mathematics to describe the simultaneous motion and still-
ness of the pen in the world, or the mathematics of both/and logic. But I do know
that this simple inmiuction to onc woman's understanding of Afrocentric think-
ing enriched my life and my understanding that there arc indeed rich and valuable
ways of knowing that I did not learn in school.

Concluding remarks

This paper maps a whirlwind journey from the question of everyday fairness
in mathematics teaching to the psychological and epistemological underpinnings
of mathematical thought. The short version of the paper is this:

Ile question of fairness or equity in mathematics educa-
tion is important, interesting, and deep. It is as deep and as dif-
ficult as any theorem of mathematics or theory of learning and
education, and, in my view at least, more important. Partial an-
swers to the question of how to deal fairly can bc found at all
levelsind fairness requires that we bring those answers into the
matheiratics classroom, not as final solutions, but as steps in a
continuing process.

The journey sketched here is mine. Your journey, should you choose 'o make it,
must be your own. Perhaps you will begin, not with feminist theory, but with
theories of situated learning and the multi-cultural studies which support them. If
so, your path will lead you through the work of Burke and McLellan (1995) to thc

45 r 1



great black educational theorists of education: Booker T. Washington, who ad-
monished black students to "cast down your buckets where you are" situating
learning in current reality, and W. E. B. DuBois who disagreed and debated with
him. Once in the domain of black history, you will likely happen upon Bob Moses
and his work on Algebra as the new civil right (1995) and Frederick Douglass'
analysis of racism as diseased imagination. Or, you may begin with a guided tour
through some part of the literature of ethnomathematics. Stopping for rest, you
will find yourself refreshed by a new-found understanding of the diversity of ways
of interpreting the world and a profound respect for the abilities of all peoples to
think, to understand, and to construct their own knowledge of the world and of
themselves.

A Postrnodern Deconstructive Afterword

Postmodern philosophies, afrocentric epistemology, and some feminist epis-
temology have in common the rejection of binary thinking. Rather than seeing a
contradiction between A and not-A, they seek and embrace the simultaneous truth
of both. Referred to as diunital logic in Afrocentric theory, this is the basis of the
postmodern method of deconstruction.I4 Deconstructing an argument or the con-
stellation of arguments which come together as a construct or theory is accom-
plished through stating many reversals of and exceptions to all implications, join-
ing all of thc new statements to their originals, and making whatever sense can be
made of the totality. Deconstruction is reserved, in postmodern analysis for im-
portant constructs and texts; the process is lengthy and revealing (see Chcrryholmes,
1988; Roscnau, 1991; Usher and Edwards, 1994).

Important arguments in the discourse of mathematics education arc those which
link race and gender with mathematical ability. The barrage of NAEP-type data,
together with texts such as The Bell Curve (Herrnstein and Murray, 1994) are
presented as "proof" that race, socio-economic status (class) and (to a lesser ex-
tent) gender predict mathematics ability and performance. What is not mentioned
in these texts is that gender, race, mathematics, ability, and performance arc all
social constructions which operate in the construction of cach other. Deconstructive
readings of these data and texts make equally plausible a constellation of related
statements including "mathematical performance predicts race and gender." Onc
interpretation of this statement is that mathematical performance is a critical fac-
tor in defining roles of racc and gender; that is, we learn how to perform in math-
ematics classes as a part of our learning of how to perform our roles in society as
raced and gendered individuak. in this view, race and gender are not attributes we

'' In a series of discussions with Umesh Thakkar (an educational technologist fmin India,
currently at the University of Illinois), he has argued that deconstruction and most other
elements and ideas of postmodern philosophies and practice have been taken from Asian
and African cultures and renamed in order to deny credit to their originators. For Thakkar,
postmodernism is a new site of the continuing white intellectual exploitation of people of
color.
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have; they are activities we do. The critical questions become, how do you per-
form your gender? How do you perform your race?

In recent related qualitative sociological research on gender and technology
(Grint and Gill, 1995) evidence was found to support the assertion that establish-
ing and maintaining certain relations to (computer) technology is a criticai factor
in how individuals perform their masculinity or femininity. Related ly, based on
his analysis of popular discourse (TV shows, publicity about award winning teachers
and about studies of girls and mathematics), Peter Appelbaum (1995) examines
the ways mathematics contributes to the representation of gender in the popular
culture, and thus to the socio-cultural construction of gender. TV, movies and the
press, he finds, give their viewers gender specific directions on how to "do math."
Also recently, qualitative researchers are reporting that young African Americans
see their peers who excel in mathematics and science as "acting white" (Lattimore,
1995). All of this points to the need to examine ways in which mathematics is
implicated both in students' construction of themselves as raced and gendered and
in their performance of their gender and race.

Put another way, the mathematics classroom is a theater in which students
perform their identities, choosing from the roles and scripts, and using the props
available. Until we (the playwrights, producers, directors, and stage hands) pro-
duce some new characters, costumes, lines, and scenery this long running play is
likely to go on...and on.
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A REACTION TO FAIRNESS IN DEALING: DIVERSITY,
PSYCHOLOGY AND MATHEMATICS EDI 'CATION

Ruth Cossey, Mills College

In her plenary paper, Suzanne Damarin initiates a conversation about restruc-
turing mathematics education in order to serve fairly all students. She employs
lenses developed through research and practices of feminisms and cultural studies
to conceptualize excellence in mathematics education as constituting and as con-
stituted by equity for individuals of differing gender and ethnicity. In Damarin's
cogent analyses, she journeys through important, uneven, and sometimes danger-
ous terrain. In these comments, while referring throughout to the benefits of link-
ing critical perspectives on research, I comment principally on two aspects of
Damarin's paper: language usage and the paper within, concerning race 2nd
ethnicity.

Language

language is not a neutral medium that passes freely and easily
into the private property of the speaker's intentions; is popu-
latedoverpopulatedwith the intentions of others. Expropri-
ating it, forcing it to submit to one's own intentions and accents,
is a difficult and complicated process.

Bakhtin (1981, p. 294)

We have insufficient language tools to handle adequately the shifting mean-
ings of constructs at hand: equity, the nature of mathematics, the nature of school
mathcmatics, authentic assessment, culturally sensitive pedagogics, fcminist
pedagogics, ethnicity, race, gender, class and fcminisms. Damarin helps us bridge
discursive traditions by providing language with which we can navigate difficult
points of intersection. Much of Damarin's language-work is explicit, such as the
repackaging of "equity" into the construct of "fairness in dealing." Some of the
work is less obvious, such as the careful phrasing when speaking of individuals
who identify or arc identified as members of marginalized groups. In some places
the language she uses uncovers important areas that might have been otherwise
overlooked, in other places cloudiness in Damarin's language reflects the difficul-
ties inherent in the task shc has undertaken. I will revisit Damarin's discussion of
the term equity, and her account of the contributions of the liberal feminist tradi-
tions. Both arc sites of clarity and ambiguity.

Fairness in Dealing

Damarin makes a bid to discard the baggage of other people's intentions with
which the word equity is laden. One would be hard put to find a mathcmatics
educator or resurcher who does not subscribe to both equity and excellence. But
there is little consensus about their meanings either in isolation or in relationsh:p
to the other. The fact that divergent and sometimes conflicting beliefs are held by
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proponents of equity creates the problem that Damarin would mitigate by changing
the terms of the debate from the narrower views of equity to broader considerations
of fairness. As she indicates, Damarin's fairness terminology dampens arguments
for equity inspired by economic determinism by shifting the emphasis to individuals
and the communities in which they reside rather than the needs of the economy. It
is also easier to consider the ways in which people who have succeeded in
mathematics have been subject to unfair treatment using a fairness in dealing
construct rather than equity, as it is harder to see the non-achievement of equity
when there arc equal outcomes in educational attainment or career accomplishments.

However, fairness in dealing does not escape some of the more debilitating
characteristics of equity. Damarin states, for example, that equity is measure de-
pendent - so, of course, is fairness in dealing. Further, I believe that the fairness
terminology carries baggage of its own that will create barriers to its actualization.
Until there is a real shift in the general perception of intelligence and its distribu-
tion, "fairness" is a dangerous term in the heads and hands of those who find
comfort and mcrit in the arguments presented in The Bell Curve (Herrnstein &
Murray, 1994). While it may not seem equitable to place some youngsters in
classrooms which feature non-challenging, minds-off, rote, piocedural-driven
mathematics; some may argue that such placement is fair for those students who
lack the capacity to engage in powerful mathematics along with their more able
peers.

The current mathematical reform movement is built upon the twin pillars of
excellence and equity. Indeed the entire national school reform movement is linked
to discussions of equity and excellence (Goals 2(XX) for example). Political struggles
have been fought and will continue to rage over whose meaning of equity will
prevail. An increasing number of studies and policy developments arising from
lines of inquiry generated by scholarship in the traditions of mathematics educa-
tional research have explicitly or tacitly adopted standpoints which assume the
inseparability of excellence and equity. (e.g. see Keynes 1995; Ladson-Billings
1995; Sccada 1995; Cuevas 1995; Hilliard 1995; Silver, Smith, & 1995). 1 think it
beneficial to continue to populate equity with these intentions.

The Role of Liberal Feminism

Damarin argues that gender equity narrowly defined as equal male/female
outcomes failed as an analytical tool for liberal feminist because its use did not
yield results. Shc indicates that the linc of research emanating from the liberal
feminist from about 1970 has provided a lack of guidance for thc achievement of
equity and that there have been no fundamental changes in its attainment. These
claims appear to be in contrast to Damarin's own description of thc scope of the
work of liberal feminist and her report of their findings. According f.o Damarin, a
goal of liberal feminist researchers was to prescribe changes in the treatment of
girls within and outside of the classroom which could increase their performance
in mathematics. I believe they did just that. 1 think the changes in course enroll-
ment were fundamental changes which resulted from enactment of educational
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policies generated from this line of inquiry. I think the research of this genre
produced strategies for use by educators and other care givers that make it possible
for white middle- class girls, to perform just about as well in mathematics as their
white middle-class brothers.

Looking back towards 1970, I see a variety of fundamental changes in the
position of girls in relationship to boys in school mathematics. I think teachers
have available to them tools such as GES A (Gender Expectations/ Student Achieve-
ment) training' that can make substantial differences in the mathematical achieve-
ment of girls in their classrooms. Still, it may be that my differences with Damarin
are more semantic than substantive. Likc Damarin, I agree that in concert with the
"victory" of near equal achievement and declared equal ability/aptitude between
white girls and boys,' many eyes have shifted to a different prize. (I will return to
this victory in the next section) Many no longer sec as desirable, for any student,
the achievement of thc mindless proficiency with symbolic manipulation that was
equated with excellence in mathematics only thirty years ago. Many want thc
mathematics classroom to cease being a place of silence and/or fear for thc major-
ity of students. The lot of all students, hut especially students underserved by
traditional mathematics programs, will be improved greatly as we find ways to
rewrite the scripts that currently tell students that doing, enjoying, and succeeding
in mathematics is not an appropriate enactment Of their various identities along
lines of gender, race, ethnicity, class, etc. Thc shifts in focus for many communi-
ties of color and feminist communities away from a notion of equity that meant
equal opportunity to digest American-European male-centric curriculums and
pedagogics have resulted in promising research and theory building. Furthcr thc
traditions of mathematics research can benefit from these efforts.

Race and Ethnicity

Damarin weaves a thread of race/ethnicity throughout her paper. She speaks
of diversity in mathematics education using gender fairness as a case. For me, thc
race/ethnicity secGons failed even though I am in total agreement that there arc
important and dccp parallels between the work being donc in feminist discourse
communities and the work being done in other research communities that bring a
critical/cultural perspective to their research. It is important to examine critically
the absences and biases of European-American psychology and to seek the cultur-
ally specific ways that students understand thc world. A curriculum and pedagogy
that provides for connected knowing of connected knowledge and processes seems
beneficial to all students. Educators should strive to help students find their voice

Information allow these materials is available from GESA, (1raymill Foundation, Route 1,
Box 45, Earlham, IA, 50072
2 Certainly there have also been repwts of equal or better achievement of girls compared to
txiys within ethnic groups ol color. However, since the intersection of possession of skin
with high melanin content and attendance at grossly underfunded schools is so large, the
achievement difference between most of these groups and white children is a more signifi-
cant factor than within group gender equality.
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in mathematics. It is imperative that we establish educational policies that ac-
knowledge and support different ways of knowing and demonstrating competen-
cies in mathematics. These all seem derivable from findings or hunches within a
multitude of research paradigms. But, given my many agreements with Damarin,
I still am uncomfortable with the physical structure of her analogous reasoning
and I am cautious about possible inferences that could be made from the content of
some of her arguments.

Physically Structured Marginglization

While it may appear to white middle-class able-bodied females that gender is
the major cultural vehicle that the world uses to encourage and constrain them, it is
true that other factors, race, class, health, etc. arc also used in the communities
within which they interact to organize their life possibilities. Simply put, those
from dominant groups do not see their dominant features as salient in the construc-
tion of social arrangements from which they benefit. Damarin does not make this
mistake, but the organization of her paper marginalizes females and others from
non-dominant backgrounds in thc United States. Given the physical separation of
gender and ethnicity, and given the fact that most of the gender work is done in
relationship to white females here and in Europe and Australia, it is difficult not to
read part of the paper - the main part- as pertaining to white middle-class women
and the other part as pertaining to how other folk are or arc not like white middle-
class women. A further marginalization occurs as blacks are taken to be the modal
ethnic/race group. Almost all extended examples are taken from this group giving
what might seem like honorable mention to members of other groups.

Exclusion of Class

Quite understandably given space constraints, Damarin made a decision to
exclude discussions of class. I have come to believe that particularly for people of
color in the Unitcd States that considerations of ethnicity, gender, and class in
isolation from each other arc less useful than considerations of individuals and
groups in more complex constellations which illuminate multiple overlapping iden-
tities. I confess an inability to envision a paper that would have meaningfully
dealt fairly with members of all major intersecting equity-groups. Perhaps we
could write the series of papers, suggested by Damarin, of equity journeys ema-
nating from different perceptual starting points.

Victory of Equal Ability/Attainment

The decisions of feminists to shift to a search for woolen's ways of knowing
mathematics and to find ways to "fix school mathematics" come from a position
of power. Feminists have evidence that girls arc equal to boys in both mathemati-
cal ability and aptitude. They also now have evidence of near equal attainment in
course taking, undergraduate degrees, and high school grades for white boys and
girls. Clwrly, if girls want to do school mathematics they can. Many ethnic
Americans of color do not have the advantage of interacting in schools where
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others will no longer assume that they are intellectually inferior to white Ameri-
cans.' Although existence proofs abound that this ethnic student, that class of poor
children, a specific school ol district showed mathematical excellence by tradi-
tional measures; those examples too often function as the exception that proves
the rule.

There is no doubt in my mind that the entire mathematical education enter-
prise needs reforming for all students and teachers. It is also clear to mc that the
attainment difference between white middle-class females and oppressed people
of color makes the call for culturally relevant teaching (especially of "fixed math-
ematics") qualitatively different than the call for gender relevant teaching for white
middle class females. As an educator/ researcher in favor of such changes, I am
fearful that teachers and other care takers of students from backgrounds that arc
not white and middle class will provide educational experiences that may equip
students for the 21st century but will mak:: them ill prepared for next year's high
stakes non-state-of-the-art-exam. Pra,:utioners and students are caught in the shift-
ing sands of the appropriate naturc of school mathematics and assessment. The
changes in curriculum, pedagogy, and assessment in school mathematics should
be systemic for all communities, but they must be systemic (at least locally) to
provide safety from blatantly unfair individual consequences for students who are
members of non- dominate ethnic groups. (See De :pit, 1988) for a discussion of
the dilemma of teachers of students from non-dominant culture/classes). All of
the gender/ethnicity analogy sections proceeded from this point of powcr differ-
ence. The magnitude of the difference jeopardizes thc validity of analogies across
the gender/ethnicity sections of the paper.

Voice in the Mathematics Classroom

Now that the audience for feminist writing and speaking has
become more diverse, it is evident that we must change conven-
tional ways of thinking about language, creating spaces where
diverse voices can speak in words other than English or in bro-
ken, vernacular speech. This means that at a lecture or even in
written work there will be fragments of speech that may not be
accessible to every individual. Shifting how wc think about lan-
guage and how we use it necessarily alters how we know what
we know. .. . I suggest that we do not necessarily need to hear
and know what is stated in its entirety, that we do nor need to
"master" or conquer the narrative as a whole, that we may know
in fragments. I suggest that wc may learn from thc spaces of
silence as well as spaces of speech, that in the patient act of
listening to another tongue we may subvert that culture of impe-

'I certainly do not mean to imply that middle class white girls are not now subject to terrible
and invidious myths of female mathematical incompetence. I am only indicating that the
research arsenal available to help middle class white girls in their battles are vastly greater
than those available to many American ethnic groups of color.
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rialism that suggests that onc is worthy of being heard only if
one speaks in standard English.

bell hooks (1994, p. 174)

I applaud the NCTM's emphasis on mathematical communication and
Damarin's endorsement of mathematical autobiographies as means for students to
bring voice to their study of mathematics. It is a device that I have found useful in
my teaching of both school aged children and adult teacher candidates. Still, I
caution us from rushing to embrace written communication about mathematical
understanding or feelings about mathematics without paying attention to cultural
issues. Narrow criteria of "proper" discourses that ignore whether or not an idea
was clearly communicated to a reasonable audience of peers and teachers are inap-
propriate building blocks of modem mathematical communication classroom en-
vironments and assessments. Hopefully, emerging rules of legitimate discourse
will not artificially discriminate against users of non-standard Mathematical En-
glish terminology or grammar. Valid criteria is more responsive to the quality of
the ideas communicated, the logical coherence of the presentation, and thc clarity
of thc communication than to hegemonic syntactical, grammatical forms of
decontextualized mathematical discourse typically found in traditional high school
and college mathematics textbooks. Again, nothing in Damarin's paper suggests
that she would be guilty of silencing students who are slow to warm to communi-
cating through journals or in standard English.

Summary

Near the end of her paper, Damarin treats us to a description of a black psy-
chologist opening presentation of optimal psychology. The fuzzy logic image of
the still and moving pen will always be with me. Damarin's' paper is an example
of "both/and" reasoning. She manages to walk a path both around the edges and
through perspectives so diverse that only a "both/and" thinker could manage to
carry others along on such a journey.
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SHUFFLING THE DECK TO ENSURE FAIRNESS IN DEALING:
A COMMENTARY ON SOME ISSUES OF EQUITY AND

MATHEMATICS EDUCATION FROM THE PERSPECTIVE OF THE
QUASAR PROJECT'

Edward A. Silver, University of Pittsburgh'

In her plenary paper for this conference, Suzanne Damarin takes us on a "whirl-
wind journey" (in her words) through the field of feminist research related to math-
ematics education, with some attention also to critical race theory and
postmodernism. Throughout her paper, she reminds us that the relationship be-
tween gender and mathematics is an important issue worthy of our attention from
a variety of perspectives, and shc also attempts to tic gender concerns to those of
race and ethnicity. This sampler of feminist and other views can cnrich both the
study and the practice of mathematics education, and it is likely to make a valuable
contribution to a small hut growing literature generally concerned with the theme
of "mathematics for all."

I am not an expert in the areas of feminist research, critical race theory or
postmodernist perspectives, but it appears to me that the expanse of intellectual
terrain covered in Damarin's paper is impressive. However, as is often the case
whcn a broad range of topics and perspectives are addressed, the attent'on to breadth
rather than depth results in a paper that suffers in many places from a lack of detail.
Moreover, the non-feminist perspectives, such as postmodernism, arc offered in a
generally uncritical, unanalyzed manner that linti is the contribution that the paper
might have made in helping researchers in mathematics education understand the
power and limitations of these less familiar perspectives. Nevertheless, the paper
succeeds in addressing a large number of important issues that arc worthy of seri-
ous consideration in mathematics education research and practice. I was particu-
larly struck by her characterizaticn of equity as "fairness in dealing," and I was
able to find connections between this notion and several issues embedded in work
that my colleagues and I have been doing in the QUASAR (Quantitative Under-
standing: Amplifying Student Achievement and Reasoning) project.

The QUASAR Project

QUASAR is a mathematics education reform project which has been support-
ing and studying the design and implementation of innovative instructional pro-
grams in middle schools serving economically disadvantaged communities. The
project was designed to address the persistent historical assmiation of poverty and

' Preparation of this paper has been supported hy a grant from the had Foundation for the
QUASAR project. The opinions expressed herein are iliose ol the am' do not neces

sarily reflect the vie%ks of the Foundation.
wish to acknowledge the contnhutions of Catherine Brown, Ellice Forman, Margaret

Schwan Smith, and Mary Kay Stem, each of whom shared valuable insights with me as I
prepared this papet, thereby enriching my understanding ol the issues discussed herein. I

ant also grateful to Barbara (;rover, antic I.:111C, mid Maria Magone for their comments.
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low achievement in mathematics by providing students in schools in low income
communities with access to mathematics instruction thot heavily emphasized un-
derstanding, reasoning, and problem solving rather than memorization and imita-
tion.

Located in urban school districts, project schools serve a culturally and lin-
guistically diverse set of students. Aggregated across all QUASAR schools, about
half the students arc African-American, about onc-third Latino/Latina, and about
one-eighth Caucasian. The patterns of ethnic distribution within the school popu-
lation vary across sites, with two schools serving predominantly African-Ameri-
can students, two primarily Latino/Latina students, and the other two having stu-
dent populations that are internally ethnically diverse. Linguistic diversity is also
found in many QUASAR schools. In fact, most schools serve large subgroups of
students for whom English is not the primary language spoken at home; in two
schools, that group is the majority. Although there is considerable diversity with
rospect to ethnicity and language, there is very little variance with respect to an-
other demographic characteristic: the vast majority of students who attend each
QUASAR school live in poverty.

At each QUASAR school, the mathematics teachers and school administra-
tors have heen working with "resource partners" usually mathematics educa-
tors from a local university to enhance the school's mathematics instructional
program. Each site team has operated independeatly to design and implement its
plan for curriculum, staff development, and other aspec Ls of the program, so there
is diversity across the schools with respect to curricula and forms of support pro-
vided to students and teachers, hut there are also many similar features that charac-
terize mathematics instruction in QUASAR schools.

Shuffling the Deck: Some Aspect.; of QUASAR's Pedagogy of Fair Dealing

Three aspects of the instruction found in QUASAR schools are discussed here
as they relate to themes developed in Damarin's paper. The notion of intentional
focus is discussed lirst, as it relates to the contrast between QUASAR's focus on a
diverse composite (the poor) and Damarin's focus on gender, race or ethnicity
subgroups. Next, the repertoire of instructional practices suggested by Damarin to
"fix the mathematics" is expanded by looking at instruction in QUASAR class-
rooms. Finally, the role that such instruction can play in helping students see
themselves as knowers and doers of mathematics is examined.

Intentionality

In discussing lines of feminist research and theory that have addressed "fixing
the mathematics" rather than "fixing the women," Damarin underscores the point
that these researchers argue for the necessity of paying specific attention to girls
and womcn. Somewhat in contrast, the instructional reform activity of QUASAR
was undertaken with specific attention to the children of poverty, regardless of
gender, race, ethnicity, or language. Thus, the QUASAR target group was more
diverse than the groups addressed in most feminist research or in interventions
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designed for one particular ethnic, racial or linguistic subgroup. Nevertheless,
some (though not all) of the educational approaches used at project sites were
adaptations of work that had been developed with a focus on a particular sub-
group. For example, onc QUASAR site began with an intention to adapt the ap-
proaches used in an innovative enrichment program designed for female high school
students. At another QUASAR sitc, the plan was to use curriculum materials that
placed a heavy emphasis on visual models; among the reasons for development of
the materials was the successful use of such activities with Native American stu-
dents.

One point seems clear from this brief glimpse into QUASAR. The realities of
many educational settings in this country often do not afford mathematics teachers
the "luxury" of focus that many of us nave in our research and theory. Students,
both males and females, may come in several colors, from diverse cultural heri-
tages, and may speak many different languages. Thus, at least some research at-
tention needs to be devoted to the composite mosaic as well as to its components.
Although research and theory generated from a perspective of specific focus on a
particular gender or cultural group can aid in addressing broader issues, it is un-
likely to be sufficient to address all issues of relevance and import to mathematics
teaching and learning in diverse classrooms.

Institutional and Instructional Practices

A first step in increasing equity at most QUASAR schools was the clim: .

lion of the academic tracking practices that were in place prior to the beginning of
the project in 1989. In these schools, as in many similar schools across the coun-
try, it had been common for students to be placed in different classes on the basis
of test scores and presumed ability. In these differen t. tracks, students either pur-
sued different curricula or studied the same curriculum at different speeds. In

general, this practice led to unequal opportunity for students in the lower tracks to
pursue courses with higher-level goals and objectives, especially since instruction
in lower-track courses tended to omit challenging material (Oakes, 1990). When
QUASAR began, the practice of academic tracking was essentially ended at the
project sites. As a consequence, all students ir. the school including those in
bilingual or other "spec ial" mathematics classes generally received similar in-
struction.

Once tracking was eliminated, the mathematics classes became more diverse
than had been the case prior to the project, and teachers were challenged to de-
velop new instructional approaches that would accommodate more diverse groups
of students. Damarin points to a few instructional practices that have been identi-
ied as addressing the need to "fi x the mathematics" and to connect instruction to

the "women's ways of knowing" provided by Belenky, Clinehy, Goldberger and
Tarule (1986). In Kaicular, she mentions journal writing as a means of commu-
nity building and giving students "voice," and several references are made to stud-
ies that have suggested the efficacy of cooperalive learning for females. In gen-
eral, in the QUASAR project we have noted the efficacy of these practices and
others for diverse groups of students.



Drawing on examples from QUASAR classrooms, Silver, Smith and Nelson
(1995) describe the efforts of teachers to develop collaborative discourse commu-
nities in their classrooms by ming cooperative group work to foster communica-
tion and collaboration and by providing mathematics problems that can be repre-
sented and solved in multiple ways in order to give students multiple entry points
into problem solving. Silver et al. also demonstrate how QUASAR teachers en-
courage students to engage in and then communicate their own thinking; how teach-
ers support students as they learn to examine each other's reasoning, while at the
same time learning both to value different perspectives and to maintain respect for
each other as people; and how teachers enhance the "relevance" of mathematics
by tying it to students' life experiences, interests, and cultural heritage.

These practices can be seen as related to the notions of "connected knowing"
and "constructed knowing" described originally by Belenky et al. (1986) and elabo-
rated more recently by Becker (1995). Sonic research suggests that these features
of what Becker calls "connected teaching" are quite likely to also support the learn-
ing of culturally diverse students. In fact, a review of educational pi actices used
successfully with linguistically and culturally diverse student populations (Garcia,
1991) reported that collaboration and communication were key elements of effec-
tive instructional practice, especially when the curriculum blends challenging and
basic academic content, as is done in QUASAR mathematics classrooms. In ordcr
to develop mathematical proficiency in a wider range of students, it is critical to
focus not only on alternative modes of instruction but also on appropriate chal-
lenging tasks that have the potential to develop students' understandings and ca-
pacities for mathematical problem solving and reasoning.

There is evidence that the instruction provided in QUASAR classrooms not
only encourages connected knowing in the ways described above but also engages
students with challenging mathematical tasks. In particular, an analysis of a repre-
sentative sample of nearly 150 instructional tasks used in project classrocms over
three years, Stein, Grover, and Henningsen (in press) found that about three-fourths
of the instructional episodes involved mathematical tasks intended to provoke stu-
dents to engage in conceptual understanding, reasoning or problem solving. These
tasks encouraged students to use mathematical thinking and reasoningeither in
connecting procedures to underlying concepts and meaning, or in tackling com-
plex mathematical problems in novel ways. Only about 20% of the tasks were set
up and implemented to involve computation or mk.'mori/ation of information with-
out some overt connection to developing understanding. Thus, instruction in
QUASAR mathematics classrooms is oriented toward understanding, reasoning,
problem solving, and communication to a much greater extent than is found in
conventional mathematics classiooms.'

It is important to note, how :ver, that 1/4 ithin these overall findings there are
inter-school and inter-teacher variations that may he important. Not all small group
work is likely to he efficacious, nor will all journal writing be enriching. We need

3 For conventional mathematics instruction, Slinlolky (108S) reported that 07% of the
classes she observed dealt with Jou -level cognitive ohiectives.
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to understand even more about which instructional practices work for diverse groups
of students and under what conditions they may be ineffective. For example, us-
ing a portion of the classroom obscivation scheme developed and used in QUA-
SAR (Stein, Grover & Silver, 1991), Murrell (1995) observed several middle school
classrooms and concluded that "reform-oriented instruction" often worked in ways
that were detrimental to the learning of low-achieving African-American males.
Secada (1992) has also provided an account of some ways in which students with
limited proficiency in English can bc "left out" of the discoursc in reform-oriented
mathematics classrooms, even when the lesson is being conducted by an excep-
tional teacher. Thus, Murrell's findings and Secada's analysis, along with the ad-
monition of Dc lpit (1988) not to repeat the failure of earlier "process-oriented"
school reforms, suggest that we need to rcsist premature declarations of efficacy.

Another reason for caution is the recognition that even the most effective class-
room instruction cannot by itself completely overcome the institutionalized preju-
dice encountered by students in and out of school. Although Suzanne Damarin
has chosen to frame equity issues in ways that de-emphasize the power of social
class and economic forces in determining much of what happens to students in and
out of school, there is no question that we must recognize the power of these struc-
tural relations even as we resist the pull toward reductionism and essentialism. In
QUASAR schools, students often miss large numbers of instructional days as they
and their families struggle with the ponderous forces that act on the urban poor
inadequate health care, housing, transportation, and economic or personal secu-
rity. And these stresses often result in tremendous instability in the lives of stu-
dents. Within the group of students completing grade 8 at project schools, only
about half arc students who have attended the school since grade 6. Furthermore,
when QUASAR graduates arc denied access to educational opportunitics because
students from "those schools" arc not expected to be "ready" to take "that course,"
and arc subjected instead to mind-numbing instruction devoid of intellectual sub-
stance and challenge, the forces of institutionalized racism and class prejudice arc
clear. In a recent essay, Anyon provided the distilled essence: 'Educational re-
forms cannot compensate for thc ravages of society" (1995, p. 88) As we develop
theory, research and educational interventions related to equity and mathematics
education, we must deal with these forces thc extent to which the "deck is
stacked" against fairness in dealing. However, even as we do this, we need to kccp
in mind individuals as well as institutions.

Identity Development

In her plenary paper, Damarin argues that effective mathematics instruction
would allow women to (re)construct themselves as (other than silent) knowers of
mathematics. In fact, it is likely that many features of instruction in QUASAR
classrooms support a student in developing an identity as a knowcr and doer of
mathematics.

Forman (in press) examined instruction in a QUASAR classroom from the
perspective of sociocultural theory, such as Lave and Wenger's (1991) notion of
legitimate peripheral participation within a community of practice. She observed
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that, in contrast to traditional classrooms, QUASAR classrooms offer students a
variety of participation structures, including whole-class discussions, group work,
student demonstrations, and ;adividual student-teacher interactions. These varied
activity settings, when coupled with the other characteristics of tasks and instruc-
tion identified above, arc likely to allow students multiple opportunities to partici-
patc in knowing and doing mathematics since they can "find their voice" by con-
necting to one or more of these participation structures. Connectedness is also
encouraged in many project classrooms through student writing about their expe-
riences, attitudes, and feelings about mathematics. In most project classrooms,
students arc asked to write reflections on the understandings and confusions asso-
ciated with selected lessons or assignments.

Forman (in press) also notes that the forms of discourse encountered in QUA-
SAR classrooms deviate from the familiar "recitation script" associated with con-
ventioral mathematics instruction. Snc points to a variety of ways in which teach-
ers support students to become full participants in a classroom mathematical com-
munity by assisting them to learn the linguistic practices expected of a full partici-
pant, such as explaining their thinking, providing rationales for solutions or ap-
proaches, and coming to understand each other's thinking. As students participate
in this kind of scaffolded classroom discourse, thcy can gradually comc to see
themselves as members of a community of knowers and doers of mathematics
(Lave & Wenger, 1991). This contrasts sharply with conventional instructional
settings in which stucents instead learn to view themselves as individuals who are
receivers of mathematical knowledge created by others who are unknown and
unavailable.

The importance of identity formation has also been discussed in related re-
search conducted in out-of-school settings. Heath and McLaughlin (1993) studied
community-based youth organizations and the ways in which they help inncr-city
youth develop a strong sense of self, of empowerment, and of persistence. Heath
and McLaughlin concluded that, in order to understand the impact of community-
based organizational practices on youth, it is important to consider two frames of
reference objective (or outsider) perspectives and subjective (or insider) per-
spectives and they argued that personal identity may be at lea.st as important as
matters of race or ethnicity in the lives of children: "Ethnicity seemed, from thc
youth perspective, to be more often a label assigned to them by outsiders than an
indication of their real sense of sell (p. 6).

Although much of the work on mathematics and gender, including Women's
Ways of Knowing, has benefited from a subjective perspective, when policy pre-
scriptions or research agendas have been derived from this work there has been a
tendency to lose the individuality of students in favor of assigning each person
group membership and identification. Given the importance ol individual identity
in human intellectual and social development, it seems critical for us to balance
the outsider and insider perspectives in our research as we examine the conditions
under which diverse groups of students develop views of themselves as being com-
petent knowers and doers of mathematics.
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Is It Really a Fair Game?: Assessing Outcomes Responsibly

The impact of instruction in QUASAR classrooms has been examined by
measuring changes in students' mathematical performance over time. Damarin
refers to the inadequacy of traditional mathematics tests (e.g., commercial stan-
dardized tests) to detect mathematical proficiency in gender-sensitive and race-
sensitive ways. Traditional measures of mathematics performance are also gener-
ally viewed as inadequate to measure the kinds of high-level cognitive outcomes
that were intended to be a special instructional focus at project sites. Thus, the
project developed the QUASAR Cognitive Assessment Instrument (QCA1) to as-
sess students' mathematical understanding, problem solving, reasoning, and com-
munication (Lane 1993; Silver & Lane, 1993). The QCAI was developed with
attention to various equity considerations, such as potential gender, racial, or eth-
nic bias in task formats, scoring rubrics and test administration (Lane & Silver,
1995).

A first-order question for the QUASAR project was whether or not students
were benefiting in the intended ways. An analysis of QCAI results from the first
three project years provided clear evidence that students had increased their ca-
pacity for mathematical reasoning, problem solving and communication during
that time period (Lane & Silver, 1994), Evidence of changes in students' math-
ematical understanding, thinking and reasoning over time came from an aggrega-
tion of holistic judgments of student performance on a QCAI tasks administered
across the years at all three grade levels. In particular, the number of students
providing responses judged to be at the two highest score levels more than doubled
(from 18% to 40%) between Fall 1990 and Spring 1993. Further evidence was
obtained from a detailed examination of responses to a subset of QCAI tasks to
reveal growth in students' mathematical understanding, in their use of appropriate
strategies, and in the quality of Ocir mathematical justifications.

Is it the case that QUASAR students, regardless of gender, race, or primary
language benefit in equitable ways'? To examine "fairness in dealing" in the project,
a series of analyses have been conducted. Lane, Wang and Magone (1995) exam-
ined the performance on all QCAI tasks by male and female students in grades 6
and 7 in two different years, and they found no significant gender difference for 30
of the 36 tasks, thereby suggesting that QUASAR instruction was supporting the
learning of male and female students equally well. Males did significantly better
than females on only two tasks, and females did significantly better on four tasks.
Another analysis of QUASAR data revealed that the gains made by various racial/
ethnic or linguistic subgroups of students were generally quite similar to each other
and to those found for the total student population (Lane, Silver & Wang, 1995).
In particular, at the two schools with samples of African-American and Caucasian
students sufficiently large enough to permit examination of annual performance
gains for longitudinal cohorts of students, it was reported that (a) the total perfor-
mance gains were similar for three of the four cohorts, and (h) the gap between
Caucasian and African-American students, which was quite large at the beginning
of grade 6, decreased significantly for three of the four cohorts and remained es-
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sentially constant for the fourth. Similarly, at one school which had a population
that permitted such an analysis, the performance of two longitudinal cohorts of
Spanish-speaking students rceiving bilingual Spanish-English instruction was
compared with that of non-Spanish-speaking students receiving monolingual En-
glish instruction, and it was found that students in thc bilingual classes had per-
formed less well whcn they entered the program but that the performance gap was
substantially reduced or eliminated by the end of grade g

A further question might be asked: "Does 'fairness in dealing' actually result
from `fixing the mathematics"?" An answer to this question can be found in an-
other project analysis examiniag the relationship between instructional processes
and student learning outcomes in QUASAR classrooms. Stein and Lane (1995)
found that student learning gains were especially positive in classrooms in which
instructional tasks consistently encouraged high-level thinking and reasoning and
involved multiple solution strategies, multiple connected representations, or math-
ematical explanations, and that student performance gains were small in class-
rooms using instructional tasks that were procedural in nature and required only
one solution strategy or representation, and little or no mathematical communica-
tion.

Although we still need to examine the entire corpus of project data collected
over five years, the findings of our analyses to date arc encouraging for those of us
interested in equity and mathematics education reform. Collectively, these analy-
ses support a conclusion that the features of instruction generally being called for
by mathematics education reformers and generally being utilized in QUASAR
classrooms can support all students in diverse school populations to improve their
mathematical understanding, reasoning and problem solving. The findings are
especially meaningful because they relate to both an instructional approach ori-
ented toward dealing fifirly with diverse groups or students as they learn afair deal
of mathematics and an assessment measure designed to be equitable, sensitive to
change, and reflective of important mathematical learning outcomes.

Coda

Suzznne Damarin has challenged us to examine how gender and race are both
predictive of and predicted by mathematical achievement. I have pointed to the
equal importance of considering larger and smaller units of inquiry (i.c., the chil-
dren of poverty and individual student identities) in examining equity issues in
mathematics education. If equity issues arc examined from multiple perspectives,
then we are more likely to achieve "lairness in dealing" with ALL students, re-
gardless of gender, race, ethnicity, lai.guage or social class.

Just as it is important tor students to develop an identity as knowers and doers
of matiwmafics, it. is equally important for mathematics educators to develop an
identity as knowers and doers Qf equity. Too little research in mathematics educa-
tion has focused squarely on equity issues, and even less has focused elsewhere
while keeping equity concerns in mind. If progress is to be made, then it seems
clear that the entire field, including its research, needs to become more self-con-
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sciously interested in matters of equity. At this critical juncture in the history of
mathematics -Aucation, research can contribute in fundamental ways to under-
standing and accomplishing the agenda of "mathematics for all." We are fortunate
that Suzanne Damarin has provided us with a valuable set of resources for our
work.
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A RESEARCH BASE SUPPORTING LONG TERM ALGEBRA
REFORM?'

James J. Kaput, University of Massachusetts - Dartmouth

1. Defining and Situating Algebra Reform'

Before discussing any research base supporting algebra reform, we must ad-
dress some prior questions:

What kinds of reform, what kinds of algebra, and reform on what
time scales?

But even before discussing what kinds of reform and algebra, we should acknowl-
edge why algebra reform is so widely called for. Where are we coming from?

1.1. Recent and Current Practice: The Base-Line

School algebra in the U.S. is institutionalized as two or more highly redun-
dant courses, isolated from other subject matter, introduced abruptly to post-pu-
bescent students, and often repeated at great cost as remedial mathematics at the
post secondary level. Their content has evolved historically into the manipulation
of strings of alphanumeric characters guided by various syntactical principles and
conventions, occasionally interrupted by "applications" in the form of short prob-
lems presented in brief chunks of highly stylized text. All these are carefully orga-
nized into small categories of very similar activities that are rehearsed by category
before introduction of the next category, whcn the process is repeated. The net
effect is a tragic alienation from mathematics for those who survive this filter and
an even more tragic loss of life-opportunity for those who don't.

It would be easy to mistake this cryptic description for a deliberately harsh
and cartoonish denigration of actual practice, but, unfortunately, it is reasonably
accurate for the great majority of students studying algebra in the U.S. today, espe-
cially as experienced by those students. (Watch them, listen to them, and examine
their errors. What is thc race or income of those whose lives ar :. most likely to be
damaged?) Some of these activities might be described by teachers or other adults
as, say, "expression simplifying," "equation solving," "or problem solving." Some
others might descrfoc them as "function rewriting," "function comparisons," or
"modeling," respectively. Others might describe them as operations in and appli-
cations of rational or algebraic functions over the rationals or reals. But most

' The preparation of this paper was partially supported by OERI Grant (R1I7Gl0002)
funding the National Center for Research in Mathematical Sciences Education. The views
expressed, however, are those of the author and may not represent those of the funder. Thc
author wishes to thank Sigrid Wagner, David Slavin, John Mason and Mary Spence for a
critical reading of all or parts of a first draft.
'This paper will focus on school algebra in the United States, on the assumption that its
larger features are shared by our PME NA neighbors and that reform efforts in the US arc
of interest to our immediate neighbors.
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students sec little more than many different typcs of rules about how to write and
rewrite strings of letters and numerals, rules that must be remembered for the next
quiz or test. Most arithmetic and calculus arc experienced similarly, whiia teach-
ers burn out by the tens of thousands annually trying to teach the unwilling the
unwanted. Well-meaning policy makers arc now requiring the algebra medicine
for all students, since, at least when viewed from a distance, it seemed to have a
salubrious effect on some students. The widely appreciated political rhetoric "We
can't afford to waste a single person" is now colliding with a curriculum that, in
fact, wastes millions. Algebra has been transformed in the national consciousness
from a joke to a catastrophe.

1.2 Three Phases of Reform

A potential for confusion exists regarding the kinds of reform possible or
desirable over different time scales. What may seem radical as a proposal for
immediate implementation appears less so in the context of a longer term picture.
Hence we will discuss throe overlapping phases of reform, short, intermediate,
and long term. Short term, over the ncxt two or three years, involves carrying out
ongoing changes in existing curricula - the use of graphing calculators in existing
Algebra I and II courses, for example. Intermediate term, covering the period
from the late 1990s through the first few years of the next century, involves imple-
menting the larger middle school and other reforms curcntly nearing completion
of their first editions. The third, long term, phase begins during the early years of
the ncxt decade and involves deep restructuring of thc curriculum that makes room
for important new content and flexibility, especially at the secondary level. Index-
ing phases of reform tetnporally ignores the fact that change moves unevenly across
the land, so that one phase may bc well underway in one location while its prede-
cessor is in full swing elsewhere. My comments will focus more on the longer
rather than the shorter term the genuine and significant influence of research on
practice is inevitably long term. Short term connections between research and
practice are usually closely related to evaluation of one or another innovation or
theoretical perspective.

1.3 Three Dimensions of Reform

'lb clarify the nature of the rel onus to be discussed, and implicitly predicted,
I oiler three dimensions in which to measure change:

(I) Brew breadth of conceptions of algebra coherently implemented:

(2) Imegralion -curricular integration of algebra with other subject mat-
ter; and

(3) Pedagogy-movement towards a inure active, exploratory pedagogy,
particularly exploiting electronic technologies.

The Breadth dimension refers to the many forms of algebra and algebraic reason-
ing and the ways that they cohere: algebra as generalizing, abstracting and repre-

72

9 6



senting; algebra as the syntactically defined manipulation of formal objects; alge-
bra as the study of structures abstracted from computations; algebra as a modeling
language or as a cluster of related languages; algebra as the study of functions,
relations, and joint variation; algebra as means of controlling physical or cyber-
netic events, including simulations. These will be elaborated below. The Integra-
tion dimension, curricular integration of algebra strands with other subject matter,
is meant to include both mathematical and non-mathematical subject matter. Taken
together, Breadth and Integration enable a large scale restructuring of the curricu-
lum that removes algebra as a costly pair of high school courses, and when coupled
with restructuring of other subject matter into more longitudinally coherent strands,
make space in the secondary school curriculum for the new mathematics needed
by students of the next century - space also needed for curricular innovation and
exploration that is absolutely impossible today.

The Pedagogy dimension has relatively little directly to do with algebra in
strictly mathematical terms as a received cultural artifact, but everything to do

with the way that algebra is experienced by students. Without improvement in this
dimension along the lines described in the NCTM Professional Teaching Stan-

dards, (NCTM, 1991) for example, change in the other dimensions will be mean-
ingless.

"Reform" in the usual modern sense, perhaps deriving from the 19th century
notion of "progress," implies improvement relative to some vain-norms, and I
take the three dimensions to be ordered in some sense appropriate to eai-n: more
Breadth and morc Integration arc presumed to be better, as is a more student-
active-reflective Pedagogy. There is no clean separation among the phases of re-
form to be described, and most reform efforts vary in their progress across dimen-
sions. Furthermore, thc dimensions themselves arc not entirely independent - in-
creaseA1 Breadth serves Integration, and vice-versa, while improved Pedagogy serves
both. Lastly, different implementations of the "same" reform can vary, especially
in the Pedagogy dimension (Romberg, 1981; Romberg, 1983), Folks seeking non-
intersecting categories, orthogonal dimensions and linear orderings will not find
them in realistic appraisals of educational chang- in such a sprawling domain as
algebra at least not in this paper.

2. Three Dimensions of Algebra Reform

2.1. The Breadth of Algebra: Five Aspects of Algebra

Despite the fact that we all use one word "algebra," there is no one algebra, no
monolith. Instead, we need to make sense of a richly interwoven tapestry of con-
structs and processes that both serve and constitute mathematics. Thc analysis
offered here is somewhat finer than that used in the NCTM Algebra Document (in
preparation), but, I believe, consistent with it - where the NCTM Document refers
to "themes," we refer to "aspects" - although when attending to :low they develop
in students' minds or appear in curricula, we also reler to them as "strands."
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Talk about mathematics often slips between mathematics as implicitly shared
cultural artifacts objects, procedures, relations independent of any individual
as when we talk about learning functions, polynomials, factoring, ring theory, lin-
ear algebra, and so on and mathematics as ways of thinking generalizing,
specializing, abstracting, computing, analogizing, justifying, and so on. To de-
scribe algebra requires mixing both types of talk. Finally, characterizing algebraic
reasoning in terms of the types of mathematical objects involved is inadequate
students may be working with matrices or with integers mod 7 in clock arithmetic
(Picciotto, in preparation), for example, in entirely concrete, arithmetic ways rather
than algebraically. On the other hand, they might be reasoning quite abstractly
while using specific numbers, perhaps only orally, with no writing (Bastable &
Schifter, in preparation).

The first two aspects of algebra embody "kernel" features of algebraic rea-
soning that infuse all the others, the middle two amount to centrally important
mathematical topics, and the last addresses algebra as a web of languages. All the
aspects should be regarded as loosely spun and richly interwoventhey arc by no
means separae. And each has different roots in human cognitive and linguistic
powers and draws on different kinds of experience, particularly in its primitive
and emergent forms among younger children.

2.1.1. [Kernel) Algebra as Generalizing and Formalizing
Patterns & Constraints, especially, but not exclusively Algebra as
Generalized Arithmetic Reasoning and Algebra as Generalized
Quantitative Reasoning

Generalization and formalization are an intrinsic feature of much mathemati-
cal activity, and the mathematical systems and situational contexts in which gener-
alization and formalization can be done are unlimited. I suggest that there are two
sources of generalization and formalization: reasoning in mathematics proper, and
reasoning in situations based outside mathematics, but subject to mathematiza-
non. The particular forms described below, arithmetic and quantiuuive, differ in
exactly this fundamental way: generalizing in arithmetic (numerical patterns,
arithmagons, etc.) begins within a mathematical system, (of ten) the system of in-
tegers, their properties and operations, where understanding of the mathematical
structures plays the core constraining role; quantitative reasoning is based in
mathematizing situations and ol k'rs a different basis for generalizing and formal-
i/ing, where understanding of the semantics or the situation plays thr core con-
straining role.

Both the means and the goal of generalizing is to establish some formal sym-
bolic objects that are intended to represent what is generalized and render the gen-
eralizations subject to further reasoning, purhaps aided by computation - where
the computations are at least temporarily guided by synuix and patterns assc,ciated
with the formal system rather than what is lormalized. Acts of generalization and
gradual formalization of the constructed generahty must precede work with for-
malisms - otherwise the formalisms have no source in student experience. The
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current wholesale failure of school algebra has shown the inadequacy of attempts
to tie the formalisms to students' experience after they have been introduced. It
seems that, "once meaningless, always meaningless." We now turn to the two
primc candidate sources for generalization and formalization in school mathemat-
ics.

Algebra as Generalized Arithmetic Reasoning. An enduring theme in al-
gebra education, with roots in 18th-19th century views of thc subject (Pycior, 1981;
Sfard, 1995), regards algebra as a language that encodes the general rules of arith-
metic, particularly rules concerning the operations. It has proven itself to be at-
tractive as a factor in curriculum design because it explicitly builds on what stu-
dents presumably know (arithmetic), helps generalize that knowledge, helps build
a more general ability to generalize in the process, and exploits the rich intrinsic
structure of the integers as a context for pattern development, formalization and
argument for example, how many reasonable conjectums might one make con-
cerning combinations of consecutive integers? Linchevski (1995) put it thus: "Al-
gebra with Numbers and Arithmetic with Letters: A Definition of Pre-Algebra"
(Summary Report to the 1CME-7 Working Group on Algebra, 1995). Work along
thc same lines by Bastablc and Schifter (in preparation) offers rich examples of
second to fourth grade students generalizing and discussing generalizations of arith-
metic relations based in specific cases, where formal representations arc not used,
but where generality is at the heart of the activity and discussion. This is one set of
examples that points thc way to building depth in arithmetic, serving the Integra-
tion dimension of reform. Other types of activity involving arithmagons and nu-
merical patterns, as examples among many possible, provide contcxts for extend-
ing this strand of algebra towards simultaneous equations and beyond (Bell, 1995;
Romberg & Spence, 1995; van Rceuwijk, in preparation). It forms thc major part
of some recent attempts to begin thc study of algebra in the early middle gradcs
(Curcio, 1994).

Algebra as Generalized Quantitative Reasoning. As defined by Thompson
(1993: 1995), Thompson & Smith (in preparation) a person is thinking of a quan-
tity when he/she is thinking of a quality of some aspect of a situation that he/she
regards as measurable (or countable) length, density, mass, age, velocity, num-
bers of red marbles, area, rate of inflation, and so on. Such conceptual acts may or
may not involve the actual assignment of numerical values to thc uality involved
via the use of some unit of measure or counting. Quantitative 1..asoning might
also involve abstract quantities, such as in determining "how many 3's in 15"
(where the quality is simply "size") by, for example, counting how many units of 3
need to added together to yield 15. Thus this aspect of algebra can be thought of as
encompassing the Generalized Arithmetic aspect. I argued (Kaput, 1995), and
Thompson & Smith (in preparation) argued that quantitative reasoning is superior
to arithmetic in opportunities to build algebraic reasoning. It draws more fully on
different forms of experience, including growth and change, can be more oriented
towards the expression of relationships I or purposes of inference rather than merely
towards computatkms of values of quantities, and, unlike arithmetic-based activ-
ity, it involves a more direct link to physical and cultural experience. Indeed, a
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closer look at the history of algebra from this perspective suggests that this is
where algebra started: a review of the historical "algebra" problems dating back tn
Arabic algebra reveals them to bc quantitative reasoning problems, not arithmetic
problems (Katz, 1995). Nonetheless, and despite thcir concreteness, they served
as bases on which general, more algebraic solutions could be (and were) built.

In thinking of algebra both as generalized arithmetic and as generalized quan-
titative reasoning, it is important to keep in mind that the generalizing docs not
start with elementary school mathematics and end there, leading to algebra. Gen-
eralizing is a continuing activity that can occur at the most sophisticated levels of
mathematics (e.g., in algebraic number theory or advanced mathematical model-
ing) where the qualities being defined and measured might be subtle economic
constructs, such as elasticity of demand or the impact of the Fed's interest rate on
fluidity of capital.

2.1.2. [Kernel) Algebra as Syntactically-Guided Manipulation of
(Opaque) Formalisms

Thc tremendous power of formal isins is behind the prodigious development
of modern science and technology (Bochner, 1966). For example, when one com-
putes thc derivative of (3)0+2) using the Chain Rule, one is exploiting the for-
malisms developed by Leibniz (Edwards, 1979). Indeed, the word "calculus" re-
fers precisely to this feature - applying rules to calculate with symbols without
regard to what they might refer to. When dealing with formalisms, whether they
be traditional algebraic ones or more exotic ones, the attention is on thc symbols
and syntactical rules for "manipulating" them (changing their form). However, it
is possible to act on formalisms semantically, w here one's actions arc guided by
what you believe the symbols to stand for. To clarify, consider two ways of solv-
ing the equation 3x-2=10: One way ic semantically guided in this case by rea-
soning within the numerical conceptual system represented by the formal equa-
tion. It is usually approached as an inverting process. One thinks something like
"If I take 2 away from times a number, I get 10. So 3 times thc number must he
12, so the numher must he 4." The syntactically guided approach treats thc sym-
bols as objective entities in themselves, and the conceptual sy stein of rules applies
to the system of symbols, not A hat they might stand bor. In this case, one applies
a rule for adding 2 to both sides of the equation, to gel 3s=12, and then one divides
both sides by 3 to get x=4. And of ten these rules come to be thought of as applying
to thc symbols as physical objects "move the -2 to the right hand side and change
its sign."

As noted, much ol the traditional power r)I algebra arises 1.min the internally
consistent, relerent-I ree operations that it al lords. For an historical discussion of
the k)osening of referential constraints, see 1 Kaput. 1994, pp. 101-103). Many
(e.g., ('uoco, in preparation) take syntactically guided computations on formal-
isms to be the essence Oi algebra. I loweer, as already noted, neither the formal-
itinis nor the actions on them can be viably learned without sonic semantic starting
point where the lurimialisinis are initially taken to represent soinething in the student's



experience. Furthermore, this referential relation is best anchored in the act of
generalization from the semantics of the domain represented by the formalisms.

2.1.3. [Mathematical Topic) Algebra as the Study of Structures
Abstracted from Computations and Relations

Acts of generalization and abstraction give rise to formalisms that support
syntactic computations that, in turn, can be examined for structures of their own,
usually based in their concrete origins. This aspect has some roots in the 19th
century British idea of algebra as universalized arithmetic (Kline, 1972) but also
can draw on structures arising elsewhere in students' mathematical experience
for example, in matrix representations of motions of the plane, in symmetries of
geometric figures, and in manipulations of letters in words. These structures seem
to have three purposes, (1) to enrich understanding of the systems that they are
abstracted from, (2) to provide intrinsically useful structures for computations freed
of the particulars that they once were tied to, and (3) to provide the base for yet
higher levels of abstraction and formalization. While this aspect in the past has
been reserved for elite students at the college level, some now call for earlier intro-
duction for the majority of students (Cuoco, in preparation; Picciotto, in prepara-
tion; Picciotto & Wah, 1993, March).

2.1.4. [Mathematical Topic] Algebra as the Study of Functions,
Relations and Joint Variation

Fey (1984) recalls the long history of attempts to use the idea of function as an
organizing principle for the mathematics curriculum, including and especially al-
gebra. Schwartz (Schwartz & Ycrsulshamy, 1990) and Yerushalmy & Schwartz,
(1993) have offered an analysis of how studying the idea of function and its sev-
eral standard representations can simplify and organize the confusing algebra cur-
riculum confronted by today's students and teachers, while Dubinsky and col-
leagues (Breidenbach, et al., 1993) and Thompson have analyzed its conceptual
growth in individuals. As a product of generalization, thc idea of function has
roots in causality, and joint variation (Freudenthal, 1982; van Reeuwijk, in prepa-
ration) and hence permeates the sciences. Examples of young student.s developing
this idea have been offered by Tierney & Monk (in preparation), and middle school
curriculum materials embodying this point of view have been produced by Con-
nected Math Project, TIMS. On the other hand, functions used in the context of
less temporally mediated phenomena, such as occurring in arguments involving
divisibility of products of consecutive e% n integers (where the underlying vari-
able works to carry generality more than it works to carry covariation), the idea of
covariation m, y be less salient, and attention focuses on the generality of the pat-
terns being expressed. When coupled with the ideas of iteration and recursion in
computational media, functions fecd into the idea of dynamical system (Devaney,
1989; Sandefur, 1990). This strand grows out of and intertwines with the General-
ized Quantitative Reasoning strand.
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2.1.5. Algebra as a Cluster of Modeling Languages and
Phenomena-Controlling Languages

Modeling Languages. Some would argue (e.g., Freudenthal, 1983) that mod-
eling is the primary reason for studying algebra. Thc generalized quantitative
reasoning aspect can be regarded as part of a larger modeling aspect that extends
to include the rapidly widcning collection of notation systems that are used to
represent and visualize phenomena of all sorts. These support the new forms of
visualization and reasoning associated with dynamical systems, deterministic chaos,
and generally the modeling of nonlinear phenomena. Of special interest is how
"alpuraic" arc the various notation systems? One way to approach this question
is to ask how do they express generality, and how do they support syntactically
guided manipulation? Somc arc pictorie, some arc coordinate-based, while others
are character-based. Thc computer medium now supports operations on virtually
any notation system; for example, one can systematically adjust the color scales of
a color-coded temperature map to help reveal patterns, or one can overlay such a
map with a topographic map, etc. Is this modeling in the classic sense that devel-
oping a differential equation for describing the motion of a falling body is model-
ing? Of course, many, perhaps most models have functions at their core, so as a
curricular and cognitive strand it weaves intimately with the previous strand.

Languages that Create and Control Physical and Cybernetic Phenom-
ena. In modeling, we begin with phenomena and attempt to maihematize them.
But computers now enable us to reverse this referential relationship in interesting
ways - by creating simulation phenomena within the computer medium (Kaput,
1994) and by driving physical devices (Nemirovsky, 1994). In these cases, onc
usually cycles repeatedly between the phenomena, wherever they happen to be
located, and the notations that give rise to them. In recent work (Kaput, in prepa-
ration) we arc also able to import phenomena into the computer via standard MBL
systems and compare them with algebraically generated phenomena. For example,
one can "walk" a certain velocity graph that controls the motion of a character in a
simulation, and then create algebraic functions that control another character whose
motion can be compared with your motion as they "walk" side by side. In these
sorts of environments new relationships between algebra and physical phenomena
arc possible. Lastly, computer languages, beginning with FORTRAN, then BA-
SIC and more recently Logo (Grant, Fa flick & Feurzeig, 1971; Noss, Hoy les &
Sutherland, 1993; Papert, 1980) and ISETL (Dubinsky, 1991; Dubinsky & Leron,
1994) amount to algebraic formalisms within which one can create or experience
explorable and extensible mathematical environments. Nor do these languages
need to be alphanumeric, e.g., Function Machines (Feurzeig, 1993). As has been
noted (Kaput, 1986; Noss et al., 1993), these computer environments change in
fundamental ways the relations between the particular and the general, and hence
the nature of mathematical experience available to students, including and espe-
cially means of argument and justification.



2.2. Integration of Algebra with Other Subject Matter

As we all know, and for many good reasons both cognitive and practical, the
NCTM Curriculum and Evaluation Standards (NCTM,1989) put a premium on
"connections." Integration and connections can take place at several different
levels:

Within-mathematics connections between different representations
of given mathematical objects such as functions, or between differ-
ent areas of mathematics, as between algebra and geometry involv-
ing, for example, traditional analytic geometry or connections be-
tween matrices and transformations of the plane.

Connections between mathematics and subject matter from other
mathematical sciences such as computer science, probability, or sta-
tistics.

More distant connections usually involve mathematics in modeling
situations developed within the structures and from thc perspectives
of other disciplines, in the physical, I ifc and social sciences, as well
as in business, medicine and engineering.

Pedagogical Power. To the extent that algebra can be learned while learning
other subject matter, not only is its power appreciated, but its power is learned.
And importantly, learning of the other subject matter is enhanced - how much
"science" is learned in grades K-8 as vocabulary, or, morc recently, as collections
of interesting phenomena, without any quantitative content (AAAS, 1994).

Curricular Efficiency. Wc can no longer afford to teach academic subjects
one at a time, end-to-end. We need to exploit the compounding effect of connect-
ing algebra with other subject matter: the algebraic languages reveal the common
structures across domains. Building algebra in different domains can reveal the
similarities of the underlying ideas while simultaneously strengthening understand-
ing of thc structures, exercising the associated procedural skills, and enhancing
appreciation of mathematics' power.

Curricular Depth. But perhaps even more importantly, this last observation
applies to much of the mathematics that now appears in K-8: //ow much could the
mathematics of the pre-high school grades he enriched, deepened and made more
coherent if, at every turn, questions of generality and extension were raised and
pursued (Bastable & Schifter, in preparation)? To raise such questions inevitably
invites algebra as a means for expressing generality and abstraction, and for rea-
soning within these expressions.

Longitudinal Coherence - From Layercake Filter to Coherent Strands.
Algebra is not only a powerful filter of students, but it is also a harrier preventing
access to powerful ideas. As now structured, algebra courses lie between elemen-
tary mathematics and calculus - the mathematics of change - and all thc fields that
usc calculus. Historically, only a small minority of students cross this barrier, but
current work in the SimCalc Project indicates that the mathematics of change may
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be an ideal site for the learning of algebra, a notion implicit in the growth and
change theme of the NCTM Algebra Document (in preparation). Integration,
coupled with Breadth, arc critically important dimensions of reform.

23. Changes in Pedagogy

The distinction between curriculum and pedagogy is a slippery one, espe-
cially when one departs from a description of mathematics as a received cultural
artifact as represented in books and other media, and instead discusses mathemat-
ics as constructed or experienced by individuals. Nonetheless, for analytic pur-
poses it is useful to distinguish between descriptions of acts of teaching and their
surrounding circumstances on one hand, from the shared objects, procedures, rela-
tions, forms of reasoning, and notation systems that wc expect students to learn on
the other. Desirable pedagogics have been set forth in the NCTM Professional
'leaching Standards, (NCTM, 1991) for example, and, for brevity's sake will not
be repeated here except to note that it is possible to achieve surface forms of val-
ued pcdagogies while failing entirely to engage students with significant math-
ematics. Wc often hear that changes in curriculum without changes in pedagogy
are empty changes. But the reverse is at lea..1 as true, perhaps because it may be
easier, especially at the lower grade levels, where teachers arc often more equipped
to grow pedagogically than they are to grow mathematically. An implication is
that growth in pedagogy and growth in mathematical power need to be intimately
linked in the kinds of teacher education that will move practice along the three
reform dimensions.

3. Research Supporting Algebra Reform

3.1. Research Associated with the Breadth Dimension: Mapping
Algebraic Thinking in Its Full Diversity

Obviously, the aspects, especially when thought of as strands, interweave com-
plexly. Mapping these connections, espec ially how they grow in students' minds
under various instructional approaches, is an important research agenda for long
term algebra reform. Acknowledging the real complexity and breadth of algebra
in our research and how algebra may emerge in students' own language and ac-
tion, particularly in diverse forms, is an important step towards research of rel-
evance to long term reform that respects the diversity of both thc students who
need to learn algebra and the many ways they will use it (Confrey, ')95, Dennis &
Confrey , 1995). StepS in this direction arc necessarily made by the large curricu-
lum development projects in outlining curricula, and these can serve as starting
points, e.g., (Romberg & Spence, 1995),

3.2. Traditional Research Supporting and Informing Current Practice

Research and curriculum are, as parts of a larger integrated social and cultural
system, intimately, albeit complexly, connected. And, as noted, the forces now at
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work pushing reform of algebra emanate at least as strongly from the larger soci-
ety as they do from education researchers, a fact not uncommon historically
(Howson, et al., 1981, chapter 1). To the extent that they share a common vision of
school mathematics, curriculum and research each helps define the other. This has
been especially true in the case of the deficit model "disaster literature," where
student shortfalls in learning, "misconceptions," and so on (e.g., Kaput & Sims-
Knight, 1983; Kuchemann, 1981; Kuchcmann, 1984; Matz, 1982; Sleeman, Kelly,
Martinak, Ward & Moore, 1989) are in large part a measure of the impact of the
current or recent curriculum, although this is seldom suggested in the research
reports, which seemed to take for granted the basic shape of existing curricula. On
thc positive side, in studies of what students can learn, researchers' visions of
school algebra have extended well beyond what typically appears in current courses.
However, sonic researchers have studied the learning of symbol manipulation
(Davis, Jockusch & McKnight, 1978), especially learning within computer envi-
ronments (Chaiklin, 1989; Feurzeig, 1986; McArthur, Stasz & Zmunidzinas, 1990;
Sleerm, '1, 1982; Slecman, 1984; Sleeman et al., 1989), where the subject matter
fits reasonably well with the formal side of today's curriculum, although the orga-
nizations offered by researchers tend to be much more principled than those em-
bodied in the textbooks.

Prior research also tended to treat algebra one aspect at a time. A significant
amount of earlier research, particularly research emanating from other countries
(Soviet Studies in Mathematics Education, 1976), was directed towards algebra as
generalization, especially generalized arithmetic (Bell, 1995), or formal argumen-
tation (Davydov, 1975, 1990). Some research viewed algebra as a modeling lan-
guage (de Lange, 1987). Another line of research has investigated students' de-
velopment of understanding of concepts of function (Breidenbach, Duhinsky, Hawks
& Nichols, 1992; Dreyfus & Eisenberg, 1984; Dubinsky & Hare!, 1990; Eisenberg
& Dreyfus, 1994; Thompson, 1994) and the different representations of functions
(Goldenberg, 1988; Romberg, Carpenter & Fennema, 1993; Yerushalmy, 1991).
Again, it is worth emphasizing that this research did not strongly affect practice in
the U.S., which has been tightly defined by commercial textbook series for "Alge-
bra I & II" dominated by a few major publishers.

Integration has traditionally taken the form of algebra applications in the form
of "word problems" rather than in the larger senses described above. And, since
these researchers hy and large shared the curricular assumption that ability to use
algebra is reflected in ability to solve such problems, much research, far too exten-
sive to be cited here and extending well into the psychological sciences, focused
on learning how to solve word problems of various types. This research helps
only indirectly in the current reldrm effort, because the current reform no longer
shams this curricular assumption. Research centered on pedagogy is perhaps best
exemplified by Rachl in ( 1%1), who shows how far one can move along the peda-
gogy dimension with the current content.

3.3. The First Phase of Reform: Short Term

First attempts at reform leave the larger course structures in place, but can be
characterized as significant enrichments, inevitably using electronic technology,
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of existing courses. These enrichments give much more prominence to and en-
compass a wider set of applications; utilize the production, comparison and ma-
nipulation of functions in linked numerical, graphical and symbolic forms; and
usually engage students in conjecture and exploration using the interactive tech-
nology. I would judge these attempts as relatively low in the Integration dimen-
sion since they share thc feature of reforming algebra where it already appears in
the grade 8-12 curriculum, leaving the algebra as isolated from other subject mat-
tcr except as it may be incorporated into problem-applications. In terms of thc
Breadth dimension it is a significant move towards inclusion of a functions-vicw
of algebra, forced in part by the input-expecwtions of the electronic devices used.
These same devices support multiple, linked representations of these functions
largely defined symbolically, of courseand hence support within-mathcmatics
progress in the integration dimension . Also, depending on the case at hand, gen-
eralization and the expression of generality play an increased role in the Breadth
of algebraic experiences offered.

Much of this work is the product of innovation by individual teachers or the
use of slightly modified texts or supplementary materials (usually associated with
graphing calculators). Obviously, much variation is embedded in this category,
especially in the Pedagogical dimension. Nonetheless, especially as the technol-
ogy supports exploration and active learning, significant movement along the Peda-
gogical dimension tends to occur. However, movement in all these dimensions is
limited by the presence of the traditional constraints of the courses in which the
innovation is taking place.

3.4. Research Supporting and Informing the First Phase of Reform

A very revealing dissertation study of a short term Algebra II reform cffort led
by an individual teacher at a progressive private school has been provided by Slavit
(1994). Thc teacher was extremely competent by all standard measures, the stu-
dents were committed to learning, and the classroom circumstances were near-
optimal for use of graphing calculators. We would rate him "high" on the Peda-
gogy dimension (he was a Presidential Award winner). Many teachers and math-
ematics educators would envy this tedcher's situation and applaud his and his stu-
dents' ach vements, which were considerable. However, his students were af-
flicted wiu, most of thelimitations of concept image of function reported by Vinner
(1983; Vinncr & Dreyfus, 1989), particularly as revealed by problems involving
functions that were not described in algebraically closed form. What of typical
students and teachers working undcr sub-optimal conditions'? While the teacher's
efforts and achievements were impressive, certain kcy elements of the curriculum
remained unchanged; for example, functions were almost always described in al-
gebraically closed-form (except on a revealing assessment), the course was sand-
wiched in a rather traditional sequence, and the problems and activities were usu-
ally textbook-brief (with a few exceptions) and made relatively little use of real
data (physical or otherwise), not unlike findings from another pair of dissertation
studies (Rich, 1990; Telcs, 1989) and well knowii work by Hcid (Heid & Kunkle,
1988) and others. It is important, both for fairness and for our analysis, to note that
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none of these factors was within the teacher's (or researchers') direct control. They
await the'next phase of reform, and, in fact, define the boundary between Phases I
and 2.

33. The Se Cond Phase of Reform: Intermediate Term

The second phase of algebra reform centers on the integration of algebra into
thc School very much in thc spirit of the first level of reform, but with two
iMportant differences: (1) thc algebra is integrated into a larger curriculum, and (2)
as middle school mathematics, it is intended (by its authors) to be offered to all
students.: Again, considerable variation exists in this category, particularly in the
role and.types of applications. Generally, however, thc curriculum and the activi-
ties tend to be structured in larger pieces than Phase 1, and the algebra tends to
emerge from the activity and contexts in which students work. Furthermore, ma-
tetials are usually structured according to topic strands, with algebra used to ex-
press generalizations and abstractions within these strand topics (Romberg &
Spence, .1995). Thus considerable movement along the Integration dimension is
achieved:in Phase 2.

Alge.bra as a means of modeling and generalization is increased, the place of
funCtions and their multiple representations is preservedif not increased to in-
clude non:traditional diagrammatic and pictorial notations (Romberg ct. al, 1995)
and some of thc materials broaden the subject to include some formal, structural
aspects Ot algebra as arise in the contexts of matrices and clock arithmetic. Hence
further Movement along the Breadth dimension is achieved.

Itrifie Pedagogical dimension, even more movement occurs, sincc much ma-
tcrial ..islipen-ended by, design, involves students working in groups, and in some
cases inVolves'students designing and producing artifacts (Goldman, 1994). The
level pf pedagogical change has, in some reports, reached the limits of tradition-
ally edduated teachers' ability to adapt.

Myrt of this work is connected to ongoing curriculum development projects
that will not he'v...idely available until 1996 or 1997, with the exception of UCSMP,
whi)se newer editions began to appear in thc mid 1990s, and which is distinguished
by its K-12 comprehensiveness. Phase 2 seems likely to dominate thc end of this
decade ahd the early part of the next. Because of the shift of the focus of these
innovati'ons to middle school, many of the constraints of existing secondary school
structures arc kiosened. However, thc resulting changes at the secondary school
are uh.clear, excypt that much of the Phase I activity will be inappropriate for those
stud6nt.s who will have progressed through Phase 2 materials in middle school.
Hence Phase 2 reform is more clearly defined at the middle school level than it is
at the secondaq school level, a fact that is likely to yield considerable difficulty in
tran,,itic 01 betwcen Phow 1 and Phase 2.

3.6. Re4earCh Supporting and Informing the Second Phase of Reform

Most of the research about Phase 2 has taken the style of research-based for-
mative evaluation of curriculum materials and the school-based implementation



process because the innovators are either researchers themselves, or are affiliated
with researchers.

3.7. The Third Phase of Reform - Long Term

This phase of reform has not yet begun in the U.S. (to my knowledge), al-
though, as argued below, the ingredients needed to begin arc available. It involves
full integration of the development of thc many forms of algebraic reasoning across
all grades with the learning of important mathematics. In this phase algebra is
treated less as a subject in its own right (with exceptions noted shortly), and more
as a general, ubiquitous means for creating, expressing and operating on generali-
zations and abstractions, as a medium for modeling, and as a set of computer based
languages to create as well as model phenomena. It serves a widc variety of pur-
poses, making sense of the quantifiable and structural aspects of experience in the
context of modeling and in other mathematics. It is also a medium for creating
new mathematics and reorganizing old mathematics (including concepts of num-
ber and operations on numbers). Algebraic reasoning, and the various notational
systems, conventional and otherwise, grow organically and gradually, developing
as they arc needed, with technology likewise introduced gradually as needed. At
certain junctures, however, consolidation and some practice are required, perhaps
as long as a few months, but riot a full course. The exception could be mathemati-
cal electives at the secondary level, where particular aspects of algebra may be
explored more fully, (e.g., linear algebra, or algebraic structures) (Cuoco, ct al.,
1995). Computer technology supports just-in-time learning that enables students
to learn specific skills when they arc needed. In this phase of reform, algebra
enhances and provides coherence to the learning of other subject matter strands
the mathematics of number and quantity, of space and dimension, of data and
uncertainty, of growth and change (including growth and change in other sciences
such as physics and biology), of data structures, and so on. Algebra disappears
both as a set of isolated courses and as e set of intellectual tools, in thc sense that
for the carpenter, when in use the hammet becomes an extension of the arm (Polanyi,
195g). The different aspects of algebra txcome habits of mind, ways of seeing and
acting mathematicallyin particuhr, ways of generalizing, abstracting and for-
malizing across the mathematics and science curricula, including curricula lead-
ing to the world of work. The new freedom from the constraints of the historic
high school mathematics curriculum is exploited to include mathematical elec-
tives such as dynamical systems and nonlinear model ;rig (Sandefur, 1992), combi-
natorics, number theory, non-Euclidcan geometry, and so on, studies not currently
present in school curricula. A market for innovation is incentivised and mediated
by telecommunication technologies Mat enable individuals to offer instructional
materials lc geographically dispersed students on a royalty basis.

Relative to content, this under specified and utopian-appearing scenario is not
too far from thc approach to algebra taken in certain other countries, (e.r . the
Netherlands, Russia, and elsewhere). However, I would suggest that the particu-
lars in the U.S. may very well be substantially different from those that have evolved
in other countries, espec ially given that computer technologies are a powerful in-
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gredient operating in Phase 3 but not strongly present today. Glimpses of details
arc provided in the new NCTM Algebra Documcnt for Algebra in the K-12 Cur-
riculum (in preparation) where algebra is depicted as a K-12 enterprise touching
all aspects of mathematics. While provision is made for practice and consolida-
tion, the implicit pedagogy is student-centered, with active exploration, conjec-
ture, verification and student authorship of mathematics and models emphasized
throughout.

3.8. A First Pass at Organizing Research Supporting and Informing
the Third Phase of Reform

The research basis of this approach certainly docs not exist today, although
the issue has been discussed as early as thc 1930s (Slavit, 1994) and thirty years
later in the mid 1960s (Davis, 1964 ; 1984). Below 1 will attempt to point to
research that seems to offer promising starting points. This research largely in-
volves younger children since I believe that the early grades will initially and nec-
essarily be thc locus of greatest change in algebra instruction, leading to even
larger changes at the secondary level later. Secondly, we need to revisit and ex-
tend research in the learning of specific subject matter, especially at thc founda-
tional levels, in order to find where and how opportunities to generalize and ab-
stract can be exploited, that is, opportunities to learn and use algebra. Thirdly, we
also need to look closely at research and development work in other countrie3-
where algebra learning has been integrated with other learning, and where the
approaches seem to be in line with what seem appropriate for students of this
country.

3.8.1. Beginning the Strands in Elementary Mathematics

Early work has taken thc form of documenting opportunities for generalizing
and formalizing in arithmetic (Bastable & Schifter, in preparation), and in quanti-
tative reasoning (Confrey, 1994; Confrey & Smith, 1995; Thompson, 1994; Th-
ompson, 1995; Tierney & Monk, in preparation). Additional work, based on ncw
curricula, has shown children capable of handling formal symbolism (Romberg, et
al., in press), building abstract formal structures in geometry (Lehrer & Danneker,
in preparation), and handling complex interpretation of graphs (Russell, et al.,
1995; Ainley, 1995). An important feature of much early work is the subtle and
oral rather than written character of children's early attempts to generalize. Since
they have not developed symbolism to represent their generalizations, they must
usc natural language and the many oral strategies for expressing generality devel-
oped in daily communication (Mason, in preparation). Hence those who would
study these activities as opportunities for the development of algebraic reasoning
need a sensitive eye and ear. And furthermore, teachers who would nurture the
development of algebra as a means to express generality likewise would need to
be sensitized to create as well as identify such opportunities. Fortunately, founda-
tions for such work already exist in the research of those who have studied the
development of arithmetic reasoning (e.g., Carpenter, Fennema, & Peterson, 1987;
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Carpenter, Fennema, Peterson, Chiang, & Locf, 1989; Fennema, Carpenter &
Peterson, 1989; Fuson, 1990; Sandefur, 1990; Stare & Cobb, 1988) as well as in
the study of the associated teacher devekiiment (Cobb, Wood, & Yackel, 1990;
Cobb, Wood & Yackel, in press; Fennema et al., 1989; Gravemeuer, 1992; Schifter,
1994).

An important alternative to the oral expression of generality and an accompa-
nying move to formal expression occurs in computer environments, especially in
situations such as Logo programming (Hard, 1991; Lehrer, et aL, submitted; Noss,
in preparation; Noss et al., 1993), where the formal expression is intrinsic to the
production of a dually-layered visible artifactthe Logo program and the outputs
of that program. Another context involves the control of simulations, where stu-
dents need to set algebraic parameters as part of the process of exploring the phe-
nomena of the simulation (Kaput, in preparation). For example, when controlling
the motion of synchronized swimmers in a pool, the students must determine how
to distinguish between a positional and a temporal head start; furthermore, in some
circumstances they must deal with as many as 20 coordinated swimmers, cach of
whom is to be offset in their initial position by a fixed distance from the swimmer
to thcir left, say. In this case, to achieve efficient and systematic control of the
swimmers begs parametric thinking, where each swimmer's motion is a particular
function of time, but where the functions themselves vary systematically across
the swimmers. We arc currently developing simulation environments to scaffold
this kind af thinking among 5th-7th graders.

3.8.2. Approaches in "Algebraically Successful" Countries

Perhaps the best, and surely the most available example, of a curriculum that
approximates the vision sketched above is that developed by the Freudenthal Insti-
tute in the Netherlands. This curriculum contains no algebra courses, but is rich in
algebra experiences beginning in the early grades. A distinguishing feature is the
repeated application of the principle of "progressive fonnalization," whereby stu-
dents' productions arc gradually shaped into more formal systems over time, all in
the context of realistic applications.

Another example of active early development or student algebraic reasoning
and argumentation is offered in the work of the Russian mathematics educator
Davydov (199(1). A comparison study of the rather dramatic impact of Davydov's
approach has been made by Morris (1995).

4. How Can Research Lead Practice in New Directions?

4.1. General Strategies: Embed Knowledge in Shared Artifacts

One way the insighis of disciplined inquiry find their way into practice is by
being embedded within artifacis--curricula, tools, and explicit pedagogics associ-
ated with thesejust as medical research leads to drugs, apparatus, and therapies.
The process of reification of knowledge in widely usable tools and representations
is a primary means for the distribution or that knowledge (Latour & Woolgar,
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1986; Pea, 1993). This is exactly the approach taken by the Dutch (Gravemeijer,
1992). It seems likely to me that such systemic approaches are likely to have the
greatest long term impact, partly due to the changing economics of R&D work
(Lesh & Lovitts, 1994), and partly duc to the dramatic increases in connectivity
afforded by electronic networks that will allow distributed collaborative efforts
involving many researchers working together at a distance (Hunter, 1993, Fall;
Hunter & Goldberg, 1994). Another traditional way not to be ignored is through
policies and vision statements such as the various NCTM standards statements,
especially the NCTM Algebra Document (in preparation), and MSEB vision state-
ments.

4.2. Changes in Perspectives on What Constitutes Algebra Research:
Switching the Duck for the Rabbit

The foreground/background switch that I have advocated for algebra's place
in the school mathematics curriculum needs to be matched with a corresponding
switch in the way we approach research in the development of algebraic reason-
ing. Much of the research will need to be based in the learning of the subject
matter that gives rise to the use of algebra. Not only does this imply that we need
to study thc processes of generalizing and notating that generality in basic arith-
metic and quantitative reasoning, but also in the context of other major subject
muck- strands (thc mathematics of space, change, data, and so on). For example,
in my own work, we arc examining how the mathematics of change, including the
basic ideas of calculus, can be the site for algebra learning in the latter elementary
and early middle school. This changes deeply the traditional prerequisite relation-
ship between algebra and calculus, and moves it closer to the historical relation-
ship, wherein they co-evolved (Kaput, 1994).

4.3. Methodological Changes: Testbeds for Longitudinal Study

I have already noted the need for larger studies coordinated with materials
development and teacher development. In addition, we need long-term studies
extending over four or more years, following both a cohort of students and a group
of teachers as they evolve under circumstances that differ in major ways from
today's practice. This calls for a testbed approach, wherein one or more sites
participate in material development, evaluation and research for an extended pe-
riod in an ecologically authentic context that involves practitioners throughout
(Hawkins, 1994). The process of dissemination may also take the form of such a
site becoming a specially supported resource on the World Wide Web that can act
to support teachers and graduate students at other sites, perhaps sharing clinical
data. Just as abrupt, late, isolated algebra may he a curricular strategy that de-
serves to bc abandoned, the same 'night be said of brief, narrow, and isolated labo-
ratory algebra research, especially as a primary strategy.
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ALGEBRA REFORM, RESEARCH, AND THE CLASSROOM: A
REACTION TO A RESEARCH BASE SUPPORTING

LONG TERM ALGEBRA REFORM

Gail Burrill, University of Wisconsin-Madison

The Astiects of Algebra

The five aspects of algebra, as generalizing, abstracting, and representing;
manipulation of formal objects; as a study of structures; as a language; as a study
of functions, relations and joint variation; as a means of controlling physical or
cybernetic events, described by Kaput in his paper seem to be consistent with the
organizing themes postulated in the draft version of the Algebra Document from
the National Council of Teachers of Mathematics (NCTM, in preparation). Both
documents begin from the premise that algebra has different faces and is inter-
preted very differently by different people. Thc NCTM (in preparation) Algebra
Document uses as exemplars four organizing themes: function, modeling, lan-
guage or representation, and structure. The themes in the NCTM document, which
can be almost directly mapped to Kaput's aspects, are not meant to be inclusive
but to suggest that there arc a variety of ways in which people construct a view of
algebra. An important point in the NCTM (in preparation) Algebra Document is
that no one theme in itself seems to be sufficient to give students a complete pic-
ture of what it means to know and be able to do algebra. A collection of themes
provides a teacher with multiple entry points into the ways children think about
algebra. It is interesting to note that from the perspective of modeling, the two
forms of a linear equation, y = a + bx and ax + by = c, seem to students to be
unrelated because the physical situations that generate each model are too differ-
ent. From an organizing theme of structure, however, it is easy to demonstrate
that the two arc equivalent equations. Whether you think of themes or aspects, the
question becomes, How can a curricular sequence be designed to incorporate
different perspectives in a way that will give students a coherent and useful under-
standing of algebra?

The NCTM (in preparation) Algebra Document postulates that thinking and
reasoning in algebra must be about something, and so suggests that the themes
build student understanding through activities embedded in contextual settings,
such as growth and change, data, and uncertainty; number, size and shape; or pat-
terns and regularity. These settings provide an opportunity for students to make
connections between algebra and other disciplines and to see how algebra helps
make sense of patterns in areas such as biology or economics or can be used to
describe relations between geometric figures. Kaput's intogration dimension might
be linked to this notion of setting.

The third dimension, pedagogy is, as Kaput indicates, critical in how students
come to perceive algebra, not as a set or magic tricks that can be used effectively
only by someone who has the "math gene," but rather as a discipline useful to
everyone, that has a logic and beauty of its own. Instruction should move toward
an active exploration of algebraic ideas and exploit technology as a vehicle to
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enable students to build an understanding of algebra and what it can do. Kaput's
caution that "it is possible to achieve surface forms of valued pedagogies while
failing entirely to engage students with significant mathematics" needs to be taken
seriously. Not all rich investigations are worth doing. Is it really useful to fit a
cubic to a piece of a curve generated by data from a CBL? Not all algebra can be
constructed through rich investigations; at some point, students do need to have
some facility with algebraic ideas (The question of which ideas and how much
facility is not at all clear, however.). It is also not the case that one form of delivery
should be the dominant form. While discourse, where ideas and interpretations
are shared, discussed, and dissected, is a vital part of understanding for most people,
real learning also depends on individual reflection and internalization.

Current Practice/Short Term Reform

Current practice has major implications for thinking about future directions.
The baseline described by Kaput, essentially confined to two courses, broken into
small categories of activities largely consisting of symbol manipulation and "story"
problems, however, has a long history in the United States. In the 1909 text, First
Course in Algebra, designed for a fourteen year old, the authors state in the pref-
ace, "A serious effort has been made to utilize the valuable suggestions in which
the widespread discussion of the teaching of algebra for the last ten years has been
fruitful....The material itself has been selected with the intention of affording the
student ample drill in the elementary tcchnic of algebra and a commcnsurate de-
velopment of his reasoning power....Especial care has been used in the selection of
the exercises in equations, the object being to have as great a variety as possible
and yet to give only equations whose roots can be verified with a reasonable amount
of labor" (Hawkcs, Luby & Touton, 1909, pp. iii-iv). They describe the presence
of frequent review exercises in factoring so students will "acquire in the shortzst
pcssible time a secure grasp of forms and methods and the careful blend of prob-
lem situations with technical work to avoid spending long periods of time on mere
technic" (Hawkes, Luby & Touton, 1909, pp. iv). Typical sets of exercises in-
clude: 36 distance-time-rate problems, 80 factoring problems, and a chaptcr re-
view with 66 prot lcms. There arc two essential differences between this book and
the pm reform texts of the 90s: The content and exercises have become divided
into two parts over thc years, Algebra I and Algebra II, and thc manipulation pro-
cesses arc based on axioms and rules. The historical notes arc also different and
quite interesting!

Technology possesses the power to change this at-least-one-hundred-year-old
picture and to do so in dramatic ways. Thc graphing calculator has already had a
major impact on the secondary mathematics curriculum, changing the focus of
instruction and expectations about what is important for students to know. Each
ycar, literally thousands of teachers attend calculator workshops where they learn
to use a calculator to teach algebra, trigonometry and precalculus. These calcula-
tors arc making the questions (solve, simplify, and factor) trivial which teachers
used to tcach students to answer from 1909 to 1995, and teachers arc not sure what
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new questions should take their place. In 1989 several of the chapters in Research
Issues in the Learning and Thaching af Algebra (Wagner & Kieran, 1989) raised
the issuc of the need for research on the impact of technology on the algebra cur-
riculum. Yet six years later there still seem to be very few studies available that can
begin to enlighten those in the classroom about thc directions they should be tak-
ing. Teachers are making changes, and text books are incorporating the changes.
The question is, Are these changes contributing to the algebraic (and mathemati-
cal) knowledge of students in ways that arc important? Is a coherent picture of
algebra the driving force? Some of the changes might be seen as driven by what is
possible or what seems to be motivating, without care given to what is important
in overall und,c_rstanding. The lag between research and curricular change is plac-
ing the mathematics community in a reactive position, rather than a proactive one.

Further, the development of technology promises to continue at an ever in-
creasing rate. Technology should make a difference; it can move students beyond
what is currently possible in school algebra and can do so in new ways. Yet, those
working on curriculum design must think deeply about a curriculum that capital-
izes on technology, but is not out of date by the time it is ready for print. They
must also take care that the emphasis on technology does not create a new morass
of symbols and procedures.

As Kaput indicates, algebra has already begun to change for a larr number of
schools and teachers. Many students now begin algebra in grade 8 or earlier. The
content of the early algebra courses varies from what used to be considered pre-
algebra to a traditional ninth grade course to a version of reform algebra. There are
currently many different "reform" movements underway, and some of these have
been in place long enough to begin to produce results (although what results are
desirable is not clear). Arc these current changes making a difference and what
effect will they have on thc long term reform efforts? As an example, some of
those who have embraced the graphing calculator have placed fanctions (explic-
itly defined) at the heart of algebra, and no longer pay much attcntion to equations
generated to provide an algebraic representation of a plane or an algebraic state-
ment of condition. In fact, there is a trend towards replacing traditional story
problems with new versions; out go upstream, downstream, work, money, integer,
and mixture problems, and in come the taxi cab, interest, and tossing a ball.

While there arc inherent problems with the implementation of algebra for all,
from poorly prepared students and enormous failure rates to inappropriate texts,
there are also some gains. For some cities, such as Milwaukee, that mandated
algebra for all, even though the failure rate is high, more students are passing
algebra than before the mandate when only selected student.s took the course.

Kaput's case study or change regarding a Presidential Award winner's use of
graphing calculators and the failure of this approach to produce students who un-
derstood function is an inappropriate one to use as evidence. Consider first that
change without understanding what is important will not succeed. Consider also,
the tenuous nature of what it means to understand function. Students have always
had difficulty understanding function, and teachers and texts have, probably un-
knowingly, contributed to the problem. "These student.s perceptions of what con-
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stitutes a function could be dismissed as just so many misconceptions, that is,
errors in their conceptualizations....Indeed, all of these misconceptions are due to
an overgeneralization of the initial examples used in the introduction of the func-
tion concept . These overgencralizations, which occur naturally, become hurdles
in the construction of the more global notion of function" (Herscovics, 1989, p.
80, emphasis added). Malik (1980) in a historical review traces the definition of
function since Euler and indicates that each new definition of function was the
subject of heated debate among the community (and most teachers probably do
not know there arc different definitions). Hcrscovics conclusion is that "learner's
difficulties with functions are reflections of the history of the evolution of the
concept." The bottom line is, a) did the teacher have sufficient knowledge and
understanding of function and how to think about it (Many current secondary teach-
ers were taught the set theoretic definition of function, onc derided by Freudenthal
(1973) and others), and b) what has research provided to help the teacher under-
stand the cognitive difficulties students face in trying to understand the concept?
New tools that do the same thing will not solve old problems. Our challenge is to
determine how to make these new tools do new things that will solve these prob-
lems and, as part of that process, to provide a channel for using the knowledge
gained from research to inform teaching.

Phase Two: Intermediate Reform/Backlash

The major curriculum projects arc suggesting changes in the way algebra is
construed as a school subject and in the way it is presented to students. Informa-
tion about the success of these projects in building students' understanding of al-
gebra so far seems to be primarily anecdotal, not surprising since, at the middle
school level, thc materials arc just being completed, and fcw students have experi-
enced a complete program. The high school materials arc still in the developmen-
tal stage. Although examples of student work from the University of Wisconsin
middle school project, Mathematics in Context, do support the success of the prin-
ciple of "progressive formalization" described by van Recuwijk (in preparation),
long term research is needed.

As reform moves into this second phase, thc problems arc exacerbated by the
issues raised above regarding the status quo. The change will not come easily and,
in many places, those who advocate reform arc already experiencing severe criti-
cisin. The tradition of algebra is firmly ensconced in the minds of everyone who
had any experience, whether successful or unsuccessful, with algebra. Many teach-
ers themselves arc reluctant to abandon what thcy have done "successfully" for
years. They "know" what their student.s shoukl learn in an algebra course. Those
who arc willing to change arc not sure to what they should change nor how to
integrate this with the rest of the mathematics thcy are teaching. Algebra has been
a filter, and parents are convinced that their children should learn what they them-
selves learned (or didn't learn) in order to make it past thc filter. They perceive
that changes in algebra will change the rules for success, and they arc not about to
do this lightly. The results of a survey for the NCTM (in preparation) Algebra
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Document indicated a surprising number of educators who do not think everyone
can learn algebra. Many mathematicians and scientists are concerned that a new
algebra, driven in many cases by technology, is essentially providing a watered
down curriculum that will produce students with little if any mathematical knowl-
edge. Finally, many parents do not want thcir children to be part of an "experi-
ment." The foundation for algebra reform should have some roots in research, and
an analysis of such research, in language accessible to teachers and parents, should
be used to provide support for the direction of reform.

Phase Three/Long Term Reform

The NCTM (in preparation) Algebra Document is based on three assump-
tions: A rcconceptualization of algebra is needed; all students can learn algebra
and should have the opportunity to do so; and algebra should be taught throughout
the K-12 curriculum. The long term reform advocated by Kaput implicitly builds
from these same three assumptions. Success depends on major shifts by research-
ers, mathematicians, mathematics educators, and teachers working through the
issues together. Researchers (and mathematicians) focus on whether the value of
the quadratic formula lies in its ability to complete the analysis of quadratics (Thorpe,
1989) or because its development depends on a very important mathematical tool,
completing the square. Teachers, who once taught students just to use the formula,
have to make a major shiftwhat does it mean to complete the analysis of a qua-
dratic; what does a mathematical tool such as completing the square buy for you?
Such shifts will help teachers and students focus on the algebraic concepts that are
important, not the output of the algorithm. Thc background and preservice train-
ing of K-12 teachers is currently inadequate for such thinking. (Ask any ninth
grade algebra teacher to suggest a coherent sequence for the topics in algebra.)
Mathematicians need to recognize that the community will be well served if some
of the traditional K-12 content is replaced by concepts from discrete topics, from
statistics or linear algebra.

Some of thc shifts brought by the short and intermediate phase of reform will
have a major impact on long tcrm efforts. In some cases manipulatives have be-
gun a life of their own; elementary teachers are reluctant to even think about teach-
ing "algebra;" some new curricula carry reform directions to an extreme (no fac-
toring, no practice); and "tracking" issues arc critical. In every case, research can
help educators make decisions. Kaput cites many examples of current research
efforts. Unfortunately, the channels for communicating the results of that research
to those in the classroom and for promoting dialogue among the mathematics com-
munity are not in place. Our task is to establish these channels as well as investi-
gate algebraic teaching and learning if we arc to have effective long term reform.
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A RESPONSE TO A RESEARCH BASE SUPPORTING LONG-
TERM ALGEBRA REFORM

Elizabeth Phillips, Michigan State University

My reactions to Kaput's paper fall into three categories: comments on the
Dimensions of algebra reform, a brief discussion of the algebra reform from the
view point of a curriculum developer, and finally, some concerns about the three
stages of reform.

Some Musings on the Dimensions of Algebra Reform

Kaput offers three dimensions in which to measure change in algebra reform:
Breadth, Integration, and Pedagogy. In the discussion of Breadth he describes five
aspects of algebra. He claims that the first two aspects, Algebra as Generalizing
and Formalizing Patterns & Constraints, especially, but not exclusively Algebra
as Generalized Arithmetic Reasoning and Algebra as Generalized Quantitative
Reasoning, (1), and Algebra as Syntactically-Guided Manipulation of Formal-
isms, (2); give rise to all the othersAlgebra as the Study of Structures Abstracted
from Computations and Relations, (3); Algebra as the Study of Functions, Rela-
tions, and Joint Variation, (4); Algebra as a Cluster of Modeling Languages and
Phenomena-Cor.trolling Languages, (5).

There has yen a great deal of effort and time devoted to categorizing, de-
scribing, or defining school algebra. Kaput's five aspects of algebra are yet an-
other, but not dissimilar, cut on school algebra. Most recently, the NCTM Algebra
Working Group (NCTM, in prparation) wrestled with these same questions of school
algebra and settled on four themes, Functions and Relations, Modeling, Structure ,
and Language and Representations, around which to organize discussions of "al-
gebra for all" in the K-I2 curriculum.

Recent discussions of reform in school algebra have tended to broaden the
view of school algebra, which has caused some lively reactions. Some people have
argued that function, which is common to both Kaput's and the NCTM Algebra
Working Group's descriptions of school algebra, is not algebra, but analysis. Many
view school algebra as being closely related to abstract algebra at the college level.
For example, at the Algebra Initiative Conference (Lacampagne, Blair & Kaput,
1995) over 60 mathematics educators and mathematicians mct for three days to
discuss algebra in the K-16 curriculum. Most of the research mathematicians present
were algcbraists. If school algebril is to be categorized as a study of functions, thcn
shouldn't research analysts be involved with discussions of school algebra? The
study of functions was usually allocated to a course called precalculus or analy-
sisa course for mathematics and science majors. Functions is a rcccnt addition
to the school algebra curriculum, in part due to the accessibility and implementa-
tion of graphing utilities into the curriculum.

Some people have also argued that modeling cuts across all areas of math-
ematics as does structure. Thc NCTM Working Group also proposed that the orga-
nizing themes could bc developed by studying important ideas in change and growth
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(analysis), size and shape (geometry), uncertainty (probability), number, data, etc.
This led one reviewer to question, "How does algebra differ from the other content
areas in mathematics?"

Is there a danger that school algebra is becoming too broad? For whom are
these categories helpful? It is-important for teachers, curriculum developers and
mathematics educators to have a working definition of algebraeven if it is very
broad and encompassing. Teachers need to have a sense of the "big picture" of
algebra to help them make decisions about the curriculum and student's under-
standings. Curriculum developers need a vision of algebra to develop a coherent
and balanced curriculum. Researchers need a framework around which to orga-
nize their research. What view does the general public have of algebra? According
to Wheeler (1991, as reported in Romberg & Spence, 1995), "proponents of the
current reform movement argue for a particular perspective that is different from
that held by diverse individuals, including the perspective of many (if not most)
working mathematicians." Romberg & Spence (1995) claim that the current per-
spectives about algebra from an absolutist perspective are about mathematics in
general. Does it make a difference if we all select different themes, strands, or
definitions to guide our thinking? Do all roads lead to Rome?

Is there a simpler answer that could help guide these discussions and reform
efforts? Romberg & Spence (1995) claims, "For student.s, algebra should be a way
to express real-world phenomena in mathematical language. Their experience of
algebra should include many and varied problems from the real world so they will
gain understanding of the power and usefulness of algebraic notations and con-
ventions." Romberg & Spence's (1995) claims together with Kaput's strands 1, 2,
and 5 suggest that language and representation for expressing generalization and
formalization of mathematical idcas could be a main organizing theme or strand of
algebra. Kaput devotes a large part of his paper discussing "language and repre-
sentations" and "generalizations and representations."

If language and representations arc the organizing theme of school algebra,
then the focus of algebra reform shifts to "why one needs a mathematical lan-
guage," "which language," and "how one learns the language." This theme 1.,ould
allow a rich and dynamic language (symbols, graphs, tables, pictures, computer
languages, simulations, etc.) to develop as students study engaging problems. In
turn, the problems would lead to the development of powerful reasoning strategics
and understanding of important mathematical ideas in arithmetic, analysis, geom-
eu-y, statistics, probability, or even abstract algebra. The language becomes thc
means to represent the ideas and reasoningor the means to represent the "gener-
alizations and formalintions." With this categorization of algebra, functions and
structure arc still importantperhaps, more so. The important ideas of functions
and structure can emerge on thcir own. Mathematics education researchers whose
interests arc the development of functions or structure would continue their re-
search undcr the umbrella of analysis or abstract algebra (or just functions and
structure).

It is the development of a mathematical language that is both brief and general
to encode mathematical ideas and reasoning that has been a cornerstone in the
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development of mathematics. However, this suggestion of school algebra as a lan-
guage for generalizing and formalizing mathematical ideas is not new and it too
will cause controversypartly because this has been the perceived dominant theme
of traditional school algebra. It may be too close to a "drill and kill" curriculum. If
"language and representations" and "generalizations and formalizations" are the
dominant themes of school algebra, the emphasis should not be on a single course
devoted to practicing isolated unrelated skills. Instead, language should be devel-
oped along with the mathematical ideas of function, geometry, data, and so on.

While all of Kaput's strands, as well as those offered by the NC FM Algebra
Working Group and others, arc all important ideas in mathematics, are they school
algebra? Arc they too broad? Is there a broad view for mathematics educators
interested in algebra and another for the general public? The suggestion of "lan-
guage and representation" and "generalizations and formalizations" as organizing
strands for school algebra is offered as a middle ground for the various interpreta-
tions of algebra.

Perspectives of Algebra and Algebra Reform from a Curriculum
Developer

This section contains a bricf description of a curriculum project and the impli-
cations of this project for research in school algebra.

Description of CMP

The Connected Mathematics Project (CMP) is a middle school curriculum
project funded by the National Science Foundation (Lappan, et al., 1995) that is
being developed at Michigan State University (W. Fitzgerald, G. Lappan, and E.
Phillips) together in conjunction with thc University of Maryland (J. Fey) and the
University of North Carolina (S. Friel). The developers of the CMP curriculum
believe that observations of patterns and relationships lie at the heart of acquiring
deep understanding in mathematics. Therefore, thc CMP curriculum is organized
around interesting problem settingsreal situations, whimsical situations, or in-
teresting mathen.atical situations. Students solve problems and in so doing they
observe patterns, and relationships; they conjecture, test, discuss, verbalize, and
generalize th(ne patterns and relationships. The mathematical strands of numbcr,
measurement, geometry, probability and statistics, and algebra are developed across
the middle grades.

Algebra in the CMP Curriculum

If mathematical concepts arc developed from a problem situation or context,
then the variables in the situation and how they arc related become ideas that per-
meate all thc units. Thus "generalizing and representing" these relationships is
part of all thc CMP units, including those units designated as algebra. For ex-
ample, in an early two-dimensional measurement unit a sequence of activities leads
to a generalization of a strategy for finding the area of a circle. One of problems in
thc sequence has students investigating which measures arc most closely related to



the price change in pizzascircumference or arca or radius or diameter. This prob-
lem seeks a relationship between the measures of a circle and the cost of a pizza.
Eventually the sequence of activities ends in a generalization about the area of a
circle given its radius. In a geometry unit on two dimensional shapes, students
investigate the relationship between the angle measure (or the number of sides) on
the shape of a plane figure. In the data units students decide which variables and
which relationships to investigate, and how to represent these relations. When
mathematics flows from the study of problems or contexts, then variables and the
manner in which they are related, naturally arise. Furthermore, in such situations
there may be more than two variables, and students must decide which variables to
study and then discuss possible effects of the other variables.

While variables and patterns are part of each unit, they come to the fore-
ground in a unit called Variables and Patterns. The focus is on looking at a variety
of situations and more formal ways to represent these situations. Pictures, words,
tables and graphs together with some algebraic symbolic representations are stud-
ied. Moving freely among thc representations takes time to develop and hence is
also an important part of all the units. Three othcr units, Moving Straight Ahead
(linear functions), Growing, Growing... (exponential functions), and Launching
Rockets and Leaping Fivgs (quadratic functions), investigate patterns of regular-
ity among the rate of change between the variables. It is the concept of "rate of
change" that helps students identify, represent and reason about linear, exponen-
tial, or quadratic functions. Students do somc work with symbols, which are tem-
porally free of context, for the purpose of investigating the general characteristics
of a specific function. While symbols are used to represent these situations, along
with othcr representations, symbol manipulation is not the focus of the units
modeling and functions are the foci. Another unit, Say it With Symbols,looks more
closely at ways to represent problem situations, symbolicallyparticularly those
that give rise to different, but equivalent expressions while another unit, Think-
ing with Mathematical Models, looks more closely at modeling.

Research in the Connected Mathematics Project

Of utmost concern to the CMP curriculum developers arc what students will
be able to do and know at the end of three years. The research component of CMP
consists of several stages: videotapes, student work, interviews, teacher and stu-
dent surveys, and observations have been conducted throughout the project, pri-
marily to guide the development of thc teacher and student materials. To assess
students' understanding and reasoning, pretesting and posttesting of both CMP
and non-CMP 6th, 7th, and 8th grade classes arc currently going on. The tests
consist of a pretest and posuest using both the Iowa Test of Basic Skills and a test
designed by an outside evaluator that reflects the recommendations of the NCTM
Standards and three authentic assessment tasks from the Balanced Assessment
Project (Schoenfeld 1995) administered at various times during thc year. The Iowa
Test of Basic Skills was strongly promoted by the CMP Board. They felt that the
public, regardless of any other evidence, needed to be convinced that studcnts
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participating in the program would not do worse on tests of basic skills. Other-
wise, these new curriculums may vanish on the vine (sec further comments under
the following section on the Three Stages of Reform). Since the set of units desig-
nated for 7th grade in CMP has a strong proportional reasoning theme running
throughout thc units, the principal investigators arc also conducting research on
students proportional reasoning abilities at the cnd of 7th grade.

Thc NCTM Standards based test does not give a complete picture of studcnts'
knowledge or reasoning. It does begin to paint a picture of students' reasoning and
problem solving abilities as well as their ability to make connections and commu-
nicate. The research described above falls into Kaput's short or intermediate stages
of reform. During the long-tcrm phase of reform some of the questions that need to
be addressed arc:

Does the CMP curriculum give students more power to solve
morecomplex problems?

Is it possible to build a complete mathematics program based on ex-
plorations of interesting problems? What are the strengths and weak-
nesses? What misconceptions might arise from these curriculum re-
form efforts?

How long must students be engaged with an important mathematical
idea so that the student carries understanding of the idea into the ncxt
grade or level? How many years must a student bc involved with a
"reformed" classroom to reap the benefits? What arc the implica-
tions for students who go from a reform based curriculum at one
level to a standard curriculum at the next level?

What transitions, and over what period of time, do students need to
make connections? What kind of transfer activities do students need
to move from a problem based setting to a symbolic based setting or
to otherrepresentational schemes?

What algebraic reasoning do students develop? What knowledge of
algebra (or any other area of mathematics) do they carry over into
high school? Does the CMP curriculum provide deeper insights into
algebraic forms?

Will the possible loss of personal manipulative skills be a longer
term stumbling block to mathematics development? (This question
is perhaps more important as students move to the high school.) How
much symbolic skill (arithmetic and algebraic) is necessary for stu-
dents to model a situation or to manipulate an expression to reveal
new in formadon about a situation? (A similar question could be asked
about other representational schemes.)

How much help do teachers need to implement a ncw curriculum
that requires a di lThrent view of mathematics and a different pcda-
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gogy? What kind of support and at what levels do teachers need this
support? What mathematics do teachers learn by teaching these new
curricula?

What kind of linkages among teaching, learning, and assessment do
these curriculum projects provide?

The CMP curriculum, as well as other curriculum projects, are based on the
best available research from mathematics education and the cognitive sciences.
However, none of the research to date has been conducted in settings where stu-
dents have been engaged in significant mathematics in classrooms and have devel-
oped their understandings and reasonings as a community of scholars over several
years. These new rich curriculum projects provide a unique opportunity to carry
on significant research over a long period of time that has not been available since
the new mathresearch on teaching, learning, and assessment. Kaput suggests
that the long-term research efforts should begin in the elementary grades. There is
enormous potential for developing students' mathematical power with these new
curriculum projects in Grades 6-12. Algebra reform should begin on several fronts.

Comments on Kaput's Three Stages of Reform

Kaput's discussion of the three stages of reform, on the surface, appear rea-
sonable. It makes sense to tinker with short-term reformthese efforts could also
inform the long-term efforts at reform. Much of the reform in algebra that has been
going on since the release of the NCTM Standards has been short-term reform.
Most of these reform efforts have been "add ons," such as the use of graphing
calculators, computer software, or manipulatives, to thc existing curriculum.

There is a danger to these short-term efforts. First, most of these efforts ignore
the weaknesses and deficiencies of the present curriculum. There is at the same
time a tendency to be a bit caviler about the benefits of graphing software pack-
ages. To usc graphing software utility effectively requires a deeper understanding
of functions and relations than is currently in the curriculum. Many students do
not understand functions and consequently mimic the procedures needed to use a
graphing calculator without understanding what they arc doing. There is a danger
that wc could be replacing abstract symbol manipulation with equally abstract
algorithmic techniques on how to use thc graphing calculator (or computer). Fur-
thermore, some people interpret statements like, "with graphing calculators and
symbolic algebras there is little need for work with symbol manipulations" as
meaning no need for skill development. Putting graphing calculators into thc hands
of students requires very careful reorganization and re-conceptualization of the
algebra curriculum and research to support these long-term efforts. How effective
these technologies arc will have to wait for Kaput's long-term stage of reform.

However, short-term efforts may torpedo future reform efforts. For example,
the implementation of graphing calculators into the college algebra courses at onc
Big Ten university was perceived as weakening the algebraic skills of students
going into the calculus class and has since been forbidden at this university. At the
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heart of this conflict about algebra reform is the role of symbol manipulation. The
general public and many mathematicians perceive the mastery of symbolic ma-
nipulations as an important part to learning algebra. Students need to model situa-
tions using a variety of representations, including algebraic symbols. They need to
show that different expressions for the samc situation are equivalent. Students
need to transform equations or expressions into equivalent forms that can be en-
tered on a computer or graphing calculator. Further reasoning with equivalent sym-
bolic forms can very often reveal information that is not apparent in graphs or
tables. Mindless drill and practice has not worked. But what is the role of symbol
manipulation? How much understanding and skill with symbolic transformations
or manipulations are needed to reason effectively with symbols? These questions
need careful research to convince the general public about the needs and benefits
of reform in algebra.

K-12 teachers are kcy players in thc algebra reform movement and what they
do or do not do is closely tied to public and university approval. Any efforts at
reform must help teachers understand thc proposed changes. If teachers are con-
vinced that such efforts will lead to greater understanding and reasoning for their
students, they will support the reform activities. However, even these teachers ask
for help to convince administrators and parents that these changes will not be harm-
fuland that these changes will help.

Without some fundamental changes that Kaput describes in Breadth. Integra-
tion, and Pedagogy, these short-term reform cfforts will have little effect and in
fact may offer a real roadblock to the needed long-term reform. The general public
also has a short attention spanthere is a tendency in this country for quick solu-
tions. Will they have the patience to withstand thc efforts needed to implement
long-term rcform? The backlash has already begun. The Michigan State Board of
Education is recommending that the Standards as described in thcir State Frame-
works not be mandatory. In addition, the Suite Board inserted stronger standards
on skills in many of the subject areas, delete4 some that appeared to imply value
judgment, and only narrowly voted down a proposal to makc the teaching of the
creation science mandatory for all students. Similar backlashes are occurring in
other states. The strengths of short-term reform efforts must bc advertised with the
promise to look at both the gains and losses of such efforts.

So my questions arc: (1) Do the relative benefits of short-term reform out
weigh the morc dangerous backlash that occurs whcn the public perceives these
efforts as detrimental to student learning (even whcn there has been no real decline
of skills)? (2) If the short-term reform is seen as a failure, what does this say about
the intermediate and long-term refonn? (3) Will we have time to carry out the
reform? (4) What can we as a community of mathematics educators do to provide
the time and opportunity for reform to progress?
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BRIDGING MANIPULATIVE-EXPLORATORY PLAY AND THE
DEVELOPMENT OF MATHEMATICAL CONCEPTS IN A

TECHNOLOGY-RICH ENVIRONMENT

Sergei Abramovich, University of Georgia

The paper shows that the study of mathematics can be organized as a complex learning
enterprise integrating manipulative-exploratory play into a newer software tool environ-
ment a dynamic geometry, a spreadsheet, and a relation grapher. and it reflects work
done in a lab setting with preservice and inservice teachers enrolled in contemporary gen-
eral mathematics and problem solving courses. The psychological aspects of learning math-
ematical concepts through integrating off and on computer activities and possible implica-
tions of the approach for mathematics teacher education are highlighted from Vygotskian
perspective.

The role of play in learning abstract structures has received much attention in
educational psychology research. Particularly, Dienes (1964) studied children's
learning of mathematical concepts from explriences with concrete materials un-
der the assumption that play and the higher cognitive activities are closely con-
nected. With the advent of advanced technology, it has become considered helpful
to use suitably designed computer-based simulations of concrete materials in the
learning of mathematics (Thompson, 1992; Kaput, 1994; Steffe & Wiegel, 1994).
These uses of a computer, however, involve topics not beyond the elementary and
middle levels. The appearance of newer software tools with their tremendous po-
tential for promoting the spirit of exploration and discovery in mathematics class-
rooms makes it possible to extend the use of concrete materials to more advanced
levels L.f mathematics and to consider play associated with both off and on com-
puter activities. Note we consider the notion of play in the spirit of Hoy les and
Noss (1992); that is, student engagement into a play within a learning environment
implies exploration, experimentation, wondcring about, and enjoyment.

The paper suggests that integrating manipulative-exploratory play into a mul-
tiple-application environment enhances the study of advanced mathematical con-
cepts and highlights three essential functions of a computer as a learning medium.
First, the variety of available colors and shapes places the choice of manipulatives
undcr the control of learners, and this may strengthen their constructive activity
and smooth possible differences in the perception and conceptualization of color
and shape (Ramer, 1991). Second, the computer environment takes into account
indistinct boundaries of manipulative play which may quite imperceptibly move
over to an exploration (Dienes, 1964). Manipulative-exploratory play is, in fact, a
search for regularities, something that may become an object of manipulation at a
higher level. This suggests that the third function of a computer in this setting is to
provide the learner with an opportunity of instant transfer from screen images to
computing activities and back; that is, the use of appropriate applications inte-
grated into the medium allows the generating of numerical and/or diagrammatic
evidence as abstractions from a number of simultaneously scrutinized concrete
situations presented by these images. Regularities can thcn be studied again through
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play at a higher level of cognitive activity. In addition to these functions, the ap-
proach considers learning to be deeply anchored in interactive instruction and
emphasizes the role of a teach,:r in developing students' mathematics knowledge.
This role assumes a teacher to be a partner in advancement, one who links small-
group explorations and whole class discussion, and mediates the spirit of math-
ematics learning through a mutually enriching tachei-student dialogue. An equal
partnership in such dialogue contributes to the learning of being a reciprocal activ-
ity (Confrey, 1995), something that affects both student curiosity and teacher in-
telligence.

Environment for approaching Fibonacci numbers

The realistic mathematics education argues for instruction to be a process that
emphasizes the importance "to recognize a mathematical concept in, or to extract
it from, a given concrete situation" (Ahl fors et al., 1962, p.190). A relevant context
for accommodating such instructional philosophy is Fibonacci numbers. To ap-
proach the concept we suggest to students the followipg play activities: coloring
buildings of different stories, making offspring in the rabbit problem, cutting a
square and rearranging thc parts in the so-called paradox problem. More specifi-
cally, students are engaged in the following phenomenological explorations.

Exploration 1. Buildings of different numbers of stories are given
and one may color them with a fixed color in such a way that no
consecutive stories are colored with it. How many different ways of
coloring one, two, three, four, etc.-storied buildings arc possible?

Exploration 2. A pair of rabbits is placed in a walled enclosure. Find
out how many offspring this pair will produce in thc course of a year
if each pair of rabbits gives birth to a ncw pair each month starting
from the second month of its life.

Exploration 3. When you cut a figure and reorder the parts, the shape
may change but, the area can not. Cons,der Figure 1: the square is
cut into two congruent triangles and two congruent trapezoids. Can
we chose x and y so that the square can be transformed into rect-
angle as shown?

Within activity, the same sequence of numbers, known as the Fibonacci
sequence, occurs as a result of students' extracting appropriate concepts from
manipulative-exploratory play. Once Fibonacci numbcrs have come into view, they
can be explored through spreadsheet mocleling; that is, numerical evidence can be
used for discovering a number of situations of similar type and extracting an
abstraction from these. Moreover, numerical evidence provides a gateway for
developing induction proof of the abstraction through visualization with its
subsequent symbolization as an important point in thc process of learning
mathematical concepts (Abramovich, 1995). Thus, the didactical emphasis of the
activities is both on conjecturing and developing formal proof rather than on

13/
112



exploring computer-generated patterns "at the expense of discovering their
underlying relationships" (Noss, 1994, p.9). Yet the environment accommodates
learners of different zones of proximal development allowing for the diversity in
the pace of activities, in the consuming of teacher-mediated assistance, and in the
depth of exploration. Finally, when the mystery of the paradox problem is resolved,
the use of a relation grapher enables students to make sense of the concept of the
golden ratio. Note that geometric aspects of the paradox problem can be explored
both in a traditional setting (paper grid and scissors) and in that of software setting.
Comparing off and on computer activities in resolving the problem leads to the
following important observation: when manipulating parts of a square within off-
computer activities a student uses geometric transformations such as rotation,
reflection, and translation almost automatically or spontaneously, yet these
capacities lack conscious awareness. Though the student does act consciously in
performing transformation, his or her attention is not directed toward the possessing
of geor..etric skill, and its nonvolitional nature is shaped by the structure of the
particular situation. On the other hand, the use of a computer allows for the learning
of conscious awareness of the same operations while operating software. Therefore
one can use this example in order to discriminate an instructional use of
manipulatives associated with on and off-computer activities. This distinction is
constructed on the lines of Vygotsky (1987) who, using language acquisition as a
paradigm case, argued that the role of school instruction in written speech and
grammar is to make a child learn "conscious awareness of what he does ... [that is,
the child] learns to operate on the foundation of his capacities in a volitional manner"
(p. 206). In much the same way, learning to operate dynamic geometry software
like GSP leads tO the mastery of school geometry and plays an important role in
this process.

Figure 1. The paradox problem.
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C(4,3)=C(3,3)+C(3,2)

Figure 2. Recursive strategy.

Environment for the study of combinator!cs

The study of combinatorics can bc nicely orchestrated through integrating
manipulative-exploratory play and computing activities. For example, consider
the following problem: In how many ways can three suits be selected from four
different suits? Combinatorial reasoning can be better acquired by clearing away
the situation through the use of manipulatives. As one in-service teacher noted: "I
feel manipulatives are probably one of the best ideas I have ever seen for showing
C(n,r) combinations of n things taken r at a timc. This will be very useful in
my upcoming lecture on combinations."

Indeed, in the first stage manipulatives serve as a means for solving the count-
ing task so that abstraction from a number of similar arrangements of manipulatives
occur in the form of recursive definition of combinations. In carrying out this task,
we first discovered students' involuntary behavior in creating the combinations,
something that seems to bring a chaos into the approach as the number of objects
increases. Yct, a spontaneous strategy is not a useless experience, but on the con-
trary, it allows students to reach the threshold in the development of mathematical
thinking beyond which conscious awareness of recursive strategy becomes pos-
sible. Indeed, when asked to be systematic, students often apply recursive mason-
ing: when hearts are not in use at all, three remaining suits can be selected in
C(3,3) ways; when the heart is in use, two other counterparts can be selected in
C(3,2) ways (Figure 2). This strategy possibly lacks conscious awareness of recur-
sive thinking, though, in fact, this is thc case of recursion. In the words of Vygotsky
"consciousness and control appear only at a late stage in.the development of a
function, after it has been used and practiced unconsciously and spontaneously. In
order to subject a function to intellectual control, we must first possess it" (cited in
Bruner, 1985, p. 24). The teacher-mediated link between spontaneous and pur-
poseful problem solving strategies thus becomes crucial for 'good learning,' for it
is the link of the zone of actual and proximal development of the learners.
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The next step in the study of combinati.ons involves setting up on a spread-
sheet boundary conditions for combinations obtained through manipulative-ex-
ploratory play and modeling Ulem using a recursive nature of software. It is worth
noting that the language of communication with the software might be that of
pointing to cells (a kind of the substitution of speech for concrete action) rather
than solely formula-based, and this allows students to shift the onus of both sym-
bolization and generalization onto a spreadsheet. In such a way, the software serves
as a support system that helps learners to make a non-algebraic leap from empiri-
cal data linked by an intuitive guess to the numerical projection of its generaliza-
tion (modeling data). Once a large pool of combinations come into view the activi-
ties focus on making connections among combinations and testing these connec-
tions in terms of manipulatives. In other words, the activities deal with creating
visual proofs of combinatorial propositions. One may note, for example, that
C(4,3)=C(4,1), or C(4,3)=C(3,3)+C(2,2)+C(2,1) and then justify these findings'
using manipulatives (visual proofs). In doing so, one is engaged into a play on a
higher level of cognitive activity using, in fact, thc same concrete embodiments
that allowed for thc reaching of this level. Transferring from a special case of
identities involving numbers with combinatorial meaning to their general form
results in students involvement in the development of inductive proofs of the iden-
tities, mathematical activity stimulated and guided by computer-generated numerical
evidence.

Note that although, as observation shows, the task to discover Fibonacci num-
bers among combinations (both through exploring numerical patterns on a spread-
sheet and imparting combinatorial meaning to the coloring task) proves to be a
challenge for most of the students, the principle of "raising the ante" of the task
(Bruner, 1985) allows for maintaining students' interest in developing mathemati-
cal concepts and for demonstration of the endless mathematical explorations through
the intertwining of different learning strands.

Assessment through reciprocal teaching

The environment described in this paper may have important implications for
an assessment practice that incorporates reciprocal teaching (Palincsar & Brown,
1984). We applied this procedure for final sessions by splitting students enrolled
in a problem solving class into equal groups, each of which was assigned to create
a task for an associate group. The instructional goal was to demonstrate how the
environment allows for students' affluent and seemingly endless performance on
a regular task and encourages the development of mathematical ideas that are far
beyond the task's original design. The sessions have shown that all students may
become motivated and challenged by learning mathematics, provided that a class-
room environment is conducive to students' pursuing avenues of personal interest
and attaining ownership of concepts discovered. We conclude the paper with a
hope that computer-enhanced reciprocal teaching embodies N.C.T.M.'s (1995)
vision of an assessment as "a dynamic process that informs teachers...and supports
each student's continuirg growth in mathematical power" (p.6).
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EVIDENCE AND PROOF: EXPLAINING VECTOR RELATIONSHIPS

Helen M. Doerr, Syracuse University

This paper addresses a central issue in secondary school geometry, namely the role of proof.
In an integrated mathematics and science curriculum, the role of proof as a process of con-
jecturing, explaining and justifying within a small group setting is analyzed. Particular
attention is given to the students' use of empirical evidence and algebraic representations.

Thc role of proof in high school mathematics continues to be a topic of debate
among educators. Such debate is frequently centered on the development of for-
mal axiomatic systems in the context of teaching and learning geometry. Recent
work with alternatives to axiomatic approaches to geometry has lcd to research on
students' learning with computer-based construction programs such as the Geo-
metric Supposer and thc Geometer's Sketchpad. These environments have been
shown to be effective in supporting students' exploration of geometry and in the
making of conjectures and explaining and justifying their ideas (Chaim, 1993).
However, many of these studies do not include pencil and paper construction,
mechanical devices, or physical experimentation, but rather begin with the use and
modification of representations in the computational medium. In this study, we
examine a process of conjecturing, explaining, and justifying that begins with physi-
cal experimentation and then uses a multi-representational analysis tool with stu-
dent-generated diagrams to support the students' development of a convincing
argument about the relationships among multiple force vectors acting on an object
at rest. This study grounds the explanatory role for proof, suggested by Hanna
(1990), in a physical experiment with forces.

Description of Study

This paper will address the development of a convincing argument by one
small group of students for the relationships among the forccs acting on an.object
at rest on an inclined plane. This study was part of a larger research project on an
integrated modeling approach for building student understanding of the concepts
of force and motion and enhancing problem-solving skills. In this larger study, we
examined a modeling process which integrated three components: the action of
building a model from physical phenomena, the use of simulation and multiple
representations, and the analysis, refinement and validation of potential solutions.
In this paper, we present an analysis of the development of a geometric argument
for vector relationships, which includes the formation of multiple conjectures, quali-
tative reasoning about those conjectures, and the refinement and validation of the
conjectures.

Data Sources and Analysis

Each class session of this unit was videotaped, and during small group work,
the focus group of this study was videotaped. Written work and computer work
done by thc group were made available to the researcher for analysis. Extensive
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field notes were taken by the researcher during the class sessions The videotapes
of class sessions were reviewed and transcribed for more detailed analysis.

Description of the Curricular Activities

The unit began with a simple physical experiment: an object was held sus-
pended just above an inclined plane so that the plane served as a reference frame
for the changing angle of inclination (see Figure I). Using two spring scales, some
rope and an object of known weight, the force parallel to the plane and the force
perpendicular to the plane were measured for various settings of the angle theta
between zero and 90 degrees. The teachers then posed a very open-ended inquiry
to the class: how do these forces relate to the weight of the object, the angle of
inclination, and/or to each other? In an earlier unit, the students had established
that a force acting at angle can be thought of as having a vertical and a horizontal
component and that these components are related trigonometrically.

force

parallel

Figure 1 . Forces Acting Along an Incline

The students were now faced with the problem of developing one or more conjec-
tures about the relationships between and among the parallel and perpendicular
forces, the weight of the object, and the angle of inclination of the plane. Thcn, in
light of these conjectures and the evidence provided by the experimental data for
the range of cases between zero and 90 degrees, the students were asked to con-
vince themselves of the validity of one or more of these conjectures.

Results

The focus group of this study began by entering the experimental data into a
Function Probe table (see Figure 2). From the table window, Al yc ia observed that
the forces do not add up to a constant and that the forces change at the same rate.
She appeared to be observing the symmetry of the covariation of the data for the
parallel and perpendicular forces. Thc students quickly decided to graph the data,
placing angle on the x-axis and forces on the y-axis. After graphing the first rela-
tionship, Paul observed that the second is symmetrical to the first; Alycia and
Jcnny confirmed thc equality at 45 degrees. After these preliminary observations,
they identified that their ui,,k was to find a relationship among the variables. At
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Figure 2. Parallel and Perpendicular Forces along an Inclined Plan

this point, they had in front of them, in the graph window, a relationship between
the angle of inclination, and the force perpendicular and the force parallel. But
nonetheless, for the students, it did not answer the question of what is the relation-
ship? The inquiry which follows suggests that the students are looking for an
explanation as to why this relationship holds. Paul suggested that they leave the
graph window and return to the table, but then Jenny directed the group to the
geometry of the situation.

Figure 3. Paul's Force Diagram

From thcir drawings (sec Figure 3), thcy began to clarify the meaning of the
force data that they had collected. They began to analyze the role of the vertical
and horizontal components of the forces. Thcy continued to explore the symmctry
of the geometry: they noted the equality of the forces at 45 degrees, that the forces
arc opposite at 30 and 60 degrees, and that there arc complementary angles within
the force diagram. These complementary angles later turned out to be crucial to
their final argument. They clearly expressed qualitatively the relationship between
the weight of the objcct and the vertical components of the parallel and perpen-
dicular forces. They thcn tried to establish an equation for that relationship in thc
table window:



P: So the vertical component of this [parallel] force is equal to 4.625.

A: And minus that from 18.25 and get the other vertical component.

P: Yeah. So we can make an equation.

A: Let's make another column for vertical.

This reasoning and analysis built on their earlier understanding of the vertical and
horizontal components of a force at an angle from the previous sub-unit. They
were able to calculate the magnitude of the vertical components of the forces.
They knew that the horizontal components could also be computed and that they
must be equal. However, their efforts to express the relationship of the weight to
the vertical components algebraically in thc table window were unsuccessful.

At this point, Jenny restated her earlier lack of confidence in this strategy and
suggested that the path they were heading down was one that would lead to a
series of relationships (that might in fact be circular) rather than just one:

A: That's what? Round about?

J: Are we gonna, yeah, arc we, yeah, totally! I mean that's not going to give us
a, that's going to give us a series of relationships. Rather than looking for
just one.

P: It's gonna give us, right, well, we can use that whole thing as thc relationship
between that and that. [the parallel and perpendicular forces]

J: Okay, uh huh.

The group took a short break, but Paul continued to work, going back to the force
diagram, repeating his calculations, and attempting to create a relationship in the
table window of Function Probe. By the timc Jcnny and Alycia returned, Paul was
not able to create an algebraic relationship to give him the vertical component that
he was looking for. At this point, the teacher provided some general instruction to
the whole class and gave the groups another data set, so that they could verify that
whatever relationships they developed would hold for alternative scenarios. The
teacher then joined Jenny, Alycia and Paul. They explained their thinking about
the component forces and showed Dave their graphs. Dave focused their attention
on the original graph and pointed out that thcy could read the relationship between
the angle and the forces (the original question) directly from the graph. Both
Jenny and Paul suggested for the first time that these might be trigonometric curves.
They then algebraically fit a sine and a cosine curve to their data and, at the very
close of class, established that the magnitude of the perpendicular force is given by
the weight of thc object times the cosine of the angle of incline, and similarly for
the parallel force. As class ended, thc group did not bring any closure to thc cen-
tral idea that they were working on, namely, that the sum of vertical components of
thc perpendicular and parallel force must equal the weight of the object.

Class began the next day with a whole class discussion recapping that the
relationships which thc small groups had found between the parallel and thc per-
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pendicular forces, the weight of the object and the angle were given by the equa-
tions FA = Fw * cosq and Fll= Fw * sing and were represented graphically by a pair
of curves intersecting at 45 degrees. The teacher pointed out to the students that
these relationships were created on the basis of fitting a curve to empirical data
and that they didn't have a visual, pictorial argumcnt to support the fact that they
came up with sines and cosines. He directed the students to develop a convincing
argument for the relationships on the inclined plane based on the geometry of the
force diagram. The students moved to an analysis of the geometry in fmnt of
them. They had found thc two equal angles (see Figure 4) yesterday and now they
quickly put that together in a geometric argument to support the empirical curve fit
that had been done:

Figure 4. Alycia's Force Diagram

.P: No wait, you guys, guys, guys, the reason why this, the, the cosine of this
angle, which is also that angle, urn (pause).

A: The cosine of this angle is this angle?

P: Yeah! No! The cosine of this angle is the same as the cosine of that angle.
It's the same angle.

A: Yeah, hrn, hm.

D: Is that the same angle?

P: The cosine of, yeah.

A: Yeah, because it's this minus 90. And these two are the same.

Alycia proceeded to write a two-column proof that argued that if two angles have
thc same complement then the angles must be Nual. They then were convinced
that thc cosine relationship that they found empirically must also hold from the
geometry of thc force diagram:

A: So, if these two angles are equal, then the Nimes._

P: Then, right, then it makes sense that the cosine of this angle times that would
equal that force. Cause this...
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A: You can just draw this angle down here. It can be anywhere.

P: This force. Right. That force can be anywhere. Cause...

A: I just moved it down, so that it's easier to see that they're equal.

P: Right.

D: Hm, hm.

A: And so, of course, two angles that are equal have the same cosine.

Thcy proceeded to make the analogous argument for the parallel force.

Discussion

The focus group had built an understanding of the force relationships involved
for an object at rcst on a ramp through a process that involved collecting empirical
data, graphing the data, examining the table values, constructing a force diagram
and then analyzing the vertical and horizontal components of the forces. Their
qualitative understanding of thc relationship of the vertical components included
both the additive relations of the vertical components to the weight of the object
and the symmetry between those components. Their analysis showed both an
understanding of the relationship between the vertical components of the parallel
and perpendicular forces and an argument as to why those components must equal
the weight of the object. However, this analysis did not include a symbolic, tabu-
lar or graphical representation of the relationship. Directed by the teacher back to
the original graph of the empirical data, the students left their model and generated
an algebraic relationship from a curve fitted to the data. Thc students ultimately
returned to thc geometry of the force diagram, arguing that the empirical trigono-
metric relationships from the curve fitting made sense in terms of right triangle
trigonometry. Thus, while they never returned to their earlier attempts at an alge-
braic analysis of the vertical and horizontal components of the parallel and per-
pendicular forces, those attempts led them to a clear and compelling analysis of
the overall scenario.
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FORMULATING THE FIBONACCI SEQUENCE:PATHS OR

JUMPS IN MATHEMATICAL UNDERSTANDING

Thomas Kieren, University of Alberta
David Reid, University of Alberta

Susan Pine, University of British Columbia

In the dynamical theory of mathematical understanding (Pirie and Kieren, 1994) under-

standing is considered to be that of a person (or group) of a topic (or problem) in a situation

or setting. In this paper we compare the interactions between the situations and the math-

ematical understandings of two students by comparing the growth in understanding in a

Fibonacci sequence setting in which specific tasks were suggested and interventions made,

with that of the same students in a Fibonacci setting in which only a general prompt was

offered. In the former, the growing understanding was characterized by jumps, indicating a

collection of specific images or patterns. In the second these students exhibited a continu-

ous, non-linear pathway of understanding more governed by epistemological interests and

featuring more formulated reasoning.

How Does Mathematical Understanding Grow?

There have been numerous useful ways of thinking about mathematical un-
derstanding in terms of types or levels over the past 20 years (e.g. Skemp, 1976;

Herscovics and Bergeron, 1993). Under such work mathematical understanding
tends to appear as an acquisition or sets of such acquisitions. Following a more
phenomenological, constructivist and enactivist view of understanding (von
Glasersfeld, 1987; Johnson, 1987), Kicrcn and Pine over thc last eight years have

been building and testing a dynamical theory of the growth of mathematical un-
derstanding which views it as a non-linear, non-monotonic, process-in-action. As
illustrated in the diagrams below, we observe such change in understanding in
action using pathways across eight embedded levels or modes of understanding.

Starting from a person's assumed primitive knowing (related to the mathematical

situation in which they find themselves) their understanding, if it is not discon-
nected, grows through three informal modes of action (image making, imagc hav-

ing and property noticing) and through three potential formal modes of mathematical

activity (formalizing, observing and structuring) and possibly leads to a person

developing ncw diverging mathematical ideas (inventising). The inncr, informal
modes of understanding arc related to more local, image-related knowing and fre-

quently involve unfonnulated reasoning (Reid, 1995), while the outer levels are

more sophisticated and general in nature. But as we have illustrated in a number

of studies, less formal understanding is fully implicated in outcr, more sophisti-
cated understanding in that students very frequently "fold back" to inner, less for-

mal understanding action. Such fokling hack typically leads to a broadening of
student understanding and appears to he an important if not a necessary condition

in its growth.

Research for this paper was supported in part by grants 410 93 0239 and 752 93 3268

from the Social Sciences and 11001,m Iles Research Cmincil of Canada.
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We are increasingly observing that understanding-in-action is best understood
in terms of the inter-actions in which the person engages (e.g. Pirie and Kieren,
1992; Davis, 1994). For example, a teacher may intervene with students in the
situation in an attempt to provoke them to move to more general or sophisticated
understanding. Such moves are said to have provocative intent. Similarly, the
teacher may try to have students fold back to inner less formal activity, such moves
having an invocative intent. We have observed in a number of studies (e.g. Pirie
and Kieren, 1992; Kieren, Pirie and Reid, 1994), that it is the subsequent aktions of
the students which determine the nature of the intervention and not the intent of
the teacher.

The Nature of this Study

In a 1994 paper we reported on the understanding of two university students,
Stacey and Ken-y as they spent approximately an hour investigating a problem
situation which grew out of a prompt which asked them to write the recursive rule
defining the sequence, if they knew it or could discover it, and to "Look for pat-
terns which relate the index n to the Fibonacci number F. For example, is there
anything special about F, when n is a multiple of 3, or a multiple of 4, or prime?"
Using a methodology described below their (joint) understanding of thc Fibonacci
setting was characterized in Diagram 1.

Diagram 1. The first Fibonacci session

Stacey and Kerry's growth in understanding of this Fibonacci situation seems to
occur in disjoint jumps rather than as a more continuous pathway. In part this
could be attributed to thc prompt which in addition to asking for generalizations,
gives a series of tasks to be accomplished. In addition the transcripts and math-
ematical activity trace of the setting reveal that the researcher had responded to
requests from Stacey and Kcrry with prompt.s of more things to do with thc Fi-
bonacci setting, which they appeared to treat as separate mathematical items, The
question for us was, "Is Stacey and Kerry's growing understanding of the Fibonacct
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sequence inherently like this or should the interaction pattern with the researcher
and setting be observed as an important part of Stacey and Kerry's growth in un-
derstanding?"

To study this question we provided Stacey and Kerry with an opportunity to
respond to an altered Fibonacci prompt, some 15 months after their first sessioa.
In the second setting the prompt indicated: "Generalize a property of this sequence"
and the researchers said nothing to the pair but simply observed their activities.
Because we are auempting to observe understanding as an on-going lived activity
in and with an environment, we use a number of inter-related methods both to
gather and interpret the datD We term this method "brico-logical." It is a bricolage
in that the researchers work interactively with various given materials on a piece
of a more global problem. At the same time each researcher brings with them a
particular logic of inquiry, here the Pirie/Kieren model, ideas on reasoning and
proving, and the theory of enactivism (Varela, Thompson and Rosch, 1991). Each
session was recorded using video tapes, transcripts and observer notes. Three
different researchers, the authors, viewed the tapes and interacted and converged
on possible conclusions to be drawn about understanding. Mathematical activity
traces for both Fibonacci settings were developed in which major episodes of the
sessions were identified and characterized. The students themselves were inter-
viewed as to what they observed about their own thinking and researcher observa-
tions about it. These deliberations are summarized in the pathways (or jumps) on
the Pirie/Kieren model.

Results and Reflections

This research is part of a multi-year study of university student mathematical
understanding which itself is part of a larger eight year study of the growth in
mathematical understanding in action involving students of many ages. The data
gathered and interpretations developed in even these two settings represent a multi-
dimensional phenomenon. This is true both because growing mathematical un-
derstanding is observed to have a recursive fractal character and because the enactive
view which we are taking encourages us to considcr many elements in the inter-
action between the students and the world they are both creating and living in "all-
at-once". The report here is limited to only some of the dimensions of the situa-
tion, particularly growing understanding and patterns of reasoning as these arise
for these two students.

We turn first to the "interventionist" Fibonacci setting growing understanding
in which is illustrated in Diagram 1, above. The transcript and subsequent reflec-
tions of thc researchers indicate that when Stacey and Kerry worked on each of the
given tasks (e.g. defining the Fibonacci sequence; describing the character of ev-
ery third Fibonacci number) mainly by trying a number of numerical cases and
looking for a pattern. While in the case of prime indexed Fibonacci numbers the
pair developed a numerically based property of the sequence (3.1-3.5 in diagram
1) and also engaged in some disjoint formalizing on the task of finding a pattern in
F.3., they did not develop well formulated generalizations about the Fibonacci se-
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quence. In a series of interventions with provocative intent, the researchers then
offered the pair of students a number of tasks calling for looking for inter-relation-
ship; within and between various sub-sequences of the Fibonacci sequence, hop-
ing that the students would develop and justify more formal and sophisticated
generalizations. But instead each of these suggestions invoked the studcnts to
"fold (or in this case jump) back" to working with specific numerical examples
and observing a few local patterns or some numerical inter-relationships (paths 5,
6, 7 on Diagram 1). Thus while the researchers had intended that the students
formulate their reasoning about this sequence by finding and explaining generali-
zations ',which they had done in other settings), the students instead tended to do
short numerical explorations and their discussion with onc another remained at the
level of particular numerical examples. This pattern of intervention repeated itself
several times and the resulting observed understanding appears as a series of jumps.

Notice that in observing Stacey and Kerry's understanding in this setting as
such a series of "jumps," we are not devaluing the knowledge of the Fibonacci
sequence developed during this activity. Nor would it be appropriate to suggest
that this pattern of understanding would be related to what Skemp would call in-
strumental understandingStacey and Kerry could give local justifications for
their numerically based images of the Fibonacci sequence. In fact their under-
standing in this situation might be described as a collection of independent images
and their reasoning could be characterized as exploring to seek local patterns. But
we are arguing that the students' growth in understanding here co-emerges with
the occasions provided in thc situation, particularly the apparently discrete tasks in
the initial prompt and the interventions of the researcher.

This is well illintrated when we compare the understanding diagram above
with that given below. Remember that in the second setting the prompt was to
generalize a property of the given Fibonacci sequence and the researchers made no
further active interventions. Overall, onc might characterize the growing under-
standing here as a non-linear growth from re-establishing an image(s) of the Fi-
bonacci sequence to more general formalizing about this sequence. While their
understanding in the first setting entailed informal reasoning with numerical ex-
amples, in the se,cond setting it is better described as formulating. Stacey and
Kerry re-established their image of the Fibonacci sequence (including their active
re-memberence of one researcher "prohibiting" them from developing a bi-direc-
tional sequence) (1.1-1.5 on Diagram 2). Thcy then spent the next 45 minutes
elaborating and formulating that image. In particular, they focused on how one
defines the "givens" for the Fibonacci sequence. At 2.5 Stacey notcd a property of
the Fibonacci sequence: that the rulc limits the number of givens needed to two.
After characterizing their image of the sequence as possibly being members of the
natural numbers or integers (4-6), at Stacey's urging they escaped the boundaries
of the Fibonacci sequence and folded back (7.1) to exploring and formalizing a bi-
directional Fibonacci sequence (7.2-7.3). This latter formalizing activity was clearly
connected to their previous thinking; for example, Kerry specifically related in his
formalizing about the bi-directional sequence to the discussion they had earlier
about the members of the sequence being integers (7.3).



Diagram 2. The second Fibonacci session

Using the bi-directional Fibonacci sequence as a stimulus, Kerry noticed a
specific propertyone can define the sequence using terms which are separated
(F1=1 and F., = 1) (8.1, 8.2). They spent the rest of the time formalizing, carefully
formulating and re-foirnulating and justifying a new general definition of the Fi-
bonacci sequence (8.3-8.8) as illustrated by this interchange:

Kerry: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. x so, x1=1 and x11=89. Tada!
That's the Fibonacci sequence. I diefined it.

Stacey: Do you always have to start with x1= 1?

Kerry: No, don't have to- I'll get a new x. x9=34, so- What do we have
here? x11=89, x9=34, that's your Fibonacci sequence. You can not
come up with any other sequence if you follow those rules.

It would be easy to conclude that the fact that the researchers made no inter-
ventions allowed Stacey and Kerry's understanding to grow in a particular way,
but that would be an over-simplification. The researchers' mere presence likely
provoked the continuous and more formulated and general formalizing which these
two students exhibited. But thcy also felt constraint& that had arisen in the first
session. In that session a researcher had noted that the Fibonacci sequence had no
"zeroth" terms nor any "negative" terms. Although the second setting occurred
over a year later, both Stacey and Kcrry re-membered and re-constructed this dia-
logue and this remembrance acted as a constraint on much of their activity, as did
their remembered dissatisfaction with their more disjoint previous activity with
the problem. Under these constraints they focused on what thcy called the Fi-
bonacci sequence. Their understanding activities can be seen as influenced by
what Sierpinska (1994) identifies as epistemological concerns. In fact, their well
formulated formalizing (8.1-8.8), and even their whole pathway of understanding
centers around generalizing and formalizing conditions underlying the Fibonacci
sequence.
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In the continuous non-linear pathway of growth of understanding in setting
two, Stacey and Kerry's reasoning appeared to be governed by a need to explain
rather than a need to explore (Reid, 1995). Again we arc not saying that such a
pathway is evidence of better or more productive understanding than that in the
first setting, but that this growing understanding coemerged with the features of
the prompt, the (non) actions of the researchers and with the developing epistemo-
logical concerns of the students. The students themselves did sense a difference
between their understandings in the two settings:

Kerry: Yeah. Cause we- When we walked away from it [setting one I
neither one of us felt we'd realfy climbed a mountain or conquered
anything.

Stacey: No.

Kerry: But now, I'm quite happy with it now. The Fibonacci sequence is
allowed back in my life.

Stacey: Yeah (laughter].
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HOW STUDENTS ESTABLISH THE TRUTH OF THEIR
IDEAS IN SCHOOL GEOMETRY

Michael Mikusa, Kcnt State University

The main focus of the study was to describe how students of various ages established the
truth of their ideas in school geometry. Thirty-two students in grades 2, 5, 7, and in a high
school geometry class were interviewed. The study found that formal proof was used in
less than 1% of the student arguments. Second and 5th graders were most likely to con-
vince themselves or others by using a basic image process or by drawing pictures. High
school students and 7th gradcrs were more likely to convince themselves and others using
an Intuitive Affirmation. In addition, their argumcnts were more elaborate and proposi-
tional in nature than those arguments given by 2nd and 5th graders.

The NCTM Curriculwn and Evaluation Standards subscribe to a constructivist
view of mathematics learning and teaching in which students learn mathematics
meaningfully as they personally construct mental structures and operations that
enable them to deal with problematic situations, organize their ideas about the
world, and make sense of their interactions with others (National Council of Teachers
of Mathematics (NCTM), 1989). The constructive process occurs as students re-
flect and make sense of their interactions with the world and their peers. In this
new view of mathematics learning and tcaching, primary responsibility for estab-
lishing the truth of mathematical ideas lies with students. Teachers and textbooks
arc no longer viewed as the providers of mathematical truth. In essence, each
student is seen as a mathematician, somebody who is responsible for solving math-
ematical problems by making conjectures and establishing the validity of those
conjectures within the classroom culture. As we place such a heavy responsibility
on students, it behooves us to know how thcy copc with it. We know how math-
ematicians formally establish the truth of conjectures.they use proofs. But how
do students do it? How does the notion of justification evolve in students? Fur-
thermore, if we want to help students learn increasingly sophisticated ways of
justifying their mathematical conjectures, we must understand their current ways
of justifying ideas.

Procedures

Agc and relevant knowledge have been found to be important variables in
much of thc research on reasoning. Eight second graders, ten fifth graders, eight
seventh graders, and six high school students, were randomly selected from a pool
of volunteers in two similar school systems. Approximately half of those selected
at each grade level were females. To assure that students selected had an adequate
knowledge of mathematics, onl y students with standardized mathematics test scores
above the fiftieth percentile were included.

A set of ninc problems involving concepts in geometry was selected from a
variety of sources so that the problems could be easily understood by students at
all age levels in the study (i.e., the problem did not require much formal geometry
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knowledge or terminology to understand). For example, problem number 7 gave
the students a figure of a triangle inscribed in a circle and asked "Is it true that for
every triangle that there is a circle that passes through each of the vertices (the
three points) of the triangle?"

After solving each problem, students were asked two follow-up questions.
The first question was "What makes you think that your answer is correct?" The
second was "When I gave this problem to some othcr students, somc of them gave
answers different from the one you gave me. If each one of you that gave me a
different answer has a chance to convince a group of students (in the same grade)
that your own idea is correct, how would you get thc others students to believe
you?" A tenth interview item explicitly asked students how they establish truth of
their ideas in mathematics.

All of the interviews were conducted by the author. Thc interviews were
audio taped, then later transcribed. During the interviews the interviewer wrote on
the interview form as the answers were given. In addition to student verbal re-
sponses, the interviewer kept track of student drawings used in conjunction with
verbal responses.

Coding of Student Justifications

After the students were interviewed and tapes were transcribed, student re-
sponses were analyzed. An initial set of the primary components was created from
both relevant research and student responses in this study. The first result of the
study was an elaboration of the set of primary components in ordcr to accurately
describe important lines of reasoning used by the student.s. Coding began with
two people using the set of primary component.s, each coding a sample of student
arguments. These codings were compared and disagreements were discussed.
Seventeen primary components were identified and refined (see Table 1 for abbre-
viated list of primary components) in this study. When this process was com-
pleted, a third person, not involved in the development of the primary compo-
nents, coded a random sample of student responses. Thc codings were compared
with the refined codings, and a rate of 90% agreement was computed. After this
process was complete, the primary components were used to complete a final cod-
ing of all student responses.

Findings from primary component analysis

Approximately 70% of component usage was accounted for by four compo-
news: Draws or Proposes to Draw a diagram (DM), Intuitive Affirmation (IA),
Basic Image Process (IS), and Statement of Fact (SF). Furthermore, formal proof
(UP) accounted for less than 1% of the 896 arguments given (see Figure 1).

Primary component preference differed somewhat by grade level. The use of
Intuitive Affirmation (IA) was greatest al .ong high school students, and the use of
both Basic Image Process (IS) and Draws or Proposes to Draw (DM) were most
popular with second and fifth graders. The findings also indicated an increased
use of Statement of Fact (SF) as grade level increased. Table 2 on the ncxt page
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Figure 1. Most frequent primary components used in student responses

displays the percent of use of each component over all student responses by grade
level. That is 23% for second grade indicates that of all components used by
second graders, 23% of them were Basic Image processes (IS).

Almost 80% of students' argument chains (the string of primary components
used in an entire studcnt response to a question) were one or two components in
length, with the most popular being the singleto chains Intuitive Affirmation (IA)
and Basic Image Process (IS). While brevity ih a respected quality of mathemati-

Table 1. Primary Components: an abbreviated list

Code Name

DM Draws, proposes to
draw

IA Intuituve affirma-
tion

IS Basic image process

IW Advanced image
process

Sl Statement of (or
appeal to) fact

UP Uses (or proposes to
use) proof

Description of Primary component

The student draws or proposes to draw objects or
does some kind of manipulation (folding, cutting, or
the like) to support his or her argument.

The student makes a statement that he or she
accepts as certain and self evident. No validation of
the statement is attempted.

(with direct support of diagrams) The student
draws inference from generating, transforming, or
inspecting picturcs hc or she creates or finds.

The student draws an inference by generating,
transforming, or inspecting images without
drawings or existing diagrams.

The student refers to facts, definitions, or formulas
that he or she assumes is common knowledge.

The student presents a set of statements each being
justified by theorem, axiom, or definition. In
proposing a proof, the student presents an outline or
explicit direction of how a proof would be con-
structed.
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Table 2. Most frequently used Primary Components used by grade level

Grade Primary Components

DM IA IS IW SF

Second 18% 21% 23% 9% 7%
Fifth 22% 18% 21% 7% 7%
Seventh 17% 23% 17% 5% 11%

High School 12% 32% 7% 4% 15%

Table 3. Nwnber of incorrect components and total components used in
incorrect chains

DM IA IS IW SF UP

Total incorrect
components used
Total Components used

1

122

45

81

91

127

35

41

11

44

0

0

cal proof, it is so only when such arguments arc sufficiently rigorous. The student
chains did not in most cases constitute acceptable rigor. Thus, in this study, the
brevity of the arguments seemed to indicate a weakness rather than a strength.

Errors in student arguments

In addition to coding student arguments, each primary component and the
argument as a whole were judged to be correct or incorrect. For example a student
may have used a Statement of Fact as part of their argument, but stated the fact
incorrectly. If this incorrect fact caused the argument as a whole to be incomplete
or incorrcct, the whole argument was coded incorrect. This data was used to deter-
mine what types of errors caused arguments to be faulty.

Fifty percent of all thc arguments given by students were incorrect or incom-
plete. The cause of many of the errors in student arguments was thc incorrect or
insufficient use of imagery. The most common error that students who were using
visual thinking made is that they failed to utilize appropriate propositional knowl-
edge to constrain their thinking or recognize its possible inadequacies.
Conclusions from this study indicate that imagery is productively used in problem
solving whcn it is guided and constrained by appropriate propositional knowl-
edge. There is evidence in this study to suggest that as students move up through
the van Hide levels, thcy don't necessarily stop using visual reasoning. Instead,
their visual reasoning becomes more sophisticated, incorporating into it increas-
ingly more sophisticated propositionally stored knowledge. Their visual thinking
is different at different van Hide levels because, at each level, it is constrained by
totally different knowledge structures.
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Conclusions
I believe this study provides essential information for guiding instructional

strategies aimed at promoting and refining students' geometric reasoning because
if we wish to help students refine how they reason, we must first understand their
current methods of reasoning.

The preference for more verbal rather than visual arguments for the high school
geometry students and seventh graders seems consistent with the notion that they
were thinking about geometric ideas at van Hide's second or property-based level.
The preference of younger students for visual arguments suggests that the students
in the second and fifth grade were thinking about their ideas at van Hide's first or
visual level. Students at the visual level believe in geometric ideas because th.4
"just see it" (van Hide, 1986) or because of visual transformations (Battista, 1994).
Students at higher levels reason based on morc elaborate, property-based knowl-
edge. Thus, in addition to visually stored knowledge, students at the higher levels
have propositionally stored, property-based knowledge that can be included in
their arguments.

The frequent uses of Intuitive Affirmations and Basic Image Processes and
the errors in arguments caused by these primary components in this study suggest
the need to present students with situations which help them to build and coordi-
nate the use of propositional knowledge with visual knowledge. believe that
exploring geometry using manipulatives or computers, creating conjectures, and
then arguing about those conjectures with classmates is essential in helping stu-
dents developing these mental processes. This study also suggests that having
students try to convince others of their mathematical ideas not only forces them to
reflect on their ideas, but to elaborate these ideas, making them mare mathemati-
cally explicit. This finding thus supports constructivist notions lf the value of
class discussions in which students must argue and support their mathematical
ideas. That is, students must be given opportunities to create mathematical ideas,
and most importantly, to decide for themselves if these ideas arc mathematically
sound.
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HOW STUDENTS USE THEIR KNOWLEDGE OF CALCULUS
IN AN ENGINEERING MECHANICS COURSE

Cheryl Stitt Roddick, The Ohio State University

This study investigated students' conceptual and procedural understanding of calculus within
the context of an engineering mechanics course. Four traditional calculus students were
compared with three students from one of the calculus reform projects, Calculus &
Mathematica. Task-based interviews were conducted with cach participant throughout the
course of the ten-week quarter. Results from interviews show a distinct difference in ap-
proaches to solving engineering mechanics problems that involve calculus. Calculus &
Mathematics students, who learned calculus with a conceptual emphasis, were found to be
more likely to solve problems from a conceptual viewpoint than were the traditional stu-
dents, who were more likely to focus on procedures.

The introduction of technology in the calculus classroom has been met with
mixed emotions. Many enthusiastic supporters have emerged, yet there have also
emerged many critics of the quality of learning that occurs. One major criticism
has been that students who learn calculus with the help of technology will not have
the skills to be successful in later calculus-depcndent courses (Krantz, 1993). Others
argue that these students have a stronger conceptual understanding and will have
an advantage over students who have taken traditional calculus. Supporters of
Calculus & Mathernatica, a calculus reform project which utilizes the computer
algebra system Mathentaiica in students' learning of calculus, believe that the use
of technology, together with teaching techniques based on constructivist theory,
can encourage student ownership of knowledge and a strong conceptual under-
standing (Davis, Porta & Uhl, 1994).

This study addressed these issues and investigated students from the Calculus
& Mathernatica sequence as they continued their education beyond calculus. Since
calculus is a stepping stone to many other courses, success in future calculus-
dependent courses may be determined in part by students' experiences in their
calculus courses. The focus of the study is a comparison of Calculus & Mathemaiica
students with traditional students on their conceptual and procedural understand-
ing of calculus when applied to different situations. An introductory engineering
mechanics course was chosen as the course in which to investigate students' un-
derstanding of calculus.

Theoret kat Framework

Bell, Costello, and Kuchemann (1983) specify five components of mathemati-
cal competence: facts, skills, concepts, general strategics, and appreciation. Two
of these components skills and concepts are the focus of this study. Skills arc
defined to include "any well-established multi-step procedure, whether it involves
symbolic expressions, or geometric figures, or neither" (Bell et al., 1983, p. 78).
The essential features of skills include actions or transformations that arc con-
nected in a linear fashion. Cotweptual understanding describes "knowledge that

153
114



,

is rich in relationships...fwherel all pieces of information are linked to some net-
work" (Hiebert & Lefevre, 1986, p. 3).

The proposed study seeks to explore Calculus & Mathematica students' con-
ceptual and procedural understanding of calculus applied to engineering mechan-
ics problems. Shumway (1982) proposes that problem solving can really be inves-
tigated by loaing at the conceptual and procedural knowledge involved. He ob-
served that the goal of problem solving is to identify a class of problems that can
be solved in a similar way. But the process of identifying a class involves concep-
tual knowledge, whereas determining and carrying out a procedure involves pro-
cedural knowledge. So what is really happening during problem solving is that
the solver is using conceptual knowledge to reduce a problem to one that can be
solved using procedural knowledge. "Ohe could argue that problem solving ends
and concept learning begins when one begins looking back, identifying similar
problems, and engaging in othcr post-solution activities" (Shumway, 1982, p. 134).

Silver (1986) believes that it is important not to focus on the distinctions be-
tween conceptual and procedural knowledge, but rather to focus on the relation-
ship between the two types of knowledge, since problem solving in reasonably
complex knowledge domains involves the application of both. Silver suggests we
consider the idea that procedural knowledge that is not connected to conceptual
knowledge is rather restricted knowledge (Silver, 1981). Thus, a study of the
linkages between the two types of knowledge is advised when investigating prob-
lem solving.

Mayer and Greeno (1972) found that students who are taught using a concep-
tual focus produce learning outcomes that arc qualitatively different than those
produced by students taught with a procedural focus. Their belief is that a concep-
tual focus encourages the development of a cognitive structure which is more ex-
crnally connected, or related to other elements in the general structure. This type

. f cognitive structure would be more useful when faced with problems that may
not be familiar to the student. Furthermore, Mayer (1974) examined the resilience
of an initial acquired structure and found it to be resistant to change, noting that
"an assimilative set is evoked quite early in learning and that content material is
structured within the context of the set over the entire course of learning" (p.655).
This finding suggests that students who initially learn conceptually will continue
to .,tructure new material in thc same manner, forming a more externally con-
nected cognitive structure.

This theory correlates closely with thc goals of the Calculus & Mathematica
sequence, one of which is to promote a conceptual emphasis on thc process of
prohl-,n solving. Thc framework leads to thc hypothesis that Calculus &
Mathet lanai students will be better able than traditional calculus students to struc-
ture new material from engineering mechanics in a conceptual manner, and will
have developed stronger links between conceptual and procedural knowledge.

Met hodology

Seven engineering mechanics students were chosen to participate in task-based
interviews designed to investigate students' use of calculus in their mechanics
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course. Three of these students have completed the calculus sequence Calculus &
Mathematica. Three students have completed the traditional calculus sequence,
which employs a lecture-recitation format without the usc of technology. The
other student has completed an honors section of the traditional course. Two fac-
tors were taken into consideration when choosing the engineering mechanics course.
Most importantly, the course had to include calculus as one of the prerequisites.
This consideration was made to ensure that students had encountered calculus
previously and were not learning it for the first time in this course. Secondly, the
course had to bc onc that many students from Calculus & Mathematica take. Since
a great number of Calculus & Mathematica students arc engineering majors, the
focus was placed on courses that are required for all engineering majors. The
engineering mechanics course is an introductory study of statics and mechanics
which has a prerequisite of at least three quarters of calculus and one quarter of
physics. The main use of calculus in this course is with concepts of differentiation
and integration.

Data Analysis and Results

Data from the task-based interviews were used to investigate how Calculus &
Mathematica students compare with traditional students on their procedural and
conceptual understanding of calculus as evidenced by their ability to solve prob-
lems in an engineering mechanics course. Several of the problems presented to
the students could be solved using either a procedural or conceptual approach.
The greatest differences in approach were found in a problem which asked stu-
dents to sketch shear and moment diagrams for the following load on a beam:

200 111/11

6
AFE

6

The knowledge necessary for this problem is that the anti(lerivative of the
load function is the negative of the shear function, and the antiderivative of the
shear function is the moment function. Workable approaches are 1) to make cuts
at key points of the load diagram and use equations of equilibrium to find the shear
and moment equations,2) find the equation of the load and integrate, or 3) use the
concepts of slope and area to sketch the shear and moment diagrams from the
given load diagram. The first approach does not require knowledge of calculus,
while the other two approaches do. All of the Calculus & Mathematica students
initially approached this problem in a conceptual manner, usnig their knowledge
of slopes and areas in relation to functions and their antiderivatives. If the need
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arose, various computations would be used as a supporting method. When asked
whether they could confirm their solution in another way, each of the Calculus &
Mathematica students responcied with the procedural approach, finding the equa-
tion of the load and integrating. In sharp contrast, the preferred method of the
traditional students was procedural. These students employed either thecut method
involving equations of equilibrium or the integration method. Some use was made
of the concepts of slope and arca, but the prevailing method was procedural in
nature.

One problem related to shear and moment diagrams was designed to assess
students' conceptual knowledge of the relationship between shear and moment.
Given the following sketch of the shear diagram and an initial moment value of
15,600, students were asked to sketch the moment diagram. Students were not
asked to find the moment functions, but were required to sketch the general shape
and to locate the values of the moment for x = 12 and x = 20.

1000

600

12 20

Since the shear function is the derivative of the moment function, students could
find the change in moment by determining the arca underneath the shear curve.
Again, all Calculus & Mathematica students approached this problem conceptu-
ally and solve it with ease. One student explains his approach: "The shear is the
derivative of the moment so it would start at -15,600 and increase to a certain
point. The area of this (shcar) would bc what it (moment) increases to." When
asked how he knew the value of the moment was always increasing for x ranging
from 0 to 20, he replied, "for it to come back down somewhere this would have to
be negative....S ince the arca is all positive this bottom line will always bc increas-
ing." This same student, however, made an initial conjecture that the value of thc
moment for x = 20 would be 0, because "'it always ends at 0." This belief seemed
to be prevalent among the students interviewed. Upon completion of his solution
he changed his response.

Onc of the traditional students (who completed the honots section of calcu-
lus) solved the problem conceptually. He explained, " you can just find the areas
under the shear diagram and add it to thc moments as you go along. So M(12)
would be M(0) + Arca 1; M(20) = M(0) + Arca 1 + Arca 2." (Arca 1 is the arca for
x = 0 to 12; Arca 2 is the arca for x = 12 to 20.) Two traditional students attempted
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to find the shear functions and integrate, but both made mistakes and were unable
to arrive at the correct answer. Of these two students, one made a small integra-
tion mistake, and could not suggest any other way to check his work. The other
student insisted that the moment always ends at 0 and neglected to consider the
value of the moment at x = 12. The fourth traditional student made several differ-
ent attempts yet failed to arrive at a reasonable answer.

Several problems addressed knowledge of specific procedures. One of the
problems that addressed procedural knowledge involved finding the x-coordinate
of the centroid of the area bounded by y2= 2x, x = 3, and y = 0. All four of the
traditional students were able to solve this problem. They remembered the for-
mula and were able to perform the integration without assistance. One student,
who was having some difficulty responding to some of the earlier questions, ex-
pressed his confidence with this particular task. "Oh, yes, this I can do," he said.
The three Calculus & Mathematica students were also able to solve the problem.
One of the students integrated incorrectly, but corrected himself when asked to
check his work.

This integration problem is representative of the difficulty level required for
the engineering mechanics course. In fact, students were instructed to deal with
more challenging integration by using an integral table. None of the students,
traditional or Calculus & Mathematica, felt uneasy with the differentiation and
integration skills required.

Conclusions

Results from interviews show a distinct difference in approaches to solving
engineering mechanics problems that involve calculus. Calculus & Mathematica
students, who learned calculus with a conceptual emphasis, were found to be
more likely to solve problems from a conceptual viewpoint than were the tradi-
tional students, who were morc likely to focus on procedures. These results are
consistent with Maycr's (1974) finding that a student's initial cognitive structure
is resistant to change. Furthermore, students who expressed the most confidence
in their solution were found to have used a combination of conceptual and prcep-
dural knowledge. Calculus & Maihematica students demonstrated a stronger abil-
ity to discuss all aspects of a problem, including both conceptual and procedural
issues, while traditional students expressed more uncertainty in their work and
were less comfortable in discussions as to how to use other knowledge to check
their solutions.
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CAUSES OF ACADEMIC SUCCESS, PERCEIVED ABILITY, AND
UNDERSTANDING OF LIMITS AND CONTINUITY

Umaru A. Salch, State University of New York at Oswego

This study examined perceived causes of academic success using Weiner's
(1979) attribution theory. The Perceived Causes of Success instrument developed
by Nicholls (1989) was administered to 75 first semester calculus students, aftcr
they had studied thc concepts of limits and continuity, to determine the factors
(internal. or external) responsible for calculus success. Internal factors were ability
and hard work and external factors were luck and easy material (Sohn, 1982).

The students were divided into four quartile groups based on their perfor-
mance on a test designed to assess understanding of limits and continuity concepts
developed by thc investigator. The test had a Cronbach coefficient alpha of .68.
The results showed that an overwhelming majority of the students in caeh of the
performance groups attributed calculus success to internal factors (ability and hard
work). Based Oil the findings of this study, it was clear that irrespective of their
performance, students made internal attribution to academic success. Thc findings
of this study were contrary to the view by Simon and Feather (1973) that students
attribute their good performance to internal factors and their poor performance to
external factors.

The second part of the study investigated the relationship between perceived
ability and understanding of limits and continuity. Perceived ability instrument,
with a SpearmanBrown alpha of .84, developed by Nicholls (1989) was used to
assess students' perceived ability. Student understanding was measured by perfor-
mance on a test designed to assess understanding of limits and continuity devel-
oped by the iivestigator. The test had a Cronbach coefficient alpha of .68. Simple
and Partial correlation analyses, partialing out math ACT scores to control pos-
sible initial math ability differences, were used to compare perceived ability and
understanding. The results showed a positive correlation between perceived abil-
ity and understanding. However, the positive correlation became lower when ini-
tial math ability differences, as measured by math ACT, were controlled.
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CHINESE ADULT STUDENTS' INTERPRETATION OF
THE MATHEMATICAL SYMBOL "..."

Brenda Lee, Wu Feng Institute of Technology and Commerce

The infinite sequence is one of the most important types of the discrcte func-
tions. In order to understand infinite sequences, one needs to understand the math-
ematical symbol". . .". Numerous studies show that students nave difficulty ac-
cepting the fact that 0.999...=1. It has occurred to the present researcher that part
of the difficulty might lie in the representation. What does the "..." symbol mean
to the students? Do they have the definite finite view when dealing with the "..."
symbol? The mathematical symbol "..." has at least two important meanings: one
indicating a definite finite set, such as in (1, 2,3, 4, ..., 10), and the other an infinite
sct, such as in F(1,3)=0.333... If one has a finite concept image of the mathemati-
cal symbol "...", one would never be able to accept that 0.999... is equal to 1. Thus
the researcher was interested in finding out whether thc finite concept image af-
fects the understanding of the limit concept. To find that out, thc researcher needed
to find out students' interpretation of the mathematical symbol "...".

Methods
Two hundred and fifty-seven night school adult students, age 20 or over, from

six different calculus classes participated in this study. First, students were formed
in small groups to discuss: (1) the r-caning of the symbol "...", (2) why we need
the symbol "...", and (3) whether thcrc exist other mathematical symbols to repre-
sent the meaning of "...". Then, they were asked to give two examples to describe
the meaning of "..." in their final examination.

Results
Based on the results of students' examples, the following were the most popu-

lar meanirgs of the symbol "...": infinity, more to come, the sentence was inter-
rupted, continuation, "et cetera", repeating decimals, simplify, omission, thc same
numbers, or approximation. There wcrc some others like three dotsat, e, 4, 2,
incomplete, and irrational numbers. Morc than half of the students were unable to
provide examples. Among those who did provide examples, more than half of
them were unable to describe the meaning of the symbol of "...".

Conclusion
The "..." symbol is used frequently in advanced mathematics, but actually

occurs quite early in the usual mathematics curriculum. For example, the equation
F(1,3)=0.333...is encountered in learning division in elementary school. Other
examples include a definite finite list, such as (1, 2, 3, 4, ..., 10) or infinite se-
quences, such as I, 2, 3, 4, ...or 1, F(1,2), f(1,4) , F(1,2)0, ... The students may
encounter the "..." symbol again in learning thc binomial theorem (.a+b)°=a°+na"'
'b+...+(")a"-kbk+...+b" in high school. The symbol "..." is used whcn !br some rea-
son we arc unwilling or unable to writc down all parts of a mathematical state-
ment. It is loosely equivalent to the phrase "ct cetera". However, the meaning of
"..." differs somewhat in subtle ways in various contexts, as shown by the ex-
ampl, . above. Inability to decide whether the symbol "..." indicates a definite
finite set or an infinite set is the major cognitive difficulty. The other cognitive
difficulty might he the confusing of mathematical terminology with the daily us-
age of "et cetera".



UNDERST,!..NDING THE LIMIT: EXPERTS, NOVICES, AND
STUDENTS OF THE ANALYSIS SEQUENCE

David E. Wel, University of Pittsburgh

The limit conccpt is a broad and abstruse subject matter that does not avail
itself to easy elucidation of the conceptual framework that comprises the under-
standing, and, according to Michner (1978), it takes multiple experiences with a
topic to develop an understanding. The purpose of this study was to qualitatively
examine the understandings of the concept of limit held by four different groups of
subjects with differing exposures to the limit concept.

This poster presented the qualitative analysis of student responses to an as-
sessment designed by the researcher and guided by previous research on student
understandings of the limit concept. Using the assessment, thc understandings of
18 subjects were examined. These 18 subjects were partitioned into 4 groups: those
who had not taken a calculus course (NOVICE), those who had completed at least
one semester of calculus but had not taken either a Classicai Analysis course or
Real Variables course (CALC I), those who had taken a Classical Analysis course
but not a graduate level Real Variables course (CLASS), and lastly those who had
taken both a graduate level Real Variables course and taught calculus (EXPERT).

The assessment instrument focused on the subjects' connections within the
concept as well as the external linkages between the limit concept and other math-
ematical topics. A host of information was garnered from thc subjects' responses.
For example, the understanding of the terminology associated with the limit con-
cept, "limit", "approaches", "converges", and "tends to", appeared to be differen-
tial between groups. In addition, the assessment also examined student acceptance
of the various case-restricted definitions delineated in the literature, and the results
uncovered between group differences and other interesting results. Many of these
case-restricted definitions were documented in the literature and their construction
has been attributed to thc development of informal definitions of the limit concept
based upon an incomplete set of concept images. This poster explicated these dif-
ferences and indicated that the NOVICE group was considerably more acccpting
of case-restricted definitions and their implications than the EXPERT group. Ad-
ditionally, the EXPERT group was found to be accepting of a couple of case-
restricted definitions. For example, the case-restricted definition "A number is the
limit (L) of a sequence if you make better approximations to the end of thc se-
quence you find a value (L) to which the terms arc stabilizing" was accepted by
several subjects of the EXPERT group. Suggestions and recommendations for aid-
ing students in the development of an understanding of the limit concept were also
presented.
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THE USE OF WORKSHEETS, HINT-SHEETS AND SOLUTION-SHEETS IN
THE GUIDED DISCOVERY STYLE TEACHING OF CALCULUS

George L. Emese, Rowan College of New Jersey

Research results on discovery learning are still conflictive and inconclusive.
For each experiment showing the discovery approach superior over exposition
there is another experiment with the opposite result. A great number of arguments
have been given both for and against, a great number of advantages and disadvan-
tages have been listed.

A critical issue in discovery style teaching is the amount of guidance and how
it is provided. This project examined how worksheets, hint-sheets and solution-
sheets can be used to provide guidance. In the worksheets a chain of questions and
problems led to the new concept, relationship or technique. The hint-sheets con-
tained leading questions, some suggestions on how to solve the problem, or the
first step of the solution. Finally, the solution-sheets contained complete solutions
to the problems.

The worksheets, hint-sheets and solution-sheets were designed to minimize
the following difficulties with discovery learning. Students discover at different
paces. Without worksheets, hint-sheets or some similar techniques only the fastest
students would discover, others would bc involved in rcccption learning, listening
to the "discoverer". Students can discover only a tiny fraction of the accumulated
knowledge of a culture (Skinner, 1968). With the use of the hint-sheets this frac-
tion can be significantly increased. Research shows that discovery is very time-
consuming (Orton, 1987). The hint-sheets can be of help here: if students are
unsuccessful they can get help instantly, and they can move on to the next step or
next problem in the chain of the discovery process. There may be some students
who never come up with a discovery of their own. This can create jealousy, re-
sentment or feelings of inferiority (Richter and Snowman, 1982). With the use of
hint-sheets all students may make at least some discovery of their own.
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MATHEMATICAL CONTEXTS AND THE PERCEPTION
OF MEANING IN ALGEBRAIC SYMBOLS

Anne R. Tcppo, Montana State University
Warren W. Esty, Montana State University

This paper presents an analysis of the different types of meanings that an individual may
assign to a collection of algebraic symbols depending on the mathematical context in which
the symbols are presented and the mathematical knowledge possessed by that individual.
Four contexts for the Quadratic Theorem are used to illustrate the ways in which generali-
zation and abstraction develop the meaning of algebraic entities by changing focus from
process to structure.

Research investigating students' construction of mathematical ideas can be
enriched by including analyses of the mathematical structures under study. It is
important for researchers to be aware of the "implicit, unspoken assumptions about
the nature of the concepts being considered" (Tall, 1992, p. 508). Behr et al. (1994,
p. 124) recommend a "deep, careful, and detailed analysis of mathematical con-
structs both to exhibit thcir mathematical structure and to hypothesize about the
cognitive structures necessary for understanding them." This paper uses an analy-
sis of the mathematical concepts embodied in the Quadratic Theorem to investi-
gate mathematical structures and processes involved in the development of alge-

braic thinking.
The Quadratic Theorem: If a ± 0, then ax2 + bx + c = 0 is equivalent to

b ± 4ac
x =

2a
The Quadratic Theorem is used to solve equations. As with many other theo-

rems, it expresses an abstract symbolic problem-pattern, "ax2 + bx + c = 0" (if a ±

0), and gives a corresponding solution-pattern,

=

_ib ± b
2

" x
2a

This theorem aptly illustrates how the language of algebra can be used as a
highly effective medium for expressing mathematical thoughts. However, the
meaning that is assigned to such a symbolic sentence depends upon thc knowledge
of the reader and the mathematical context in which the sentence appears (Sfard

and Linchevski, 1994). Four different contexts related to the QuadraticTheorem
are presented to illustrate how the perception of meaning may vary according to
thc kind of mathematical constructs an individual is prepared to nuke.



Context 1: Quadratic Formula

-b ± 162
4 ac

Evaluate x for a = 5, b = 2 and c = -3.
2a

The problem-pattern, "ax2 + bx + c := 0," plays no role in this example. Only
the second half of the theorem, known as the Quadratic Formula, is given. Here
the collection of symbols performs the rolc of a formula, which represents a diffcr-
ent type of conceptual cntity than that of the whole Quadratic Theorem. In such a
"plug in" problem the context is numerical. The reader only needs to interpret the
symbol sentence as a set of directions for computing a number.

Context 2: Problems appear only in a limited, simplified
quadratic form.

Use the Quadratic Theorem to solve the following:

a) 5,e 7x 12 = O.

b) 10 - 2x2 + 7x = 0.

c) 3x2 = 6x + 14.

d) x(x + 1) = 7.

c) dx2 + c.

This contcxt requires the reader to focus attention on the pattern of coeffi-
cients in the problem-pattern of the theorem, a pattern that is ignored in Context 1.
These five problems emphasize the concept of parameters and the role of symbols
as placcholders (which arc also called dummy variables). Although the computa-
tional process is the same as in Context I, the numbers (or expressions) to which
the process applies must first be identified. The reader must be able to perceive
that the problem-pattern "ax2 + bx + c = 0" represents a generalization that is
common to the collection of symbols in each equation. Only equation (a) utilizes
the theorem's given left-to-right alphabetical order. The other equations require
interpretation of what the problem-pattern is intended to represent.

Equations (a) through (d) can also he solved numerically (instead of algebra-
ically) simply by graphing the two component expressions of each equation and
noting the x-values where they arc equal, without any reorganii.ation or identifica-
tion of parameters. The numerical approach avoids using the theorem, and thus
avoids the necessity to discriminate between the different symbolic roles of "a,"
"b," and "c."

The role of the problem-pattem in the Quadratic Theorem is to abstractly de-
scribe the type of problem to which the theorem applies. In Context 2 this type is
distinguished by the appearance of "x2" and "x" in each equation, using the par-
ticular symbol "x." As such, these equations are a very specific representation of
the abstract problem-pauern. This application of the Quadratic Theorem does not
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require the reader to regard the symbolic "x2" as representing the operation of
squaring as opposed to the result of that operation applied to "x."

Context 3: Problems where the squaring does not apply
to an unknown "x."

a) In the Law of Cosines, solve for ty: C2 = a2 + ty2 - 2ab cos C.

b) Solve for x: sin2x = sin x - .2 [given the ability to solve "sin x = c"]

c) Using a graphics calculator, graph: y2 + 3xy + x2= 14.
[When equations must be entered in the form "y ....."1

In the Quadratic Theorem "x" is just as much a dummy variable as "a,""b," or
"c." The role of "x2" in the problem pattern is to represent squaring (the opera-
tion) applied to any expression, not just to "x." The problems in Context 3 require
a shift in understanding of the nature of the conceptual entities represented by the
variables in the given Quadratic Theorem. In Context 2 the signifiers (x2 and x)
directly represented that which they signified. Even though the quadratic nature
(the squaring) of the equations was apparent, it did not need to be the focus of
attention since the theorem could be applied through a one-to-one marching of
patterns of symbol strings.

In contrast, in Context 3 the algebraic symbols in the Quadratic Theorem must
be perceived as representing sequences of operations, not just strings of similar
symbols. Although "x2 " may represent a number, the purpose of "x2" in the
theorem is now seen as representing squaring, even if it is not "x" that is squared.
For example, in part (c) "y" plays the role of "x" in the theorem and "x2 - 14" is
represented by the symbol "c." To recognize that the Quadratic Theorem is rel-
evant in Context 3 it is necessary to regard squaring as an object divorced from a

particular symbolic representation.
The quadratic nature of the three equations can no longer be determined by a

direct correspondence to specific symbols in the problem-pattern of the Quadratic
Theorem. For example, in equations (a) and (c) squaring may appear more than
once. In equations (a) and (b) it is not "x" that is squared and in equation (c) "x"
does not represent the unknown. It may be particularly difficult to recognize the

relevance of the Quadratic Theorem to graphing thc equation in equation (c).

Context 4: A textbook's statement of a theorem.

a) The Quadratic Theorem.

b) Thc Theorem on Absolute Values: I x I < c is equivalent to -c< x< c.

In Context 4 the theorem itself is the focus of attention. Meaning is assigned
according to the symbolic structure of the theorem, which contains paired equa-
tions or inequalities, rather than through the interpretation of symbols within indi-
vidual equations. As a conceptual entity, a theorem is perceived as describing



when it may be used (with its problem-pattern) and how It may be used (with its
solution-pattern). The collection of symbols in a theorem conveys information
about the abstract family of problems to which the theorem applies and the prob-
lem-solving process the theorem describes, rather than about the end results of
using such processes. This shift in perception represents a level of abstraction
above that used in the preceding contexts which were focused at a parametric arid
operational, rather than a structural level.

Conclusions

The four contexts illustrate how different types of meaning can bc assigned to
the same collection of algebraic symbols according to the nature of the mathemati-
cal entities for which these symbols act as signifiers. Context 1 represents the use
of algebraic symbols as a way to convey a generalization about a particular pattern
of arithmetic computations. In Context 2 symbols arc used to identify a single
family of equations to which a single solution-process applies. The Quadratic
Theorem is perceived as a description of the way in which this family can be
represented and manipulated rather than as a process that is executed.

Context 3 requires an expansive generalization of the concept of a quadratic
family of equations. This type of generalization extends existing cognitive struc-
tures rather than changes them (Tall, 1991). In this contcxt the objects to which
the operation of squaring applies need no longer bc fixed unknown numbcrs repre-
sented by "x," but can also be variable quantities expressed by other algebraic
expressions. This use of dummy variables where "xi" can represent "y2" and "c"
can represent "x2 - 14" does not have a parallel in English or other languages. Thc
dummy variables in this context take on meaning for their ability to represent
operations as objccts.

In Context 4 the theorems describe certain types of problems and how to solve
them by using an abstract problem-pattern/solution-pattern structure. This struc-
ture represents an abstraction of thl operations used in previous contexts to solve
specific families of equations.

What is diffcrcnt in each of the four contexts is the way that the collection of
algebraic symbols representing the Quadratic Theorem is perceived. However,
shifting perceptions is not a simple matter. Expansive generalizations, which cre-
ate more complex contexts for conceptual entities, may perform an important role
in preparing students to move to a new level of abstraction. If "we inadvertently
present simplified regularities which become part of the individual concept image,
[these] deeply ingrained cognitive structures can cause serious cognitive conflict
and act as obstacles to learning." (Tall, 1989, p. 37)

Shifts in perception that involve conceptual reorganizations take place through
thc process of abstraction. According to Sfard (1991, p. 18), "First there must be a
process performed on already familiar objects, then the idea of turning this process
into an autonomous entity should emerge, and finally the ability to see this new
entity as an integrated, object-like whole must be acquired." Students at a lower
level of mathematical abstraction will not perceive the higher-level objects (Sfard
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and Linchevski, 1994). The new objects are apparent only when one has made an
appropriate abstraction and shifted to a new perceptual focus.

The four contexts also exliibit anothcr property of algebraic entities. Collec-
tions of symbols may be perceived operationally as processes or structurally as
objects (Sfard, 1991). The specific abstractions that are required to shift percep-
tion from Context 1 to 2, and from Context 3 to 4 illustrate how meanings assigned
to collections of symbols shift from one of using processes to one of studying the
structure of these processes. According to Sfard, there are "differences between
these two modes of thinking [that reflect different] beliefs 2.;Jout the nature of
mathematical entities. There is a deep ontological gap between operational and
structural conceptions" (p. 4).

The examples discussed in this paper illustrate the range of mathematical en-
tities that may be perceived within the same collection of algebraic symbols and
how specific contexts can elicit a procedural or a structural interpretation of these
entities. Such an analysis has been used to formulate research tasks to study stu-
dents' abilities to use particular algebraic constructs (Sfard and Linchevski, 1994;
Teppo and Esty, 1994).
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THE EMERGENCE OF THE SPLITTING METAPHOR
IN A FOURTH GRADE CLASSROOM

Ada lira Sdenz-Ludlow, The University of North Carolina at Charlotte

In this classroom a child introduced the word split when he was asked to describe his
mental activity in performing the addition of two numb;:rs: the teacher initiatcd a spatial
representation using a broken line. Subsequently. the children used their own pictorial
representations. The paper presents an analysis of the numerical diagrams used by these
fourth graders to represent their splitting notion. Splitting evolved into a metaphor that
fostered the emergence of these children's numerical meanings.

Introductkm

Metaphors according to Lakoff (1987,1994), Lakoff and Johnson (1980), and
Johnson (1987) arc not just a matter of language but of thought and reason. Meta-
phors, for them, are mapping "motivated by structures inhering in everyday expe-
rience" (Lakoff, 1987, p. 287). Metaphors, they contend, arc mappings that put
into correspondence two different domains of experience preserving their basic
logican image schemata domain that structure our experience preconceptually
and a conceptual abstract domain. In this fourth grade classroom, splitting be-
carne more than a peculiar way of speaking; it became a metaphor establishing a
correspondence between thc physical experiewial domain of breaking and divid-
ing into parts and the conceptual domain of unfolding or deunitizing a numerical
unit into smaller subunits.

During the first months of the school year, thc splitting metaphor and its
spatial representations became, for the children, a thinking tool to conceptualize
place value and solve word problems. Children used the splitting metaphorical
expression to describe their mental actions of deunitizing a composite unit into
simpler units to fit their particular goal when operating with natural numbers. These
children's diagrams indicate the enactment of their mental actions to operate with
natural numbers in different contextual situations. The splitting metaphor was
represented through numerical diagrams that acquired different degrees of com-
plexity and they were additive (decomposition of a unit into simpler units of dif-
ferent magnitude) or multiplicative (decomposition of a unit into simpler units of
the same magnitude) in nature. Initially, the splitting metaphor emerged, as a
linguistic device in a classroom discussion, from the numerical conceptual evolu-
tion of one child; the teacher legitimized it by in,tiating a spatial representation of
it and incorporating it in the flow of the classroom conversation. The splitting
notion seems to be a natural notion to children since they immediately started to

The research reported in this paper is supported 1)) the National Science Foundation under grant No.
RED-9155734. The opinions expressed do not necessanly reflect the views of the Foundation. The
author acknowledges the collaboration of Dr. Marcela Perlwitt (luting the first year of the teaching
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use it to make diagrams or spatial representations of their own mental ways of
operating with numbers.

The Study

The teaching experiment. Dui ing the school year, the fourth-grade arithmetic
class was team taught by thc researcher and thc collaborating teacher. All instruc-
tional tasks for the arithmetic class were generated to make emphasis on natural
numbers as composite units (Stet fe, von Glasersfeld, Richards, and Cobb, 1983;
Steffe and Cobb 1988) that could be themselves iterated to form a larger unit or
decomposed into smaller subunits. Besides the instruction during the arithmetic
class, these fourth graders were interviewed weekly in small groups of at most
three students. These groups were constituted taking into account the inferred
numerical understanding or each child and his or her willingness to work with the
other members of the group. Every class and interview was videotaped and tran-
scribed, field notes were taken, and the task pages and children's scrap paper were
collected.
Organization of the teaching activity. Typically, children were given tasks on
paper or verbally to solve individually while encouraged to consult and discuss
with other classroom members. After the task appeared to be solved by the major-
ity of the students, a whole class discussion took place. Children presented their
solutions using the overhead projector or the board. A sequence of teacher's ques-
tions and children's explanations of their solutions characterized the interaction.
Learning from Cobb (1989, 1990), and Cobb, Yackel, and Wood (1992), since the
beginning of the school year there was an explicit mutual agreement between the
teachers and the students about their responsibility to listen carefully to the solu-
tion of others and to express their agreement or disagreement by giving a reason
for it. This agreement was consolidated throughout the school year. After the first
three months of the school year, children's mental engagement in the classroom
activity was manifested by collective applause when a child presented a solution
that they considered to be novel or they perceived the presenter appeared to have
difficulties but successfully completed the task.

The Emergence of Splitting as a Metaphor

These children's conceptualizations of units of ten and their understanding of
the place-value structure of the liindu-Arabic notation of numbers was minimal
and their operations with numbers was strictly procedural and dependent on con-
ventional algorithms. Our first concern was to help students to find their own
meaningful ways of operating with numbers. To do this, wc emphasized counting
and mental computation. Most of the time, numbers were presented verbally to
make relevant not only the units ol ten hut the relationship between number words
and number symbols. To facilitate mental computation, at most three numbers
were given to the children at once. At the beginning when numbers were pre-
sented in a written form, we used a rectangular 2-4-2 array of squares to locate
the numbers in three of them and the fourth was empty for the children to write the
sum. 1153 0
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By the middle of the third week of classes, the students were asked to add the
numbers 80, 5, and 15. Numbers were located in the rectangular array. After
children were given time to a, rive at their result mentally, the teacher asked the
children for their answers and explanations and she displayed them on the over-
head. In this and the following dialogues, T stands for teacher and any two-letter
set of an upper case letter followed by a lower case letter stands for the abbrevia-
tion of student's name and it will appear on italics in the body of thc paper to avoid
confusion.

I Am: 80 plus 5 is 85 (counting on her fingers by onc), 85 plus 15 is 100.

2 T: (writes 80 + 5 = 85, 85 + 15 = 100 as Am describes her solution).
How did you add these two numbers (Pointing at 85+15)?.

3 Am: 85 plus 5, plus 5, plus 5. That's 15 (showing 3 fingers).

4 Ra: You split the 15 into 5, 5, and S.

5 T: (simultaneously writes 85 + 5 + 5 + 5 = 10(1)

6 St: 5 and 15 is 20. 80 and 20 is 100.

7 T: (simultaneously writes 5+15=20, 80+20=100)

8 Pr: 80 and 15 is 95. 95 and 5 is 100.

9 T: (simultaneously writes 80+15=95, 95+5=100)

10 T: OK Ra, what did you do?

II Ra: 80 plus 15 equals 95. I split the 15 into 5, 5, and 5. Thcn 95 plus
5 equals 100.

12 T: (simultaneously writes
80 + 15 = 95 , 95 + 5 = 100)

5 5 5

The interaction between the teacher and thc students illustrates a simultaneous
event in which children's verbalimtions arc transformed or mapped into conven-
tional numerical equalities through conventional symbols that children have used
in their prior school years. The most significant part of thc dialogue is the split
interpretation that Ra madc of Am's way of acting on the numbers (line 4) and the
description of his solution using the splitting notion coupled with thc teacher's
attempt to symbolize it (lines 11 and 12). It is worth noticing that, in the above
solutions, children associated the numbers in the ways that wel e easy to operate
for them. In general, the way children associated the numbers on the rectangular
array were not prompted by their position given that there is not a puticular direc-
tion in which thc reading of numbers must be done in the matrix-type numerical
arrangement, but instead children associated them according to their emerging or
predetermined strategies to add thc numbers. In the course of this and thc follow-
ing lessons, Ra was given full credit for the introduction of this splitting notion in
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the classroom mathematical discourse. By doing this, the teacher not only re-
spected the intellectual contributions of one of the students but let the group know
that their collaboration in the elaboration of common mathematical understanding
was an ongoing process in which the students' partnership was needed and wel-
come.

Several questions emerge from the reflections on the above dialogue: Did the
students pursue their own diagrammatic representations in their efforts to explain
their answers? Did these representations coevolve with their numerical meaning-
making process? Did the diagrams acquire some degree of sophistication? The
analysis of children's solutions of mathematical tasks indicates that children au-
tonomously generated more sophisticated diagrams and generated other ways of
talking about the decomposition or deunitization of numbers into subunits.

The Splitting Metaphor and Operations with Natural Numbers

Once the teacher encouraged thc splitting metaphorical expression as a way
of speaking mathematically, the children considered it as a legitimate way of talk-
ing about numbers and they, on their own initiative, used it to communicate their
mental actions on numbers. Sometimes, children used the term "splitting" explic-
itly; othcrs, substituted it for expressions like "take away" or "break into" ; still
other children used their diagrams to communicate their solutions. In the follow-
ing dialogue, we can observe how children, in thc absence of paper and pencil,
were able to conceptualize units of ten and use the splitting metaphor to find the
sum of 26 and 25:

1 T: If I ask you to add, in your mind, 25 and 26, what do you get?
(Several hands go up)

2 Mi: 6 and 4 is 10 ones, you can make a ten.
2 tens and 2 tens is 4 tens, so is 5 tens; that is 50. 50 and 1 is 51.

3 Pr: I split 20 into 2 tens and 20 into 2 tens; 6 and 5 is II. 5 tens is 50
and 1 is 51.

4 Ka: 25 and 25 is 50 and 1 is 51. Let me show you ...(he goes to the
board and makes the following diagram)

26 25

A I
25 1

5 L : 5 plus 6 k 11. 2 tens and 2 tens is 4 lens, another 10 is 50. One
more is 51

6 St: 1 took 6 away hoot 26 and 5 away from 25. 20 and 20 is 40.

6 and 4 is ten. One more is 51.

In line 2, Mi's answer indicates that she conceptuahied 26 as 2 tens and 6 ones,
and 25 as 2 tens and 5 Ones. it seems as if she had continued the splitting process
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for 5 as 4 and I. Mt not only kept in mind the decomposition of 25 and 26 into
uMts of ten and one but also was able to operate without confounding them. That
is, 5 tens and 1 one were for her 51 and neither 6 tens nor 6 ones; Mi's sophisti-
cated reasoning seems to have been supported by some type of mental image. In
line 3, splitting seems to be the mental purposive action that allowed Pr to deunitize
26 and 25 into units of ten and one. In line 4. Ra implicitly dcunitized 26 into 25
and 1, added the two units of 25 and then added to it thc unit of one. His verbaliza-
tion was immediately followed by a diagram indicating that either he had a mental
image of it to support his actions on the numbers or he generated it in the midst of
verbalizing his explanations as a way of communicating with his peers. In line 6,
St's solution is essentially similar to that of Mi but she expressed the splitting
action as taking away from as she took 5 and 6 away from 25 and 26 respectively.

The following task was posed by one of the students. He took a fake 1000-
dollar bill from one of the banks (a bank was a plastic box with fake dollar bills of
all the denominations which were kept classified) and asked his classmates if thcy
could find the number of 50-dollar bills for which this hill could be exchanged. Ri
offered this diagram as his solution.

Ri's o:iagram:

2101

--
200 4.,

2t0,

So

SO

SO

50

50

50

So

So

600 400

2101

50

so

50

.-
2101 4..

50

Ri's diagram is additive or a hybrid between additive and multiplicative. Additive
because at level I (first split) the thousand unit was not &unitized into units of thc
same size. At level 2 (second split) the deunnwation was done into units of 200,
and at the level 3 (third split) the deunitization was done into units of 50. To make
the diagram, Ri had to anticipate thc consecutive unfol ling of each of the units at
each splitting level of the diagram. The diagram represents Ri' s ways of express-
ing his mental actions on numbers in terms of his physical experience of splitting.
Ri's cognitive behav ior seems to he in accordance to Lakoff and Johnson's conten-
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tion about "the essence of metaphor in understanding and experiencing one thing
in terms of another" (p. 5, l980).

Discussion
The splitting notion and its diagrammatic representation (whatever shape it

took) became a collective way of speaking to express one's numerical reasoning
and to understand the numerical reasoning of others. In the long run, splitting
diagrams that were individually or collectively generated became a conceptualiz-
ing tool that fostered these children's numerical reasoning. That is, splitting be-
came more than a way of speaking, it became a way of describing the mental
action of decomposing numbers into subunits as conceptually perceived by the
children according to their needs to operate with thcm. One question that would
be of importance to consider is whether or not the physical notion of splitting
projected into a numerical context, was user: oy children only in isolated instances
at the beginning of the school year or it. ;: occurred frequently and evolved through-
out the school year to support chiWen's conceptualization of fractions. An ex-
tended version of this paper will present evidence that supports this question in the
positive. The role that metaphorical elaboration plays on children's numerical
sense making, thc conditions under which these metaphors emerge from children's
efforts to operate with numbers, the influence of the social interaction on children's
way of thinking, and the interdependent nature between mathematical thought and
speech seem to be ol interest for the teaching of arithmetic in the clas.room.
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NEGATIVE NUMBERS IN THE TEACHING OF ARITHMETIC.
REPERCUSSIONS IN ELEMENTARY ALGEBRA.

Aurora Gallardo, Centro de Investigación y de Estudios Avanzados del IPN, Mexico

This article reports the results of a questionnaire applied to 35 secondary school students in
order to explore the efficiency in the resolution of equations in the domain of whole num-
bers and the spontaneous responses to problems leading to negative solutions. The most
significant results obtained with the questionnaire are the lack of knowledge of the double
use of brackets in arithmetic expressions, the partial comprehension of the operation of
subtraction and the difficulty in the operativity of expression with double signs. The con-
clusions of this research suggest reccommendations for the teaching of whole numbers.

The Study

The present work describes the first stage of the project "The Status of Nega-
tive Numbers in the Resolution of Equations" (Gallardo, I994a). This project deals
with the study of negative numbers in their interaction with the languages and
methods used to solve equations and problems. Other stages of the. project are
described in Gallardo & Rojano (1993, 1994) and Gallardo (1994b). This article
reports the resulLs of a questionnaire responded to by 35 secondary school students
in order to explore proficiency in the resolution of equations in thc domain of
whole numbers and the spontaneous responses to problems leading to negative
solutions. The interest in reporting the first stage of thc project is the impolance
that the results obtained by the use of this questionnaire have for the teaching of
whole numbers in the field of arithmetic and their later repercussions in elemen-
tary algebra. Thc questionnaire was responded to by students aged between 12-13
years, before they had received any formal algebra teaching, and covered the fol-
lowing topics:

1. Operativity in the domain af whole numbers at the syntactic level
and their representation in the number line. The student is asked to
solve additions and subtractions with whole numbers using the num-
ber line. The most difficult exercises were the following' : a - (-h) =
and - a - (-h ) = with a, h natural numbers. Thc students obtained a
percentage of correct answers ranging from 37% to 6 % on the above
items.

Regarding the operativity of whole numbers at the syntactic level, exercises of the
following form were designed: a + b= , a b., -(a + b)=, (-a) + (-b) =, and a - (b-
,--(l)=, with a, h whole numbers. Furthermore, the student is asked if the following
expressions are true or false: a + b = a + b: (a)(-b)=(-b)(a); -a (b( (a ( c)( 1);
a - (b-c)=(a-b)-c; a (b-c)=ah - ac with a. h natural numbers. Marks below 30%

' All the examples in the questionnaire are numerical.
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were obtained with this type of exercises. The greatest difficulty was due to the
erroneous operativity of the minus sign together with the inadequate use of brack-
ets.

2. Location of the symmetric of a number in the model of the number
line. On the items corresponding to the symmetries of numbers:
(+a), -(-(4-a)) with a as natural number, marks of 40% were obtained.
The most difficult exercise of this theme corresponded to the sym-
metric of (-(-a)), that is, with a double minus sign. The percentage of
correct answers in this case was 20%.

3. Order in whole numbers. The following questions were to be an-
swered on this theme:

Order these numbers from smallest to largest: -4. 3, 0, 14, -3, -8.

Write three whole numbers greater than -3.

Write three whole numbers smaller than -7.

Write a whole number between -3 and -7.

Write a whole number between -1 and 2.

How many whole numbers are there between -5 and 0?

How many whole numbers are there between -4 and 8?

The exercises 4 and 5 obtained the highest number of correct answers (from
83% to 77%). Item 6 achieved a higher percentage (66%) than item 7 (57%). The
latter exercise is more difficult because "you have to pass through zero" . Exercise
1 corresponds to the order which "appears natural to the stiuknt" , that is, to order
from smaller to larger (43% correct answcrs).

4. Translation into symbolic language of situations expressed in words.
In these exercises different situations were presented and the student
was asked to describe them using whole numbers. The following
illustrates somc of these situations:

The temperature is 20 degrees below zero.

Jose won 2 5(X) pesos.

Archimedes was born in the ycar 267 before our era.

The school is owed 25 (XX) pesos.

Rosa mid ter won nor lost.

The lowest percentage of correct answers corresponded to itcm 5 (68%).

5. Use of pre-algebrMc languages in the context of equations. In these
excercises the student is asked to solve equations with the form:
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.±a=b,a b and a El±. b = c , with a, b, c whole numbers.
The most difficult items (40% correct answers of the total) were those
where the number sought is negative.

6. Resolution of word problems. These problems revealed that the stu-
dent has difficulty in formulating a subtraction when the statement
contains the word difference. In the same way, problems with nega-
tive solutions are complicated for thc students. In the latter case thc
percentage of correct answers is 7% (see results 3 and 4 of this ar-
ticle).

Results of the Study
Among the most significant results obtained with the questionnaire are the

following:

1. Lack of knowledge of the double use of brackets in arithmetic ex-
pression:.. Students are unaware that the bracket can be used as a
symbol for grouping terms in an additive situation and as a multipli-
cative operator. To illustrate this ..ve can take as an example one of
the items on the questionnaire where students arc asked to decide if
the equality 20-(7-8)=(20-7)-8 is true or false. Observe that in the
first side of this equality the bracket indicates thc grouping of 7-8.
Moreover, the same bracket expresses a multiplication by -1, denoted
by the minus sign which precedes it: -(7-8). The operativity is car-
ried out with whole numbers. However, in the second side of the
previous equality, the operations are effected in the domain of natu-
ral numbers and the brackets indicate only thc grouping of 20-7.

These facts, which are not atken account of in the t,..!aching of arithmetic, arc
inherited by algebra. The student does not understand expressions such as the fol-
lowing:

(x-y) + (w-z) = (x+w) - (y+z)
(x-1)2 = (x2-2x) + 1

(!)
(2)

In the first side of (1) the brackets group terms and in the second side the
bracket is used as a multiplicative operator (observe the minus sign in front of the
second bracket). Again, in the first side of (2), the brackets in,ficate squaring an
expression. In the second side, the brackets group the first two terms of a trino-
mial. In the terrain of algebra the situation becomes more complex because the
literals do not reveal the numerical domain to which they pertain. It is very imlx)r-
tant to warn the student from the outset, that is, from thc teaching of arithmetic,
with which numbers they are working in the exercises they do.

2. Wrong resolution of pre-algebraic expressions. There is greater dif-
ficulty in equations of the form El .1 a = b, a El = b and a ID:f
b c with a, h whole numbers when the value sought is negative.
This situation permit:. ae conjecture that a place-holder will contrib-
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ute to the avoidance of the negative solution in algebraic equations.
The place-holder has the inherent connotation of "being filled" . The
student generally seas to "fill it" with a positive number.

3. Partial comprehension of the operation of subtraction. The student
does not solve word problems which indicate the difference between
two whole numbers with a subtraction. Moreover, he/she erroneously
conceives situations of "complete to" as in the following item: "A
person is going to copy part of a book, from page 29 to page 35 . How
many pages does he copy?". The majority of students effect the sub-
traction 35-29, that is, they understand the subtraction as "take away".

4. Abandoning of arithmetic methods and use of literals in the formula-
tion of word problems when the solution is negative. This situation
is found in those problems with an evident contradiction in the state-
ment if the student supposes that the solution is positive. An example
of this is the following problem: A says to B: "If you give me all your
money and I add it to mine, I can buy a horse which costs 1000
units". B answers A: "If you had three times what you have and I had
double what I have, altogether it would add up to the price of the
horse". How much money did each friend have?

The student writes the response "it can't be done", or else "who do I pay
attention to, A or B?" . Other students try to formulate an equation even though
they have not had any formal algebra teaching.

5 . Arithmetic methods make one of the conditions of some word prob-
lems unnecessary. This happens, for example, in the following prob-
lem: "A salesman has bought 15 pieces of cloth of two types and paid
160 coins. If one of the types cost 11 coins the piece and the other
costs 13 coins the piece, how many pieces did he buy of each price?"
Fifteen students look for multiples of 11 and 13 that add up to 160
(this is equivalent to solving the equation llx + 13y = 160. The ex-
istence of x + y = 15 is ignored). The students do not sec that one of
thc two solutions is negative. However, this problem can be solved
arithmetically, changing the data in the statement in order to obtain
contradictory facts and provoke a conflict. In this research, conflict
is achieved by decreasing the numerical data 160, 15, 13 and 11 to
40, 3, 3, and 2 (see Gallardo & Rojano, 1993).

The considerations expressed above show thc necessity of solving, via teach-
ing, thc difficulties presented with negative numbers in the field of arithmetic,
before students begin formal algebra courses.

In the research literature, authors such as Glaeser (1981), Bell (1982),
Freudenthal (1983), Fischbcin (1987), Janvicr (1985) and Peled (1989), among
others, have indicated the conceptual and operative problems which arise during
the process of teaching-learning of negative numbers. Specifically, Vergnaud (1989)
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points to the obstacles that these numbers represent when they are introduced into
teaching, preceding the study of algebraic concepts. On the other hand, expres-
sions such as (I) and (2) above are analyzed as propositional rules lacked visual
salience (Awtry & Kirshner, 1994).

Recommendations

The conclusions of the research described in this article suggest the following
recommendations:

1. To inform students of the numerical domain of the expressions to be dealt
with, explaining the doubli.t use of brackets.

2. To use the method of teaching by diagnosis, which implies the identifica-
tion of errors and false conceptions in a topic and later the formulation of
a design for teaching in which the difficulties are exposed and solved
through discussion-conflict.

3. To encourage the use of teaching models with whole numbers, different
from the model of the number line, which permit other interpretations of
the negative number, different from that of positions or displacements.
We suggest the use of discrete models where the whole numbers repre-
sent objects of an opposing nature (protons, electrons; black balls, white
balls, etc). In these latter models, the sign of operation is distingtnAed
from the sign of number in the case of double signs (-(-a), +(-a) and -
(+a)/ .

4. In the resolution of pre-algebraic equations, we recommend the teacher
not restrict hisTher use of the place-holder as "a place to be filled by a
number" but to encourage the methods of inversion of operations which
propitiate "operating the unknown" and the extension of the numerical
domain of solution in the terrain of true algebra (Filloy & Rojano, 1984).
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CONSTRUCTIVIST LEARNING AND EXPLICIT TEACHING OUTCOMES:
A COMPARISON OF VARIABLE REPRESENTATION

Bryan Moseley University of California at Santa Barbara
Mary E. Brenner, University of California at Santa Barbara

Grasping the concept of a variable is a difficult but central portion of middle
school students' first attempts to understand algebra. Instructional methods for
presenting this material have gravitated toward two models: I) an active teacher
who details concepts and procedures explicitly 2) a constructivist approach in which
the student is given autonomy to form new understandings by investigating new
information an .1 building upon their pre-existing knowledge. At issue are the dif-
ferences in naive (i.e.. inaccurate or incomplete) conceptions of variables and their
notations, that students report after receiving different types of instruction, as well
as students' ability to extend their mathematical knowledge to represent and solve
word problems.

This research presents a qualitative comparison of stventn grade pre-algebra
students' ideas of variables and their notations as a function of the type of instruc-
tion that they received. Three seventh grade pre-algebra classes, taught by the
same teacher, were selected. Two treatment classes received a constructivist cur-
riculum designed by the research team to emphasize group work, multiple repre-
sentations, and student centered learning. The remaining class, designated as a
comparison, received explicit teaching from a traditional text. Samples of five
students, balanced for gender, ethnicity, and prior achievement were selected from
each class, and interviewed imtnediately before and after the time of instruction
for a total of fifteen respondents.

Qualitative analysis of the posttest interviews support quantitative findings
(Mayer, Lewis, Hegarty, 1992) that students' conceptions of variables are impor-
tant predictors of success, and that students who learn constructively display dif-
ferent types of naive conceptions about variables than their explicitly taught peers.
Students in each treatment class made more attempts to link variables to real world
constructs, but also displayed more naive conceptions overall than the comparison
class. The data also suggest that students who learn in a constructivist paradigm
develop greater facility in representing word problems with algebraic notation.
Students in the two treatment classes were able to represent a difficult two step
problem with an algebraic equation and find a correct solution with greater fre-
quency than their explicitly taught peers.
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TEACHING SYSTEMATIC WORD PROBLEM SOLVING USING TWO
EQUATIONS IN TWO VARIABLES WHEN THERE ARE TWO

UNKNOWNS AS SOON AS POSSIBLE IN ALGEBRA I

Susann M. Mathews. Wright State University

This presentation reports an experiment in which Algebra 1 students learned
to translate word problems with two unknowns from the prose representation to
symbolic representation using a variable to represent each unknown when they
first started solving word problems with two unknowns. Intbnnation processing
theory states that the capacity for short-term memory is only about four chunks of
information; experts have large chunks, and novices have small chunks. Because
novice algebra students have only four small chunks of short-term memory to
work with when solving a word problem. it is important for them to break a prob-
lem down into small pieces and write each of their pieces on paper to extend their
short-term working memory. Thus representing each unknown with a variable
and each relation with an equation extends students' working memory. Forcing
students to represent all of the unknowns in terms of one variable, as is tradition-
ally done, forces them to define and solve each relationship between variables in
their heads, thus trying to use more short-term memory than they have. Experi-
mental group students' performance on a test of word problems with two unknowns
was compared to Vie results on the same test taken by students who had learned to
solve word problems with two unknowns the traditional way, using only one vari-
able to translate from prose to an algebraic equation. Four algebra teachers and
196 of their students participated in the study. A factorial block-randomized de-
sign was used. There was a statistically significant difference in the median over-
all problem-solving scores, and in the scores reflecting students' translation from
the prose to a symbolic representation. of the experimental group and the control
group on this word problem test with the experimental group scoring substantially
higher. The statistical tests performed suggest that this difference is attributable to
the experimental treatment.
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USING THE BALANCE SCALE AS A CATALYST FOR THINKING: CHILDREN
BUILD ON THEIR OWN LANGUAGE AND CONCEPTION OF EQUALITY TO

CONSTRUCT A RICHER INTERPRETATION OF THE EQUALS SIGN

Barbara MacKay Gupta, Washington State University

Researchers have noted that students of all ages have difficulty moving be-
yond a barren, unidirectional interpretation of the equals sign (see Kieran, 1992).
This study, unlike previous work, investigated second grade students' conceptions
of equality, as distinct from their interpretations of the equals sign, and docu-
mented the students' construction of a richer interpretation of that sign, both in the
classroom and interviews.

These students, as those in previous studies, declined to accept equations such
as 5 = 5 and 6 = 2 + 4, stating that they were "not true" or that they "didn't make
sense", and interpreted the equals sign only as a "do something signal" (Behr,
Erlwanger, and Nichols, 1975), rejecting its use for comparison. However, stu-
dents' conceptions of equality were spontaneously and intrinsically comparative.
They used many synonyms to describe the equivalence of various sets of objects
presented to them, such as "the same number as", "as many as", and "they both
have two".

Using the balance scale as a device to compare the nurnerosity of sets of ob-
jects, and games which provided familiarity with the equals sign in new contexts,
all children readily accepted the comparative process. Building on the synonyms
they had produced earlier, and generating new ones tied to thc use of the balance
scale, such as "level" and "balanced", children gradually began to use the word
"equals" in a comparative sense in arithmetic contexts. Soon they were using the
sign as a comparative symbol as well.

Leslie said, "Ten equals ten because they are the same amount". Kate de-
scribed her moment of chang: "When I started looking at it 110 = 4 + 61 mot-L.
with the equal sign there, 1 knew it must be a real sentence because 10 logs equal

+ 6 ... 6 + 4." Joshua said, "It's just like if you put 10 cubes on the balance scale
and another 10 cubes on the other side of the balance, it's going to he balanced".

Thus, children used a balance scale and related activities to change their pat-
terns of thought regarding the equals sign: to construct a richer interpretation of
the equals sign from their already rich conception and language of equality. The
classroom teacher will base her next fall review on the balance scale as a result of
our work together this Fpring.
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A FRAMEWORK FOR ASSESSING YOUNG CHILDREN'S
THINKING IN PROBABILITY

Graham A. Iones, Illinois State University
Cynthia W. Langrall. Illinois State University
Carol A. Thornton. Illinois State University

Based on a .iynthesis of the literature and observations of young children over two years, a

framework for assessing probabilistic thinking was formulated, refined and validated. For

each of four major constructs incorporated into this frameworksample space, probability

of an event, probability comparisons, and conditional probabi iity--four different levels of

thinking were estabhshed which reflected a continuum from ubjective to numerical rea-

soning. The framework was validated through data obtained from 24 children of grades 1

through 3 who served as case studies. Results suggest that while the framework produces a

unified picture of children's thinking in probability, there is "static" in the system which

generates inconsistencies among construct levels. The framework has implications for cur-

riculum developmlait and assessment.

Although there has been considerable research into young children's thinking

and misconceptions in probability (Fischbein, 1975; Fischbein, Nello, & Marino,

1991; Garfield & Alhgren, 1988; Piaget & Inhelder, 1975, Tversky & Kahneman,

1982; Shaughnessy, 1992), none of this research has generated a famework for

systematically assessing young children's thinking in probability. Given the call

for including probability in the elementary school curriculum (National Council

of Teachers of Mathematics, 1989) and the inclusion of probability in state and

national assessments (e.g., Illinois Goal Assessment Program, 1993; Mullis, Dossey,

Owens, & Phillips, 1993). there is a need to describe children's probabilistic think-

ing as a basis for generating appropriate curriculum and assessment programs.

Aims of the Research

Based on a synthesis of the research literature related to children's thinking

about probability (e.g.. Fischbein, Nello. & Marino, 1991; Piaget & Inhelder, 1975;

Shaughnessy, 1992) and related neo-Piagetian research that postulates the exist-

ence of different levels of complexity in children's thinking (e.g.. Biggs & Collis,

1991; Cas,!, 1985), this study attempted to:

develop and refine a framework for describing and predicting how

young children think in probabilistic situations; and

se the framework to generate assessment protocols to validate the

framework.

Theoretical Considerations

The thesis of this study maintains that for children to exhibit probabilistic

thinking, there is a need for them to understand probability concepts that arc mul-



_

tifaceted and develop over time. In order to capture the manifold nature of proba-
bilistic thinking, our Framework (Figure 1) incorporates four key constructs: sample
space, probability of an event, probability comparisons, and conditional probabil-
ity. In this study sample space refers to listing or identifying the complete set of
outcomes of a one- or two-stage probability experiment. Probability of an event
involves identifying and justifying which of two or three events are most likely to
occur. Probability comparisons entail determining and justifying: (a) which prob-
ability situation is more likely to generate the target event in a random draw; or (h)
whether the two probability situations offer the same chance for the target event.
Conditional probability refers to recognizing and justifying why the probability of
an event may or may not be changed by the occurrence of another event.

The first three of these constructs have been investigated by several research-
ers (Acredolo, O'Connor. Banks & Horohin, 1989; English, 1993; Fischbein, Nello
& Marino, 1991: Piaget & Inhelder. 1975). Few studies on the fourth construct.
conditional proability, have been directed at young children. However, interpre-
tations have been made from data on tasks involving elements of conditional prob-
ability (Borovcnik & Bentz., 1991; Falk, 1988; Konold, 1989; Shaughnessy, 1992).
Notwithstanding the extent of research into children's probabilistic thinking, it has
seldom investigated the four constructs in combination, aiid has not produced uni-
versal agreement on the scope of children's thinking in probability (Shaughnessy.
1992).

In addressing this need, our frameworkenables young children's probabilistic
thinking to he described and predicted across four levels for each of the four con-
structs. These levels have evolved from Our observations of young children's proba-
bilistic thinking over a two-year period. Moreover, the notion of levels of thinking
within specific knowledge domains is also in concert with cognitive research that
recognizes developmental stages (Piaget & Inhelder, 1975) and, more particularly.
with neo-Piagetian theories that postulate the existence of sub stages or levels that
recycle during stages (Biggs & Collis, 1991; Case, 1985).

As is highlighted in Figure I. Level 1 is associated with subjective thinking.
Le ye! 2 is seen to he transitional between subjective and naive quantitative think-
ing. Level 3 involves the use of informal quantitative thinking and Level 4 incor-
porates numerical reasoning. Further it is claimed that a child's probabilistic think-
ing at a given time is stable across all four constructs.

Methodology

Subjects

The population for the study comprised children in grades one through three at a
University lalxwatory school. Eight children, randomly sampled from each of these
grades, served as case studies. None of these children had been exposed to prior
probability instruction.



The Validation Process

To validate thc framework we sought to: a) ascertain whether children's thinking
at a particular level was stable across all four constructs: and b) confirm and refine
the characteristics of each level within the framework. Cochran's Q test (Siegel &
Castello. 1998) was used to assess the stability of framework levels and qualita-
tive analysis was used to address the rest of the validation.

Data Collection and Instrumentation

The framework and the validation process guided the design of the data col-
lection instruments and procedures. A structured interview assessment based on
the framework comprised 22 taskssix tasks associated with sample space, four
with probability of an event, seven with probability comparisons, and five with
conditional probability. This interview, audiotaped for subsequent analysis. was
administered by members of the research team to each of the case study students.

Each question in the interview assessment was scored according to a three-
part rubric: 1) fully met, 2) partially met, and 3) didn't meet the framework crite-
ria. Children's thinking on all questions was analyzed and coded by level for each
construct of the framework using the double coding procedure described by Miles
& Huberman (1984). As a result of this analysis, children's dominant level of think-
ing with respect to each construct of the framework was determined.

Validating the Framework: Results and Discussion

In validating the framework a major concern was to examine stability of
children's thinking across the constructs of sample space, probability of an event,
probability comparisons, and conditional probability. The results of Cochran's Q
test indicated that there were no significant differences among the thinking levels
generated by the four probability constructs. That is, each of the four constructs
were generally in harmony in identifying a child's probabilistic thinking level.

Notwithstanding the results of these analyses, there were not more than five
children for whom the thinking levels were in complete agreement across the four
constructs. Our observations and interpretations suggest that while the framework
produces a unified picture of children's thinking in probability, there is 'static' in
the system which generates inconsistencies among the levels based on each of the
constructs. Moreo,..:r. it is our contention that this static results from children's
tendencies to unexpectedly regress back to subjective judgments, even when their
probabilistic thinking is more indicative of "transitional" or "informal quantita-
tive" reasoning.

A second area of interest in the validation process was the refinement of de-
scriptors of children's probabilistic thinking at each level and across all four con-
structs. The analysis of children's thinking revealed that children exhibiting level
I thinking were narrowly and consisiently bound to subjective judgments. They
did not provide a complete listing of the outcomes in a one -stage experiment and
they almost always used subjective judgments rather than quantitative ones in situ-
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CONSTRUCT
Level I

(Subjective)
Level 2

(Transitional)
Leve, 3

(Infortm i
Quantitativ.)

Level 4
(Numerical)

SAMPLE
SPACE

lists an
incomplete set ot
outcomes for a
one-stage
experiment

lists a complete
set of outcomes
for a one-stage
sample space.
all(1
lists the outcomes
of a two-stage
experiment in a
limited and
unsystematic way

adopts and
partially applies a

adopts and
applies a
generattof
strategy /hill
enables r=
complete listing
ol the outcomes
for a two- and
three- stage case

generative
strategy to make
a complete listing
of outcomes for a
two-stage case

PROBABILITY
(,F AN
EVENT

predicts most/
least likely event
based on
subjective
judgments
distinguishes
-certain,"
"impossible." and
-possible- events
in a limited way

predicts most/
least likely event
based on
quantitative
judgments but
may revert to
subjective
judgments
distinguishes
"certain."
"Impossible," and
"possible" events
within reasonable
parameters

predicts most/
least likely events
based on
quantitative
judgments
including
situations
Involving non-
contiguous
outcomes)
uses numbers
informalty to
compare
probabilities
distinguishes
"certain."
"impossible," and
"possible" events,
and justifies
choice quantita-
tively

predicts most/
least likely events
for single stage
experiments
assigns a
numerical
probability to an
event (it may be a
real probability or
a form of odds.)

PROBABILITY
COMPAR I
SONS

compares the
probability of an
event in two
different sample
spaces, usually
based on various
subjective or
numeric
judgments
cannot distinguish
lair" probability
situations from
"unfair" ones

makes probability
comparisons
based on
quantitative
judgments (may
not quarMly
correctly and may
have limitations
where non-
contlguous events
are involved)
begins to
distinguish "fair"
probability
questions from
'unfair" ones

makes probabOty
compansons
based on
consistent
quantitative
judgments
justifies with valid
quantitative
reasoning, but
may have
limitations where
non-contiguous
events are
involved
distinguishes 'lair"
and "unfair"
probability
generations
based on valid
numerical
reasoning

assigns a
numerical
probability
measure and
compares
incorporates non-
contiguous and
contiguous
outcomes in
determining
probabilities
assigns equal
numerical
probabilities to
equally likely
events

CONDITIONAL
PROB AB II .ITY

tollowing a
particular
outcome, predicts
consistently that it
will occur next
time, or
alternatively that it
will not occur
again (over-
generalizes)

begins to
recognize that the
probability ot an
event changes in
a non-replace-
merit situation
can recognize
when certain and
impossible events
will arise in non-
replacement
situations

can determine
changing
probability
measures in a
non-replacement
sttuatton
recognizes thal
the probability of
all events change
In a non-
replacement
situation

assigns numerical
probabilities In
replacement and
non-replacement
situations
distinguishes
dependent arid
Independent
events

Figure I. Probabilistic thinking fratnework
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ations involving probability. Children reflecting level 2 thinking could list the com-
plete set of outcomes in a one-stage experiment. However, they didn't always use
these outcomes when responding to probabilities, especially in tasks involving
conditional probability. Level 2 is a period of transition where probability con-
structs are not always coordinated.

While acknowledging the subjective 'static' discussed above, children exhib-
iting level 3 thinking characteristically used quantitative judgments when dealing
with tasks based on probability constructs. They revealed a consistent predisposi-
tion to use numbers in describing and comparing probabilities, albeit not always
expressed as correct probability measures or odds. This predisposition to use num-
bers carried across into conditional probability situations, where children were
able to recognize that the probabilities of all events changed in a non-replacement
experiment. Children typifying this level of thinking, also tended to use more gen-
erative strategies in listing outcomes of two-stage experiments. Moreover, our analy-
sis of children's probabilistic thinking revealed that level 3 thinkers had begun to
coordinate thinking in sample space and thinking in probability in a more system-
atic manner.

The move from level 3 thinking to level 4 thinking needs further investiga-
tion, as none of the children in our study exhibited level 4 thinking across all four
constructs. 1tre was, however, evidence in this study that some children had
begun to use more precise measures of probability and listings of multi-stage sample
spaces. Our observations suggest that lack of knowledge of fracticns inhibitee. the
thinking of children who were otherwise predisposed to more precise }::.tability
measures.

In validating the framework, we have described children's probabilistic think-
ing at each of the four levels in content-specific terms. That is. we have related the
children's probabilistic thinking across the four constructs to a continuum of four
levels of quantitative reasoning. Moreover, the notion of levels of probabilistic
thinking appears to be in concert with the theoretical position of cognitive re-
searchers such Biggs & Collis, 1991; Case. 1985. They claim the existence of
more general cognitive structures which incorporate sub stages or levels of cogni-
tive functioning that recycle across broader stageK of development. Their theoreti-
cal position adds further support to the existence of distinct levels of probabilistic
thinking among children found in our study.

The framework generated by this study enables children's probabilistic think-
ing to be described and predicted in a unified and systematic manner. It does have
limitations in that the levels of children's thinking on the four constructs were not
completely stable and appeared to be subject to "static'. as children unexpectedly
regressed to subjective reasoning. Future research may reveal more stable patterns
if children whose thinking has generally progressed beyond level 1 probabilistic
thinking, arc assessed on the basis of their dominant level when they occasionally
revert to subjective judgments. The framework has implications for curriculum
development and assessment in relation to probability programs fer children in the
primary grades.
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A FRAMEWORK FOR THE QUALITATIVE ANALYSIS OF STUDENT
RESPONSES TO THE EXTENDED CONSTRUCTED-RESPONSE

QUESTIONS FROM THE 1992 NAEP IN MATHEMATICS

Patricia Ann Kenney, University of Pittsburgh (PA)

The purpose of this investigation was to develop a general framework for analyzing the
NAEP extended constructed-response questions qualitatively. The framework dimensions
were based on information about the NAEP extended questions, and linked to important
ideas in mathematics education and cognitive psychology. A set of student responses to an
extended constructed-response question from the grade-4 assessment was analyzed qualita-
tively according to appropriate framework dimensions. The findings suggest that the stu-
dent responses could be analyzed qualitatively, but further investigation is needed to verify
the adequacy of the framework.

The National Assessment of Educational Progress (NAEP) is a Congression-
ally-mandated survey of the educational achievement of American students and
changes in that achievement over time. Since 1978, NAEP has assessed student
performance in mathematics, with the most recent assessment conducted in spring
of 1992. Compared to earlier NAEP mathematics assessments, the 1992 assess-
ment was different in some important ways including closer alignment to the vi-
sion for school mathematics as presented in thc Curriculum and Evaluation Stan-
dards for School Mathematics of the National Council o'7 i ichers of Mathematics
(1989). An innovative feature of the 1992 NAEP mathmatics assessment in-
volved the introduction of a new item type called the extended constructed-re-
sponse question. As opposed to multiple-choice questions (which require students
to select the correct answer from a provided set of answers) and regular-constructed
response questions (which require students to generate their own numerical an-
swer or to provide a very short explanation), extended constructed-response ques-
tions not only require students to generate their own answers but also to express
their mathematical ideas in writing and to demonstrate thcir depth of understand-
ing.

Thc 1992 NAEP grade-4 mathematics test included live extended constructed-
response questions, and the grade 8 and grade 12 tests each included six such
questions. Students were instructed to allow themselves five minutes or more to
work on the questions. Instead of being scored "right or wrong," as were the
multiple-choice and regular constructed-response questions, a.: extended ques-
tions were evaluated according to a focused holistic scoring scheme with catego-
ries ranging from "minimal" (score level 2) to "extended" (score level 5). Quanti-
tative information about student performance on thc extended tasks used on the
1992 NAEP mathematics assessment formed the basis for a report by Dossey,
Mullis and Jones (1993). A critical review (Silver & Kenney, 1993) of the Dosscy,
Mullis and Jones report noted that although the quantitative summary format was

I wish to thank Dr. linfa Cat and Dr. Edward A. Silver for their helpful comments on previous drafts
of this paper.
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informative, the usefulness of the information was somewhat limited because no
effort was made to analyze student responses with respect to the kinds of strategies
and representations most frequently employed by students or with respect to the
kinds of errors commonly made by students.

The purpose of the investigation described in this paper was to develop a
general framework for analyzing the NAEP extended constructed-response ques-
tions qualitatively. The utility of the framework was then examined by conducting
a preliminary qualitative analysis of student responses to a selected NAEP ex-
tended task administered to fourth-grade students.

Developing the Framework

Initially, it was deemed beneficial to inquire whether the NAEP extended con-
structed-response questions were developed with the idea that student responses
would be analyzed qualitatively as well as quantitatively. Informal discussions
with mathematics education professionals and test developers involved with the
1992 NAEP mathematics assessment revealed that the extended questions were
not developed specifically to be analyzed qualitatively and that no qualitative ana-
lytic framework was ever developed. However, there was agreement among those
most deeply involved with NAEP that a qualitative analysis of student responses
to the extended constructed-response questions would be very beneficial, espe-
cially to classroom mathematics teachers, mathematics tcachcr educators, and cur-
riculum developers.

Since no qualitative framework existed for the NAEP extended constructed-
response questions, it was important to find sources of general information about
these questions and the expected kinds of student responses to be evaluated ac-
cording to a focused-holistic scheme, with the expectation being that this general
information about the extended questions might suggest appropriate framework
dimensions applicable at least to some (perhaps all) extended constructed-response
questions. Aftcr existing information sources about the NAEPextended questions
were consulted, it was determined that the general scoring guide for the NAEP
extended constructed-response questions (called the "generic levels of performance"
in Dossey et al., p. 89) provided the most useful information about possible di-
mensions for the qualitative framework. In particular, the general scoring guide
recommends that student responses be evaluated according to important critcria
such as conceptual understanding (e.g., "Response contains evidence of concep-
tual understanding" [quotations taken directly from the general scoring guidep,
solution strategics, (e.g., "Methods of solution arc appropriate and fully devel-
oped"), error patterns (e.g., "Response contains major mathematical errors"), evi-
dence of reasoning (e.g., "Response is logically sound"), and justification of an-
swer (e.g., [through the use of examples) - Examples provided arc not fully devel-
oped").

Those criteria of conceptual understanding, solution strategies, error patterns,
evidence of reasoning and justification of answer arc also among thc criteria rec-
ognized by cognitive psychologists (e.g., (Ilaser, Lesgold, & Lajoie, 1985; Royer,
Cisccro, & Carlo, 1993) and mathematics education researchers (e.g., Charles &
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Silver, 1989) as important dimensions for measuring students' high-level perfor-
mance. The evaluation criteria in the NAEP general scoring guide are also remi-
niscent of the categories used in the QUASAR' project's qualitative analytic com-
ponent. In QUASAR, a qualitative analytic framework has been used to report
results of complex performance on open-ended, paper-and pencil tasks (which are
similar to the NAEP extended constructed-response questions) with inspect to di-
mensions such as solution strategics, mathematical misconceptions, mathematical
justification, and modes of representation (Cai, Magone, Wang, & Lane, 1995;
Magone, Cai, Silver, & Wang, 1993).

Based on information from the NAEP general scoring guide, important ideas
from cognitive, psychology, and the QUASAR qualitative analytic model, it was
decided to select the following criteria as dimensions for the qualitative frame-
work for the NAEP extended constructed-response questions: (a) conceptual un-
derstanding; (b) solution strategics or modes of representation; (c) mathematical
errors or misconceptions; and (d) evidence of reasoning. It is worth noting here
that it was not the expectation that every NAEP extended question be evaluated
according to all four dimensions. Duc to differences in problem situations and
content, not all of the dimensions are equally appropriate for every extended ques-
tion.

Using the Framework

The dimensions of the qualitative framework were used to analyze student
responses to a selected NAEP extended constructed-response task. The qualita-
tive analysis itself was structured according to the model developed for the QUA-
SAR project (Magone, Wang, Cai, & Lane, 1993): 1) conduct a logical analysis
of the question to identify its cognitive requirements and content; 2) select appro-
priate framework dimensions based on the results of the logical analysis; 3) apply
the selected dimensions to a sample of student responses; 4) expand and modify
the selected set of framework dimensions based on results from thc sample of
students responses; and 5) conduct the qualitative analysis using thc final set of
dimensions for analyzing student responses. The following sections of this paper
focus on Steps 1-3 for qualitatively analyzing student responses to a 1992 NAEP
grade-4 extended-constructed response question, hereafter. referred to as "Piz2a
Comparison" and shown in Figure 1.

I QUASAR (Quantitative Under standing: ,oplifying Student Achievement and Reasoning)

is a Ford Foundation sponsored project designed to enhance mathematics instruction in
middle sci. -ols with high percentages of students from economically disadvantaged
communities. One aspect of the project has been the development of the QUASAR Cognitive
Assessment Instrument (QCAI I), a performance assessment used to measure the impact of
these enhanced instructional programs on students' mathematical reasoning, problem solving
and communication. Information about the QCAI can be found in Lane (1993) Silver and
Lane (1)93).
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Jose ate 1/2 of a pizza.

Ella ate 1/2 of another pizza.

Jose said that he ate more pizza than Ella, but Ella said that they both ate the
same amount. Use words and pictures to show that Jose could be right.

iDigure 1. NAEP grade 4 extended constructed-response question: Pizza Comparison

Sten 1: Logical.Analysis of the Pizza Comparison Question

The Pizza Comparison question was designed to "assess how well students
are making the transition from whole number reasoning into using concepts asso-
ciated with fractions" (Dosscy et aL, 1993, p. 91). Using a real-life setting of
comparing quantities of piz2a, the question measures students' understanding of
the importance of the relative size of the objcct or unit in interpreting a fraction
and taps into their knowledge ot proportional reasoning. Concepts such as the
importance of the size of the unit in faictions have been identified by mathcmatics
education researchers (e.g., Behr, Hard, Post, & Lesh, 1992) as critical to the
acquisition of a deep understanding of rational numbers.

Step 2: Selected Appropriate Framework Dimensions

Findings from the logical analysis of the Pizza Comparison question suggest
the following as appropriate dimensions from the framework:

Conceptual understanding: understanding of thc effect of relative
difference in the size of thc unit ("whole pizza").

Modes of representation: use of pictures only, words only, or a com-
bination of pictures and words.

Mathematical misconception: "112 is always I/2."

Step 3: Preliminary Results Using a Sample of Student Responses

At the time this paper was written, the researcher had 'access to a small sct of
student response (n = 25) to the Pizza Comparison question. The preliminary
findings from the qualitative analysis follow.

Conceptual understanding. Over half of the student responses (n = 13)
showed evidence of conceptual understanding of the importance of the relative
size of the unit in comparison of fractions. The most common method of demon-
strating the importance of relative size involved drawing two pizzas, one smaller
than the other, dividing each pizza approximately in half, and labeling thc larger
one "Jose" and the smaller one "Ella." In a few cases, students supplemented the
labeled drawings of two different-sized pizzas with one-sentence explanations (e.g.,
"Jose could have had a bigger pizza than Ella."): some students even mentioned
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sizes commonly associated with commercially-made pizzas (e.g., "Josd ordered a
large pizza and Ella ordered a medium pizza." "Her pizza was 8 inches, José could
of had a 12 inch pizza").

Modes of representation. Most responses in the set involved a combination
of words and pictures, a finding that is not surprising given these instructions to
the student: "Use words and pictures to show that Jose could be right." Figure 2
below shows typical examples of word/picture combinations. A few responses
were expressed in words only (e.g., "José's was large and Ella's was small [me-
dium]."), while a few others consisted of unlabeled pictures.

(a) - picture and complete sentence (b) - labeled picture

Zase cou.1,4,
Pr=ra caM sz \;(:- +6\ Eilo:s.

1.11C-piza

Figure 2. Examples of word/picture combinations for the Pizza Comparison Question

Mathematical misconceptEms. Twelve responses were based on the mis-
conception that "1/2 is always 112." In some responses, students drew two equal-
sized piz2as, divided them in half, and wrote a comment such as "Jose ate his half
and Ella ate her half; they both had 1/2 and they both ate the same amount." How-
ever, other responses associated with the misconception that 1/2 is always equal to
1/2 were based on drawing one pizza, dividing it in half, and designating the halves
as "Jose's" and "Ella's". This last example illustrates an en-or in understanding
that was not anticipated in the logical analysis. The sentence, "Ella ate 1/2 of
another pizza" (emphasis added) was a clue that the problem involved two differ-
ent pivas. However, some fourth-grade students most likely misunderstood or
misread the problem.

Conclusion

This study focused on the development of a framework for analyzing student
responses to the extended constructed-response questions from the 1992 NAEP
mathematics assessment. Results from a preliminary analysis of a small set of
responses to one extended question suggest that the student responses could be
analyzed according to thc framework dimension, but that further study of the ad-
equacy of the framework is needed using more responses and using all NAEP
extended questions.
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USING MULTIPLE SOURCES TO ASSESS
COMPETENCY IN MATHEMATICS

Sitsofe Enyonam Anku, Nanyang Technological University

The use of multiple sources to assess competency in mathematics is one of the
several recommendations for reforming mathematics education in North America
(NCTM, 1989). Multiple sources provide avenues for moaitoring students' evolv-
ing undemtanding and informal judgments of information from these sources can
be useful for making important instructional decisions. In response to the NCTM
challenge that mathematics educators implement the current reform in mathemat-
ics education, a major component of a 12-week introductory course in mathemat-
ics organized for prospective student teachers of a university was to assess the
students' competence in the course using multiple sources. The 30 students who
took the course were assessed through quizzes, journal entries, take-home assign-
ments, group investigations, group presentations, student constructed questions,
student assessment of the work of their peers. mid-term test, and end-of-course
test

Results indicate that about 40% of the students showed consistency of their
competence whichever source was used. Others (30%) demonstrated their com-
petence better using time-constrained sources like the quizzes, mid-term test, and
end-of-course test, while the rest were better with the open-ended sources, like the
journals and the group investigations. Also, the fonnative nature of the assess-
ment package made assessment integral to instruction and made mathematics learn-
ing more meaningful to the students. The benefit to the instructor was that he
could monitor students' progress from several sources and use information gath-
ered to inform subsequent instruction.

However, there were several challenges to the class instructor and to the stu-
dents. The instructor had to use a database to handle the large data set. Providing
number grades and appropriate feedback for students' qualitative data were other
major challenges. To the students. coping with the different assessment strategies
and balancing their work with assignments from other subject% were major chal-
lenges.

An implication of the results for teaching is that expanding the scope of as-
sessing students' competence in mathematics through multiple sources can pro-
vide each student with, at least a medium, for demonstrating mathematical compe-
tence. A major problem is how to handle the large amount of data generated through
the use of multiple sources. However, technology can resolve the problem. What
needs to be done is to train teachers to use technology confidently to handle such
enormous data.

Reference
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USING PORTFOLIOS TO ASSESS TEACHER DEVELOPMENT IN
ELEMENTARY MATHEMATICS TEACHER PREPARATION

Anne M. Raymond, Indiana State University

Relying on only one method of assessment does not necessarily yield an accu-
rate picture of student achievement. Thus there is a need to provide students alter-
native ways to demonstrate their understanding of coursc content. Portfolios have
the potential to engage students in decision making, provide students a voice in
their assessment, enhance their metacognitive awareness, and encourage students
to take responsibility for their own learning (Gilman & Rafferty, 1995).

In an effort to learn more about portfolio assessment and to demonstrate alter-
native assessment techniques to future elunentary mathematics teachers, I have
begun to incorporate portfolio assessment in my mathematics methods course.
My approach to portfolio assessment was informed by much of the current litera-
ture on portfolios (e.g. Gilman & Rafferty, 1995; Lambdin & Walker, 1994;
Stenmark, 1991).

Each semester, my preservice elementary mathematics students participate in
a midterm and final portfolio review conference in licu of an exam. During that
conference, students present chosen pieces for thcir portfolios which demonstrate
their understanding of course objectives and document their mathematics field
experiences. They provide verbal and written rationale for each piece selected. In
addition, students discuss their strengths and areas for improvement in mathemat-
ics teaching as a means of goal setting. Students are primarily responsible for
driving the conversation while my role is to ask questions and provide comments.
In addition, students are given varying degrees of freedom in developing rubrics
for grading the portfolio.

During the proposed presentation, I intend to (a) provide a general back-
ground about portfolio assessment, (b) discuss aspects of designing, implement-
ing, and evaluating portfolios in the mathematics methods classroom, (c) share
specific examples of preservice teacher portfolios and excerpts from portfolio con-
ferences, (d) describe how my experiences in using portfolios have influenced my
practice, and (c) present data gathered on prescrvic teachers' reactions to the
portfolio process.
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CRITERIA FOR PERFORMANCE-BASED TASKS IN MATHEMATICS

Kyoko Suzuki, University of Illinois at Urbana-Champaign
Delwyn L. Harnisch, University of Illinois at Urbana-Champaign

The objective of this study is to illustrate the criteria for a "good" item on a
performance-based assessment. Earlier research (Suzuki & Harnisch, 1995) dem-
onstrated seven criteria for performance-based (paper-pencil type "test") tasks: 1)
modeling real-world phenomena, 2) having multiple strategies, 3) having ordered
categories for memuring maturity levels, 4) connecting several concepts to solve,
5) depicting the achievement levels by verbal explanations, 6) detecting the dis-
crepancy between an intuitive solution and a mathematical solution, and 7) match-
ing complexity of task with a scaling system. Two tasks were evaluated by analyz-
ing students' responses to illustrate the above criteria.

Plephone Area Code Problem

Telephone area codes in the U.S. and Canada consist of 3 digits, in which the first is a digit
from 2 through 9, the second is either 0 or 1, and the third cart be any digit except 0. Show
all your work and explain how you found your answer.

(1) According to these rules, how many different arca codes can begin with 6?
(2) How many differerit area codes can be an odd number?

(3) What is the probability that an arca code is a multiple of 3?

Magic Square Problem

r
saArrange the integral numbers from 1 to 9 (1,2,3,4,5,6,7,8, and 9) into
this square and make sure that each row, column and diagonal has the

me sum: 15. Every number can be used only once. Show all your
work and explain how you found your answer.

The students' responses collected in June 1993 were scored using a general
scoring rubric from 0 to 4 with holistic perspective. The Telephone Area Code
Problem revealed multiple strategies that were found to be ordered by achieve-
ment levels. Responses to the Magic Square Problem revealed many different
solution approaches. For example, students drew many squares with numbers for
finding their answers and explained "trial and error" or "I found the answer by
chance" for their solution; however, these methods could not be ordered by achieve-
ment levels. Therefore, we can conclude that the Telephone Arca Code Problem
satisfies criteria 3 and 5, while the Magic Square Problem does not satisfy criteria
3 and 5. Performance-based assessment tasks must be distinguished from math-
ematical puzzles.
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HOW WELL IS CRITICAL THINKING EVALUATED?
FINDINGS FROM STUDENTS' AND TEACHERS'

ASSESSMENT OF EVALUATIVE ESSAYS

Howard Hansen, Western Illinois University
Judith Olson, Western Illinois University

Melfried Olson, Western Illinois University

What does it mean to be a 'better thinker"? In this study, we focus on critical
thinking which is defined as the examination and evaluationactual and poten-
tialof beliefs and course of action. Critical thinking is often defined to include
all good thinking including creative thinking. We should not conceive of critical
thinking solely as a technique for settling the truth and justice of things, but rather
as an enterprise of inquiry and understanding.

Our research involves the assessment of two distinct evaluative essays by
junior high and senior high student.s as well as preservice and inservice teachers
who were given a criteria and a rubric scoring scale from which to make their
assessment. The essays were to be written using reasoned judgment and multiple
criteria to support their conclusions. The data indicate that teachers, both prcservice
and inservice, do not appropriately use the rubric in the assessment process. The
evaluation by the junior high and senior high school students do not differ dra-
matically from those of inservice and preservice teachers.

The data provide a note of concern for educators who are in the process of
formulating open-ended alternative assessment instruments. If one component is
to evaluate 'reasoning', then a significant amount of practical experience and philo-
sophical discussion are needed by inservice teachers. Preservice teachers must
also be provided with both instruction that incorporates alternative assessments as
well as opportunities to evaluate such assessments.

In addition to a wide range of values for a given essay, there appears to be
differences in the ratings given by elemenvary and secondary preservice teachers.
Questions arc raised as to whether this ir:dicates differences in critical thinking
resulting from educational background or a gender difference since the preservice
and inservice elementary teachers were ail females and all hut one of the second-
ary students were male.
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A CONSTRUCTIVIST USE OF TECHNOLOGY IN PRE-ALGEBRA

Michael L. Connell, Ph.D., University of Houston

This paper will present two examples where technology, in this case a fairly sophisticated
authoring system Tool Book, was used as a tool to construct student understandings in
mathematics. In doing so, students were able: (a) to successfully identify the variables
(unknowns) and the information given (data) in the problem; and (b) to create meaningful
links between the data and givens which enable successful problem solution.

These examples were from work in a seventh grade pre-algebra classroom of
below average ability students in a middle class urban setting and arc from a single
classroom. The curriculum used was conceptually based and utilized a five phase
approach which allowed students to construct mathematical intuition via physical
materials and computer use (Connell, 1994, Connell and Peck, 1993).

In this method, the initial two phases require use of physical materials to present
problems and actively engage students with the materials to model mathematical
situations, define symbols, and develop solution strategies. The third phase uses
sketches of physical materials and situations experienced by the Students to en-
courage a move toward abstraction. These student sketches, many of which were
constructed using thc object based graphics of Tool Book on the computer', then
serve as the basis for additional problems and as referent.s for thinking. In the
fourth phase, the children construct mental images through imagining actions on
physical materials and manipulating thc computer sketch. Following these expe-
riences students construct arithmetic generalizations and problem solving skills
through scripting their understandings using ToolBook2.

This sequence might be visualized somewhat likc Figure 1 which, although
not complete, does capture thc look and feel of the approach fairly well (Wirtz,
1979; Connell, 1986).

Memory/Recall 'leacher Posed Prohlems Self Posed Problems

Manipulauves

Sketch

Mental Picture

Abstraction

Figure 1. Simplified model.

'It is interesting to note the parallels between the mathematical objects these students cre-
ated and the objects of analysis mentioned by Sfaid and Thompson (1994).
lJ have found HyperCard on the Macintosh works equally well. The key is not in the type of
computer, but rather in how it is used.
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Manipulatives

Sketch

Mental Picture

Abstraction

Memory/Recall Teacher Posed Problems Self Posed Problems

eArer,

Focus of technology useage

Figure 2. Focus of technology use.

This approach was implemented using an object oriented computer authoring
language, ToolBook in this case. The nature of this language allowed for a wide
range of powerful tools, such as drawing and painting, to be available for student
use, and yet still had relatively simple syntactic requirements conducive to expres-
sions in algebraic tcrms.

Students did work on computers until immersed in their problems via physi-
cal materials. Students commonly developed initial working representations on
the computer and identified what thc relevant information should be through cre-
ating appropriate input and output fields. The developing representations at this
time had features common to both sketches and mental pictures. Abstraction be-
van as they constructed their method of procedure and expressed it in algebraic
terms by scripting buttons. I think of this usage of technology as providing for
student construction of a bridge between sketch and abstraction as shown in Fig-
ure 2.

The computer acted as a tool and an active listener doing what it was told, not
as an instructor requiring a specific answer. This "tool" helped studcnts identify
variable(s) and information (data) necessary for problem solution and to construct
appropriate linkages. The 3tudent representations on the computer reflected their
own ongoing construction of meaning. Family resemblances were observed in
observing student work. First, students began by using the sketch tools to create a
working sketch. This seems to indicate a tight linkage between the curriculum and
the technology. Second, with skctch in place, students created and namcd fields
corresponding to variables. This appears to have been highly helpful in thcir think-
ing. Third, buttons were scripted linking fields and solving the problem. Thc draw-
ing tools of ToolBook and the ability to create almost any representation appeared
to liberate student thinking and contributed to a natural integration of computers in
the classroom.

Two student examples

These two examples illustrate how the set ipting of computer objects created
an entry point into thc algebra. In presenting these, several modifications were
necessary. First, colors were changed to black and whitc (originally thcy were
highly colorful) Students learned about paint options quickly. Second, field names

"C4 I
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compare clear

Example 1. Comparison of
fractions. This tool was created
after a review of fractions during
which the cross-multiply method
emerged. It is highly unlikely that
this was a spontaneous creation
most likely it was a "rediscovery"
or a "remembrance" of old learn-
ing.' The example shows how the
students used ToolBook, how-
ever, and provides examples of
scripting.

The first thing was to lay out
the problem space using fields
and graphic objects. As shown,
the fields used by the student have
been labeled A - G. The buttons,
compare and clear, were then
added and scripted to solve the
problem.

The scripting for the button
compare is shown. The script
breaks down into some well de-
fined sets of instructions bracketed between the to handle buttonup arid end buttonup
statements. These tell the button to execute these instructions when clicked.

I) The student first assigns variables (a, b, c, and d) which correspond
to the fields A - used for input by the comparison tool.

2) These variablescontaining values input when using the program---
are used in calculation of values which are placed in fields F & C.

3) Logical conditions are then checked to see which of the comparison
symbols (<. > or =) is to be placed in field E.

are indicated to aid discussion. Lastly,
spacing was added to scnpts to discuss
the function of each section. The ex-
amples were originally for students use
so formatting and annotating were noi
high priority. All else is as it was.

to handle buttonup

put the text of field A into a
put the text of field B into b
put the text of field C into c
put the text of field D into d

put d'a into the text of field F
put lo*c into the text of field G
put the text of field F into f
put the text of field G into g

if f>g then
put > into the text of field E

end if

if kg then
put < into the text of field E

end if

if f=g then
put = into the text of field E

end if
end buttonup

'This is not to say that students are incapable of constructing this method. For a discussion
of one class in which students did construct this method see Peck and Connell, 1991.
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The button clear was a much
easier task and merely required a
blank, or " ", to be placed into each
field where either a character or
numeral might be. This proved to be
of such great utility that a version of
clear soon became common in each
of the student created tools. This
illustrates creation of new objects by
combining features of previously
created objects. This not only enabled

A

X2 nx

X2

Then whcn needed, the student would
select it, expand it to useable size, and
then shrink it back when it was no
longer needed. It was not uncommon
to see created tools of various types
throughout any given "page".

Example 2. Multiplication of bi-
nomials. The similarity of approach
students brought to bear between these
two examples is easily seen. As in the
fraction tool, the first thing done was
to lay out the problem space using
fields and graphic objects.

In the sketch shown the fields
used by the student have been labeled
A - H, M, N, & P. Original field
names were not nearly so terse.
Snoopy. Wimpo, and REM all ap-
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to handle buttonup
put "" into the text of field "A"
put "" into the text of field "B"
put "" into the text of field "C"
put "" into the text of field "D"
put " " into the text of field "E"
put "" into the text of field "F"
put "" into the text of field "G"

end buttonup

Solve

Erase

the clear button to migrate,
but also allowed for the tools
themselves to be shared and
used by the entire class.

For example, the stu-
dent who created the tool
shown here made a copy of
it and shrank it down very
small - like this shown here.

0 0 0 0
nun==
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To handle buttonup

Put the text of field "A" into a
Put the text of field "B" into b
Put the text of field "C" into c
Put the text of field "D" into d

Put a*c into the text of field "E"
Put eb into the text of field "F"
Put a'd into the text of field "G"
Put b'd into the text of field "H"

Put the text of field "E"into e
Put the text of field "F"into f
Put the text of field "G"into g
Put the text of field "H"into h

Put f+g into the text of field "N"
Put e into the text of field "M"
Put h into the text of field "P"

end buttonup



peared during early experiences, but proved awkward for students to remember
and took longer to type. Soon single letters were adopted.

The buttons, Solve and Erase, were then added and scripted to solve the prob-
lem. As Erase is a modified copy of the clear button it will not be described.

1) Once more, the student first assigns variables (a, b, c, and d) which
correspond to the fields A - D used for input by the multiplication
tool.

2) The student then uses these variables in calculation of values which
are then placed in fields E, F, G & H.

3) Then, in a rather interesting piece of scripting, the student then reads
the numbers which the computer has put into fields E, F, G & H.

4) Finally, these values are used to perform the final calculations and
output necessary for the answer to be in a more useable form for the
student.

Implications for mathematics education

Technology in mathematical exploration typically takes the form of a black
box with only outcomes visible. Methods of solution leading to the answer and
rationale for them is invisible. We must provide more than d black box giving
right answers, the box must be subject to student control and exploration. The
work reported in this paper illustrates an alternative to black box approaches which
places the student in control of the computer. As the results clearly show, this in
turn results in the studcnt being in control of the content.
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ENUMERATING CUBES IN 3-D ARRAYS: STUDENTS'
STRATEGIES AND INSTRUCTIONAL PROGRESS

Michael T. Bathsta, Kent State Universny
Douglas H. Clements, State University of New York at Buffalo

This investigation is part of a combined research/curriculum development project in which
children's learning is being examined in the context of developing and testing instructional
units on 3-I) geometry at grades 3, 4, and 5. There are two components to the article. First,
we describe the strategies and cognitive constructions students utilize to conceptualize and
enumerate the cubes in 3-D arrays. Second, we examine the change in thinking of students
as they are involved in instructional tasks that have been utilized to help students develop
more sophisticated thinking about enumerating cubes in 3-1) arrays.

Enumeration Strategies and Cognitive Constructions: An Overview

In previous research, we have described in detail students' strategies and dif-
ficulties in enumerating 3-D rectangular cube arrays (Battista & ('lements, in press).
Our theory suggests that students' initial conception of a 3-D rectangular array of
cubes is as an uncoordinated set of faces of the prism tbrmed. These are the stu-
dents who count all or a subset of exterior cube faces. Eventually, as students
become capable of coordinating orthogonal views of the array. and as they reflect
on experiences with counting or building cube configurations, this conception is
perturbed. They see the array as space filling and strive to restructure it as such.
Those who complete a global restructuring of the array conceptualize the set of
cubes organized into layers. Those in transition, whose restructuring is local rather
than global, conceptualize the set of cubes as space-filling, attempting to count all
cubes in the interior and exterior, but do not consistently organize the cubes into
layers. They have not yet formed an integrated conception of the whole array that
globally coordinates itS dimensions. Indeed. our data supports this hypothesized
sequence of conceptions. From 3rd to 5th grade, we saw that students made a
definite move from seeing a 3-D cube array as an uncoordinated medley of faces
toward seeing it in terms of layers. We also saw a significant number of students
in transition, with these students exhibiting a wide range of sophistication in their
structuring of such arrays.

Our research suggests that spatial structuring is a fundamental notion in un-
derstanding students' strategics for enumerating 3-D cube arrays. We define spa-
tial structuring as the mental act of constructing an organization or form for an
object or set of objects. We found that in the process of determining the number of
cubes in an array, students' spatial structuring of the ami, determined their enu-
meration of it; sometimes their spatial structuring supported a correct enumera-
tion. sometimes it inhibited it.
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The Evolution of Students' Thinking during Instruction

A fifth grade class was divided into pairs of students, each working on an
activity sheet consisting of problems in which students were to predict how many
cubes would fit in a box, then check their answer by making the box out of grid
paper and filling it with cubes. The teacher circulated about the room, listening to
students' conversations and asking questions. The first researcher observed and
recorded the work of one pair of students, N and P, throughout the instructional
unit. We will trace the course of these students' construction of a viable structur-
ing and enumeration scheme for 3-D cube arrays.

For Box A, N counted the 12 outer squares on the 4 side flaps,
the.1 multiplied by 2: "There's 2 little squares going up on each
side, so you times them."

Y. counted the 12 visible cube faces showing On the box picture. then do', ''!ed
that for the hidden lateral prism faces. So both students agreed on 24 as the predic-
tion. Af ter putting 4 rows of 4 cubes into the paper box, the boys exclaimed:

N&P: We're wrong. It's 4 sets of 4 = 16.

N: What are we doing wrong? [question directed at himself and his
pal-Merl

P: I know; we counted these twice lpointing to the column of 2 cubes
on the right front corner of the box picturel.

The boys then examined the box they constructed and concluded that they
should have subtracted 8 for the 2 double-counted cubes at each of the 4 vertical
edges (which would have given them a correct answer). So their reflection on the
discrepancy between the actual and predicted answers caused them to discover
their double counting.

Box B Pattern Picture Box Picture
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For Box B, P counted 21 visible cube faces on the box picture, then doubled it
for the hidden lateral prism faces. He then subtracted 8 for the double counting
(not taking into account that this box is 3 high, not 2, like Box A) He predicted 42

8 = 34.
N added 12 and 12 for the right and left side flaps on

the pattern, then 3 and 3 for the front and back flaps, ex- r-cr:

plaining that the outer columns of 3 on the front and back
flaps were counted when he counted the right and left flaps. 2
His prediction was 30.

Both N and P accommodated their stnicturing and enu-
merafion schemes in attempting to deal with the double-
counting error. P compensated for the error by subtracting
double-counted cubes. N tried not to double count.

After the boys constructed the box, filled it with cubes, and discovered that
their answer was incorrect, P tried to figure out why their predictions were wrong:
"If there's 21 here and 21 there, there's still some left in the middle. We missed 2
in the middle."

In this episode, the boys discovered yet another shortcoming of their original
counting strategyit ignored cubes in the middle. But as they attempted to com-
pensate tbr this error, they focused on numerical differences, rather than carefully
analyzing the spatial structure of the cube arrays. " concluded that they missed 2
cubes in the middle because 2 was the difference between his prediction of 34 and
the actual answer of 36. The boys used a similar line of reasoning in making their
prediction for Box B. They subtracted 8 for double counting because they needed
to subtract 8 to make the prediction for Box A correct. However, although neither
P nor N had yet developed a structuring of 3-D arrays that lead to correct enumera-
tion of cubes, they were abstracting important aspects of the spatial organization
of the cube arrays that would help them make the needed restructuring.

Pattern Picture
rp

Box Picture

For Box C'. N and P cot, ited 24 visible cubes on the hox picture then multi-
plied by 2 to get 48. They subtracted 12 for double counting the vertical edge
cubes, getting a total of 36. But they decided that Box C was bigger than Box B. so
they tried another analysis. This time they counted 21 outside faces (not double
counting cubes on the right front vertical edge), times 2 for the hidden lateral
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faces They then added 2 for the middle cubes (which is how many cubes they
concluded they missed in the middle of Box B) to get a total of 44. They filled the
box and found it contained 48 cubes

The next day, N and P began class by trying to figure out what they did wrong
with their prediction for Box C. They reviewed their method and concluded that
they didn't add enough cubes for the middlethey needed 6 instead of 2. But they
derived this conclusion by comparing their predicted amount, 44, to the actual
number, 48, not by analyzing the spatial structure of the cube arrays. Analyzing
only numbers can easily lead one astray in spatial situations. At this point, N and
P's numerical reasoning was not properly linked to the spatial structure of the
arrays.

For Box 13, N said there would be 30 cubes: "5 + 5 + 5 for
the columns in the bottom, times 2 because there are 2 up." The
boys cut out the pattern, filled it with cubes, and determined that
it had 30 cubes. This excited them because it was the first time
their prediction was correct. N explained his procedure to P.
and P said he understood it: "You find how many are on the
bottom, then you count how many you go up; 5 by 3 by 2 up.
Add 15 and 15 and get an answer of 30."

When the observer asked N how he developed this strategy. N said that he
generated the idea while looking at Box D, then tested it (silently) on Box C and
found that he got the correct answer. N had been staring off into space for a while,
clearly thinking about the problem. It seemed that he knew there was a better way
to solve the problem, that he was reflecting on and analyzing the situation. On this
problem, the boys seemed to abandon the counting of exterior cubes to find an-
other structuring, possibly because of the shortcomings they were finding with
their previous methods.

Box E

At this point, the boys' method for enumerating cubes was conimed to exam-
ining box patterns, so problem 5 presented some difficulty for them. P counted 16
around the bottom and 16 around the top. But N replied. "Wait, that's not right
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because you counted these 2 twice [at the right front vertical edge]." P agreed, so
they decided the count for the bottom layer should be 14. P said there were two
horizontal layers, and predicted 32 - 8 = 24; taking 8 away because of the double
counting on the 4 edges. But N said, "We don't know there's only two rows in this
[meaning horizontal layers]. I think there might be 3." N predicted 28. which he
arrived at by counting 14 on the front and right sides (not double counting the
corner cubes), then multiplying 14 times 2, saying to P: "Maybe you should only
take 4 away [so their predictions would be equal]."

After the boys correctly made the pattern, the observer asked them if they
wanted to stick with their predictions. now that they could see the pattern. P said
it was 16x2 = 32, + 16 = 48. N said it was just 32. But they decided to stick with
their original predictions.

The boys seemed to be confusing parts of their old and new strategies. For
instance, when only the box picture was available, it's possible that N used his
count of the front and right sides in the same way he used his count of the bottom
of a pattern. He didn't seem to be able to visualize what the bottom would look
like. Even though looking at their pattern seemed to enable the boys to conceptu-
alize the array in terms of layers, they didn't change their original predictions.
seemingly unable to decide which of the two strategies was appropriate. How-
ever, when the boys put the cubes in the box and found that 32 fit, N said, "It is
32," as if coming to some realization.

rBox F The bottom of the box is 4 units by 5 units. The box is three units high.

For Box F. the boys were unwilling to make a prediction until after they had
made the pattern. N counted all the bottom squares in the pattern one by one----
once for each of the 3 layerscouming 1-20 the first time. 21-40 the second, and
41-60 the third.

P: You counted 3 times, no 4.

N. Why 4, it's 3 up'? Iv. ith assurancel

The boys predicted 60 cubes, seeming quite confident in their prediction. They
built the hox and filled it with rows of 5 cubes, then counted the cubes by fives to
60. However, they didn't seem relieved that they were correct. Instead. they
expected that their answer would he correct. Later. the boys read aloud the proce-
dures they had written for determining the number of cubes in a box:

You count how many are on the bottom. Then you add how many go up

P . ou multiply to find the bottom Then you multiply k how many high.

To test P's understanding of his procedure, the observer asked him how many
cubes would be in a box that was 3x2 on the bottom and 5 high. He drew a 3x2
rectangle on graph paper, then correctly drew the four sides: "3x2 on the bottom.
6. 6 x 5 =
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Both boys seemed to have come to an under-
standing of a layering approach. They struggled,
but they found viable methods to solve the "How
many cubes?" problem and seemed pleased with
themselves for doing so.

On the third day of the unit, N showed the
observer an alternate way of finding the number
of cubes in a box. He had described and illus-
trated his method in his journal. "There are two
up, so you have to count two for each on the bottom." N demonstrated by counting
by ones from 1 to 8 as he pointed to the 8 squares on the bottom. then counting
from 9 to 16 as he pointed to each of these squares again.

Finally, the observer asked the boys how many cubes would be in a box that
had the same bottom as Box A but was 3 cubes high.

P: 8 times 3 = 24.

N: Yeah, 8. 16. 24. I'm not too good at my multiplication facts

Analysis

Throughout this account, N and P were trying to develop a theory of how to
make correct predictions. The discrepancies between what they predicted and
what they actually found caused them to reflect on their prediction strategies and
their structuring of the cube arrays. At first, their enumeration strategies were
based on more primitive, spatial structurings of 3-D arraysseeing them in terms
of the faces of the prism formed. The boys seemed to focus more on numerical
strategies than a deep analysis of the spatial organization of the cubes. However,
because their initial spatial structuring led to incorrect predictions, the boys refo-
cused their attention on the structure of the cube arrays, which led to a restrutur-
ing of their mental models of the arrays. In fact. during their work on Box D. N
and P seemed to develop a layer structuring of the array, a structuring that they
verified and refined on subsequent problems.

The gains for N and P were typical of those achieved by students in this in-
structional unit. For instance, in one class of 47 fifth-graders, of the 31 students
who did not use layering strategies on all the pretest items, 16 were doing so On the
posttest, 9 increased their use of layering strategies, 4 did not increase, and 2 de-
creased. So, 81% increased their use of layering strategies. And 5 out of 6 of the
students who did not increase used layering strategies on a box item similar to
those on the student sheet discussed above. Forty-three of the students got this
item correct; 2 of the 4 students who missed the item made computational mis-
takes.

Conclusions

Consistent with constructivist accounts of the learning process, two of the
essential components of learning for N and P were reflection and cognitive con-

197



flict. Reflection and cognitive conflict were promoted by focusing students on
predicting the number of cubes of 3-D arrays. Errors in predictionswhich the
boys themselves discovered--caused cognitive conflicts, or perturbations in the
boys' current mental models for arrays. The boys attempted to resolve these con-
flicts by reflecting on the strategies they were using, all the while examining and
restructuring their mental models of the arrays. In fact, the boys moved from an
incorrect conception of the arrays, to a period confusion in which they vacillated
between different conceptions, to a viable conception that resolved their confu-
sion.

The account of N and P's work illustrates the constructivist claim that, like
scientists, students are theory builders. They build conceptual structures to inter-
pret the world around them. Cognitive restructuring is engendered when students'
current knowledge fails to account for certain happenings, or results in "obstacles,
contradictions, or surprises. The difference between the scientist and the student
is that the student interacts with a teacher, who can guide his or her construction of
knowledge as the student attempts to complete instructional activities" (Cobb, 1988).
This guidance is often covert; in the present situation, the guidance came through
the sequence of tasks, not by telling N and P problem solutions.
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INFERRING INTERNAL STRATEGIC PROBLEM REPRESENTATION AND
ITS DEVELOPMENT: A TWO-YEAR CASE STUDY WITH MARCIA

Richard A. Zang, University of New Hampshire at Manchester

This study is part of a longitudinal study which entails observing 22 elementary school
children over a 3-year time span in the classroom and in individual task-based interviews.
Through the examination of videotaped structured clinical interviews of Marcia, the first in
1992 when she was 9 years old (4th-grade), this study seeks to elucidate inferences of her
internal strategic problem representations while engaged in problem-solving activity, and
to analyze how these representations developed over a two-year time spa- Marcia's analy-
sis shows that strategies are accessible to her, and even more importantly, that they do not
necessarily need to be "taught". The research reported here shows that Marcia. when left to
her own devices, not only invented strategies and representations to aid hcr in finding a
solution to the problem, but often she did so in noncanonical ways.

if one views learning as thc acquisition of competencies, and further, internal
representations as descriptors for such competencies, it would stand to reason that
children with rich systems of internal representation developed from exposure to
appropriately chosen task-based situations, would be in a better position to assimi-
late, and thus learn, new competencies when exposed to new problem solving
situations. It follows then, that we need to better understand these internal systems
of representation to foster learning. Moreover, we need to develop ways to assess
internal representation acquisition of individual children.

By &signing task-based interviews with a homomorphic nature to them (se-
quences of geometrically presented figurate numbers), and by conducting these
interviews two years apart, cognitive representations were able to be compared
over that time span. Moreover, as cognitive representations describe competen-
cies, various types of competencies (e.g., reversibility of strategy) could be com-
pared. The richness of possible behaviors allowed for by the protocols, and subse-
quently observed, enabled Marcia's cognitive development to be charted.

The focus of this study is Marcia's choice of representation of the task, and
her strategic decisions and methods of solution. In each structured clinical inter-
view, an analysis of Marcia's external representations (what the child constructed
and verbalized) has been conducted, and inferences of internal strategic represen-
tations have been made consistent with Marcia's observed behavior (Zang, 1995).
Among the features of strategic representations looked for were: 1) spontaneous
use of formal symbolic representation in place of concrete manipulatives; 2) heu-
ristic processes; 3) ability to generalize; and 4) reversibility of reasoning.

This is a qualitative case study, the purpose of which is purely exploratory and
descriptive. l'here is necessarily a certain subjective nature to the reporting of the

The research ',Toned in this study was par tially funded by a grant from the National Sci-
ence Foundation (NSF). "A Three-Year Longitudinal Study of Children's Development of
Mathematical Knowledge", directed by Robert B. Davis and Carolyn A. Maher of Rutgers
University. The opinions expressed and conclusions reached do not necessarily represent
those of the NSF.
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results of such a study. No attempt was made to conduct independent analyses by
more than one researcher to achieve intercoder reliability; i.e., this technique was
not used. Ergo, no assertion is made about the reliability of the inferences drawn.

However, the research team involved has allowed for an essential feature of
scientific progress, by carefully preparing scripted protocols for the structured task-
based interviews (Goldin, DeBellis, Dc Windt-King, Passantino, and Zang, 1993;
Zang, 1995). This had the dual effect of not only preparing the clinicians involved
to mitigate their individual interview styles and adhere to a planned sequence of
questions and contingencies, but also to permit a degree of comparability and re-
producibility so that these results can be furthcr extended and compared with those
of other researchers.

The Tasks

The domain of the problem solving activi-
ties revolve around 5 problem contexts involv-
ing number sequences with attending figure/
geometric representations. Materials (index
cards, red and black chips, markers of different Figure I . Task tt/

colors, paper, and pencil) were placed ahead of time on the table in front of the
child for each of the interviews. Thc first task-based interview consisted of laying
3 cards, one at a time, in front of the child as illustrated in figure 1. The following
series of questions was then asked: 1) "What card do you think would follow that
one?" Ithen asked again with reference to the 4th card); 2) "Do you think this
pattern keeps geing?"; 3) "How would you figure out what the 10th card would
look like?"; 4) "Here's a card (showing one with 17 dots in the shape of a chevron)
... can you make the card that comes before it?"; and 5) "How many dots would be
on the 50th card?"

For each question discussed above, the following stages exist: 1) Posing of
the question (free problem solving); 2) Heuristic suggestion (if not spontaneously
evident; e.g., "Can you show me using some of these materials?"); 3) Guided use
of heuristic suggestion (e.g., "Do you see a pattern in the cards?"); and 4) Explor-
atory (metacognitive) questions (e.g., "Do you think you could explain how you
thought about the problem?"). The clinician always sought to elicit a complete,
cohcrcnt verbal reason and a coherent external representation before proceeding
to thc next question. It is important to note that the canonical card did not have to
be drawn or the canonical pattern described, in order for a response to be consid-
ered a complete and coherent reason and a complete coherent external representa-
tion.

The next task-based interview, as it relates to this present study, was con-
ducted two ycars later (1994). Task #2 involved 4 problem contexts as illustrated
in figure 2. Each of the 4 problems utilized the same basic paradigm as in the first
task. In formulating/designing this task-based interview, and what task(s) it would
encompass as its domain, it was decided that thc richness of variety embodied in
figurate number sequences and their interrelatedness (i.e., homomorphic nature)
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to task-based interview # I would be
thc most appropriate vehicle to look
at developing internal strategic prob-
lem representations. In light of and
in recognition of the fact that we as
researchers cannot see the cognitions
being employed as problem solving
occurs, and instead we must infer
these cognitions (with the aid of self-
reporting by the child and their ac-
companying external representa-
tions), it is prudent to provide a cor-
nucopia of figurate number tasks
(each one building on the other) such
that externalizing the internal repre-
sentations provides as much of a
cognitive window as possible to
viewing their internal strategic rep-
resentations.

Some Highlights

During Task #1, Marcia developed an add-two strategy, but not in the canoni-
cal fashion (i.e., adding two dots to the bottom of the previous figure). Instead, she
would draw each dot in contiguous order starting from the lower left portion of the
chevron. Thc two dots she said shc was adding, were always the last two dots on
the bottom right side of thc chevron (she gave quite a lengthy explanation of this).
When asked what the 10th card would look like, shc appeared to discover that the
number of dots on the left side of the chevron represents the number of that card
(e.g., 3 for 3rd card, 4 for 4th card, el celera), and that the number of dots on the
right side was one less. She stopped constructing the cards en route to the 10th
card, after the 7th card (having constructed the 4th, 5th, 6th, and 7th cards), and
proceeded to give a verbal accounting of what the 10th card would look like. The
inference made is that this is when the discovery took place, or at least the point
that it manifested itself externally, for it was here that she was able to apparently
generalize, and extend mentally, the operations necessary to form an internal rep-
resentation of thc 10th card. The inference made is that she then held a more
imagistic internal representation, in that, for the first time, there was a direct corre-
lation between :he number of dots she was focussing on (left side of the chevron)
and the geometry of the shape; all done simultaneously (tieing the numeric con-
cept into a portion of the shape).

When asked the "reversibility" questionHere's a card (showing one with 17
dots in the shape of a chevron)...can you make the card that comes before it?"
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Marcia said and gestured that there were 9 dots going up on the presented card,
and so there would have to be 8 dots going up (refernng to the left side of the
chevron) on the card before it.

Two years later when the "reversibility" question was posed during Task #2,
Problem 3, she apparently realized it was unnecessary to know that number (the
number of dots on the left side of the triangle); one merely had to remove the

bottom row (no matter how many dots may be in
it, or any other part of the figure).

Marcia was asked if shc noticed any relation-
In St

ship between the 3rd and 4th set of cards during
Task #2. She noticed that two of every card from

'is so' 12 the 3rd set is embodied in the corresponding card
of the 4th set (albeit one of the two from the 3rd

set is inverted). Along with a good verbal accounting, she explained as follows:
Here, it was inferred, she utilized an internal imagistic representation(s); to

"see" instances of certain problems embodied in still other instances of other prob-
lems.

Another interesting high-
light during Task #2 was whcn

o 0Marcia employed a gnomon-
like strategy whikt engaged in 0 0
Problem 2. A gnomon to a geo- o o
metric figure (A.), is another 0000 0000
geometric figure, such that when
the gnomon is suitably attached A Gnornon A'
to A, the resulting figure (A') is Figure 3. Cognitive Dots
similar (in a geometric sense) to
A. Because of her verbal ac-
counting, gesturing, and drawing (a representati ve example of the type of behavior
she exhibited is seen in figure 3), the inference made is that the dots that comprise
the gnomon are the dots she is focussing attention on (I refer to these as cognitive
dots), and thus are the dots she is using to draw a pattern from. The inference
made is that the focus on these cognitive dots is her strategy, whereas the overall
process of attaching (mentally) part A with a gnomon (resulting in A') is the hcu-
ristic process. This discussion serves to illustrate McClintock's (1984) suggestion
that heuristic processes may be viewed from another standpoint (i.e., as inherent in
and thus residing in the mathematical problems themselves).

Conclusion

The structured individual task-based interviews proved to be an appropriate
research tool as they were ahlc to draw out the processes Marcia used (e.g., strat-
egy use), as opposed to the more traditional product so oftcn emphasized in the
classroom (Goldin et al., 1993; Zang, 1995). This is an important distinction in
that teachers have always manifested an overriding concern to measure learning.
In thcir quest to measure, they inevitably turn to the product of the problem solv-
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ing (test scores, time to solution, etc.), and have traditionally not focused on the
process.

One possible implication of this research (to the extent that results are gener-
alizable) is that we as mathematics educators should be mindful that a teacher's
expectations of the canonical response can have the cognitive effect of being so
overriding, that they can interfere with the teacher being receptive to really in-
sightful ways of thinking by a child. As such, this research suggests that one
possible way of teaching these strategic representations, is not to offer instruction
in them per se (i.e., in some procedural way), but rather to provide a rich environ-
ment wherein the children will construct them on their own, in much the same way
as occurred during these task-based interviews with Marcia. Another possible
implication of this research is that we can introduce geometric concepts much
earlier than traditionally thought teaching children to exploit the visual aspects
of a problem in their early years of problem solving, long before the more formal
operational approach is encountered
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PROCEDURAL AND CONCEPTUAL UNDERSTANDINGS OF THE
ARITHMETIC MEAN: A COMPARISON OF VISUAL AND

NUMERICAL APPROACHES

Eliz2beth Ann George, University of Pittsburgh

Although the average, or arithmetic mean, has a rich conceptual meaning, it is often simply
defmed as the outcome of a procedure. The purpose of this study was to compare the nature
and extent of the procedural and conceptual understandings developed by two groups of
students who had received different forms of instruction, one based on the traditional nu-
merical algorithm and the other on a visual algorithm. When confronted with tasks varying
along several dimensions, students adjusted or extended their basic approach for finding the
arithmetic mean in ways that give insight into their understanding of this mathematical
concept. While both groups of students showed a degree of understanding and flexibility
with the procedure they had been taught, students who had learned the visual procedure
showed a deeper conceptual understanding of the arithmetic mean.

A growing amount of information in today's world is presented and must be
processed numerically. Therefore it is crucial to understand the relationship be-
tween a set of numbers and thc representative numbers, or statistics, used to de-
scribe the set. One commonly used descriptive statistic, the arithmetic mean, is

usually introduced in elementary and middle school mathematics classrooms. Tra-
ditional instruction on this topic primarily focuses on a numerical algorithm which
is executed when a set of numbers is given and deterniMMg the average value is

the intended goal. The arithmetic mean is rarely taught as a concept, but rather as
the outcome of a computational procedure--the result of dividing thc sum of thc

numbers in the given set by the number of numbers in the set.
If a student's sense of the arithmetic mean is too closely tied and limited to the

outcome of a procedure, an impoverished understanding of the arithmetic mean is
often the result. A series of studies have probed students' understanding of the

arithmetic mean. Strauss and Eichler (1988) identified the concept of the mean as
having seven different properties and found that it was particularly difficult for

children to the arithmetic mean as representative of the values that had been
averaged. MU,sros and Russell (1995) further examined the relationship between
students' ideas of representativeness of a set of numbers and their understanding
of the arithmetic mean and found that students w ho approached the mean as an
algorithm rarely understood the average as a number which represents a data sct.
These students were limited in the strategies they had available and confused about
the meaning of the total sum, the arithmetic mean, and the numbers in the data sct.
Earlier investigations of students' understanding of the arithmetic mean (Pollatsek,
Lima, and Well, 1981; Mcvarech, 1983). showed that even college students who
relied on the numerical algorithm to find ilk, average a a set of numbers displayed

The author wishes to acknowledge the helpful comments of Dr. Edward A. Silver on an

early draft of this paper.
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misconceptions when confronted with more complex tasks involving the arith-
meuc mean.

A visual alternative to the traditional numerical approach for finding the arith-
metic mean is offered in the middle school curriculum, Visual Mathematics (Benneu
and Foreman, 1991). Students build a column of wooden cubes to represent each
number in a given set, then level-off thc columns of cubes; the height of the
leveled-off columns is defined as the arithmetic mcan. Students are encouraged to
move from physically constructing columns of cubes to using diagrams. The au-
thors claim that discussion and practice with this visual "leveling-off" method
reinforces the concept of the average as studcnts arc forced to consider the rela-
tionship between the numbers in the set and the average itself.

The two instructional methods described above both involve finding the arith-
metic mean through the use of a procedure, whether numerical or visual. Both
procedures move in a linear fashion from a given set of numbers through an algo-
rithmic series of actions taken on those numbers, to produce a numerical outcome
which is called the arithmetic mean or average. With either procedural approach
students can easily come to interpret avc:ragc as a "do-something signal", in much
the same way that Kieran (1981) described students' view of the equal sign as an
operator, not a relational symbol. Just as students must come to understand the
equal sign as expressing a relationship of equivalence, students must come to see
the relationship between the numbers in a set and the arithmetic mcan. Under-
standing this relationship should allow students more flexibility in solving prob-
lems involving the arithmctic mean. With this deeper conceptual understanding,
they should be able to move back and forth between the numbers in the set and the
average, not simply proceed in one direction from the given numbers to the aver-
age.

Both numerical and visual procedures for finding the arithmetic mean have
strengths and limitations dependent on the size of the numbers in thc set, thc size
of the set, and the adaptability of the procedure for less straightforward problems.
Both instructional methods could potentially produce a limited understanding of
the arithmetic mean. Of interest is whether either or both of the procedural based
instructional methods can help students construct rich conceptual understandings.
Examining the nature and extent of students' procedural and conceptual under-
standing of the arithmetic mean involves accessing students' understanding of the
procedure they were taught, their flexibility with and willingness to extend that
procedure, and their ability to move between visual and numerical procedures.
The purpose of this study is to compare the nature anti extent of the procedural and
conceptual understandings developed by two groups of students who have received
different forms of instruction, one based on the traditional numerical algorithm
and the other on a visual algorithm.

Method

Six students participated in this study during the fall of their seventh-grade
year. None of the students had yet covered the topic of the arithmetic mean in their
seventh-grade math classrooms, though all had received instruction during their
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sixth-grade year. Two of the subjects were enrolled in a school whose mathcmat-
ics instruction was primarily drawn from the Visual Mathematics curriculum and
had learned the visual "leveling-off" method for finding the average of a given set
of numbers. The other four subjects had received instruction based on the numeri-
cal "add and divide" algorithm.

Five tasks involving the arithmetic mcan were administered individually to
each student. The goal of thc first task was simply to find the average of a set of
four relatively small numbers; the results of this initial task served as a baseline
from which responses to the subsequent tasks were examined. The other four tasks
varied along several dimensions, such as the size of the numbers, the size of the set
of numbers, the initial representation of the task in either visual or numerical form,
and the goal of the problem. Tasks 2 and 3 were presented in the context of a story,
with the tcrm "average" embedded in the text. Both tasks stated three of four
numbers in the set and the average of the set; the goal was to find thc fourth num-
ber in the set. While both tasks presented information visually, task 2 used dis-
crete objects and task 3 used a bar graph to model the given situation. These tasks
were adapted from the QUASAR Cognitive Assessment Instrument (Lane, 1993).
The fourth task shared the same goal as the initial task, to find the average of a
given set of numbers, but used larger and more numbers. Task 5 asked students to
construct sets of numbers having an average of 12. (See Appendix for selected
tasks.) To fully capture student thinking, students were asked to think aloud as
they completed the tasks. These verbal protocols ranged from 20 - 35 minutes and
were transcribed from audiotapes. Coding and analyses of the transcriptions and
of students' written work form the basis for this study.

Analysis focused on the approaches each subject used to complete the tasks.
The strategy used on each task was first coded as primarily visual versus primarily
numerical. Visual strategics were further coded as involving wooden cubes or
diagrams. Responses were also coded as successful or unsuccessful in arriving at
a correct solution. Both successful and unsuccessful attempts were analyzed for
evidence of student understanding of the arithmetic mean concept and sources of
errors were identified as computational, counting, or conceptual.

Results

Similarities and differences in students' procedural approaches and concep-
tual understandings become evident as patterns of behavior appeared for each sub-
ject across tasks. When presented with the initial task, most students used the
method that had been the basis of their classroom instruction. Examining each
individual student's responses across the subsequent tasks revealed that most found
ways to adjust or extend their basic approach to finding the arithmetic mean as the
format and demands of the tasks changed. Table I displays the results of this
analysis.

The two students whose instruction had been from the Visual Mathematics
curriculum materials (SI and S2) continued to use visual strategies in approaching
cach task. Understanding the relationship between the heights of the columns of
cubes, representing the given numbers in the set, and the height of the leveled-off
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Table 1.
Strategies used and success in solving averaging tasks

Task 1 Task 2 Task 3 Task 4 Task 5

Visual cubes Visual - cubes Visual - cubes Visual - numbers Visual - cubes
Si Successful Successful Successful representing Successful

cubes Successful

Visual cubes
S2 Unsuccessful

counting error

Numerical
S3 Successful

Visual -
diagram
Successful

Visual -
diagram
Successful

Visual - diagram Visual
Unsuccessful Unsuccessful -
counting error good approx.

Numerical Numerical
Unsuccessful - Successful
computation error

Visual - diagram
Unsuccessful
good approx.

Numerical
Successful

Numerical
S4 Successful

Numerical
Successful

Numerical Numerical
Unsuccessful Successful
conceptual error

Numerical
S5 Successful

Numerical
Unsuccessful
no solution found

Numerical Numerical
Unsuccessful - Successful
conceptual error

Numerical
Successful

Numerical
Successful

Visual -
S6 Unsuccessful diagram

Successful

Visual -
diagram
Successful

Unsuccessful Unsuccessful

columns, the average, provided these students with flexibility in using the method
of transferring of cubes in tasks posed in various ways. SI consistently chose to
actually build the columns of cubes, even when problems were presented in dia-
grammatic form, and arrived at correct solutions. S I described how she was mod-
eling the fourth task with imaginary columns and, though she proceeded to work
solely with the numerical values, her explanation focused on her actions in mov-
ing imaginary cubes. S2 quickly moved into sketching diagrams. Her errors re-
lated to difficulties which arose in depicting the movement of cubes in her sketches
and in keeping track both visually and numerically of the currcnt state of the prob-
lem. The greatest challenge that these students faced was in applying and extend-
ing the visual solution process to the fourth task, whcrc the numbers given were
too large to be modeled directly with the cubes. The actions of thc students dem-
onstrated their ability to adapt the visual procedure in finding the average and to
work back and forth between the numbers in the set and thc average.

Students whose instruction was based on the traditional numerical algorithm
depended on the one-way application of that algorithm to solve a majority of the
tasks. S4 and S5 approached each of thc five tasks with the algorithm and were
successful in solving all but thc third task. No mention was made that the fourth
task used larger or more numbers than thc first task. The second and third tasks
did prove more challenging as they utiliz.0 a trial-and-error approach to find the
missing number in thc sct. Their preliminary attempts resulted in errors primarily
involving the divisor in the algorithm. Neither subject chose to work visually,
even though the numbers in the data set for tasks 2 and 3 were given in a diagram.
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S3 and S6 did choose to move at least once from the use of the numerical
algorithm into a visual solution strategy. S3 employed a visual strategy success-
fully to solve thc second task; he used thc same visual method described by S2.
He chose to return, unsuccessfully, to the numerical algorithm in the third task. S6
was unable to solve any task which depended on a decontex tualized understanding
of average. Although shc commented that she recognized this type of problem, she
did not know the numerical algorithm. But thc meaning of thc average was im-
plicit for hcr in the contexts of the second and third tasks and she was able to find
the solution to the third task more quickly and directly than any of the othcr sub-
jects. In fact, neither S3, S4, nor S5 was able to solve this task.

Discussion

The results of this study show that the same method which formed the basis
for classroom instruction on averaging was used by students whcn presented with
the initial task of finding the average of a set of numbers. Students overcame the
obstacles found in variations on the initial task by adjusting thcir use of thc method
learned or by finding a new problem space in which to work. No student whose
experience was in Visual Mathematics used any form of the numerical algorithm,
while two of the four students whose instruction involved the numerical algorithm
did work with the diagrams when tasks were represented in visual form.

Analysis of student responses showed how task demands presented different
challenges for students who had learned the numerical versus visual procedures.
Students who had learned thc numerical algorithm were confident and successful
in finding the arithmetic mean when a complete set of numbers was given, regard-
less of the size of the numbers or the siz.e of the sct. When given an average and
asked to find a number(s) in the set, they were often successful in identifying a
solution, but consistently worked from the numbers in the set to the average, mov-
ing unidirectionally and using a trial-and-crror approach. Regardless of context,
students who had learned the numerical algorithm referred to the average as the
outcome of a procedure, "what you get".

Students who had learned the visual approach revealed greater flexibility in
moving back and forth between the numbers in the set and the average. Recogni-
tion that the sum of the deviations from the average is zero, one component of the
average concept identified by Strauss and Bichler (1988), appeared to be attained
as students focused on the relationship between the heights of the original col-
umns (the numbers in the set) and the leveled-off height (the arithmetic mean).
While both groups of students showed a degree of understanding and flexibility
with the procedure they had been taught, those who learned the visual procedure
showed a deeper conceptual understanding of the arithmetic mean.
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Appendix: Selected Tasks as Presented to Subjects

TASK 2:In order to raise money for a trip, thc seventh grade class is selling candy
bars. The class is divided into teams of four students. Joe, Carol, Michael, and
Keisha make up onc of the teams. If the team sells an average of 8 candy bars each
day, they win a prize. Thc picture below shows the number of candy bars sold by
Joe, Carol, and Michael.

How many candy bars does Keisha have to sell in order for the team to win a
prize?
TASK 4:Jim recorded the amount of time he spent watching television for five
days.

Joe

Carol

Michael

Keisha

777

Monday 120 minutes
Tuesday 100 minutes
Wednesday - 60 minutes
Thursday - 90 minutes
Friday 180 minutes

What is the average number of minutes Jim spent watching television?
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RELATIONSHIPS BETWEEN UNDERSTANDINGS OF OPERATIONS
AND SUCCESS IN BEGINNING CALCULUS

Barbara J. Pence, San Jose State University

In an effort to examine the impact of the changes being made at San lose State University in
the calculus curriculum, multiple measures were collect,xi and analyzed. This study fo-
cuses on the relationship between performance on a pretest and the class grade. Through
written responses on the pretest, a belief and knowledge profile for each student was con-
structed. Students were grouped according to their answers on an itcm which asked them to
graph 2, x, x2, and 2'. Profiles of student perceptions and knowledge were consistent within
groups and varied across groups. Results showed that the concept of multiplication was not
well understood, and closely related to success in first semester calculus. Multiplication
was itself still a process and in some cascs, this process produced multiple concept images
within cognitive neighborhoods.

San Jose State University (SJSU) is in the process of flaking changes in the
calculus curriculum. In an attempt to trace the impact of these changes, several
assessment efforts arc in progress. This paper examines data from one of these
studies for the purpose of investigating the relationships between understandings
of operations and understandings of concepts studied during first semester calcu-
lus.

Background

Key concepts in beginning calculus involve the study of processes on func-
tions. The road from seeing functions as processes to thinking about them as an
object and finally using functions in other processes is difficult. In order to work
with functions found in first semester calculus there exists a need for the encapsu-
lation (Dubinsky, 1992) of many operations. The idea of cognitive root described
by Tall (1992, p. 497) as "concepts that have the dual role of being familiar to
students and providing the basis for later mathematical development" seems to
apply to the role of understandings of operations relative to work with functions.
At the stage when each function is still a process [take a point on the x-axis, tracc
a vertical line and then a horizontal line to find the value of y = f(x)1, one basis for
mathematical development includes operations such as multiplication, powers and
exponents. Operations arc familiar to the students; they have been using multipli-
cation and powcrs in variable expressions for years, lf, however, operations arc
not yet at the object level, then students must overcome additional obstacles in
order to encapsulate the process into a single concept. This paper will investigate
the linkages between the concept images of operations and understandings of pro-
cesses on functions.

Methodology

Multiple measures were collected during the fall semester of 1994 for nine
sections of beginning calculus including a pretest, a mid-semester test, a final, the
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course grade and the course grade from the second semester calculus class. The
pretest and the mid-semester survey items elicited information about student cog-
nitive knowledge, perceptions and beliefs while the other measures focused on
student achievement. Complete pretest data existed for four classes, one class
using the Harvard Consortium materials and three classes using Stewart. This
study will concentrate on understandings as seen through the lens of the pretest
and the course grades. The pretest was developed to gain insight into the students'
entry level perceptions, attitudes and understandings of operations and functions.
Of the eight written pretest items, the first six items elicited student comments
regarding the anticipated difficulty level of thc course, the grades expected, the
kcy concepts of calculus, the perceived difficulty of representational forms, the
expected applications of the content and the role of technology in the course.
Content knowledge was examined through two questions. One of the content
questions asked st,ident.s to examine three graphs and in each case tell whether
each graph was or was not a function and why. Graphs used in this question came
from the research by Dreyfus and Vinner (1989). Thc second content question
was motivated by faculty concerns that student understandings of powers and ex-
ponents are weak. This item is shown below:

On the following number line, you will sec the points representing 0, 1,
and x indicated. Approximate thc location of the point.s corresponding to
2, 2x, x' and 21.

0 1

For this item students are asked to connect symbolic and visual representations
and to link units, variables, and operations on thc number line. Although the origi-
nal problem was conceptualized for usc on a computer using a dynamic geometry
system such as Cabri Geometry, this became impossible due to the lack of avail-
ability of computers. Thus, the problem became static with thc variable x located
so that it was less than 1.5. Actually it was placed at thc point corresponding to the
square root of two. Each of the four functions corresponds to an operation. Locat-
ing thc point corresponding to 2 required repeated addition with the input being
that of thc location of thc unit. As with 2, the function of 2x could be processed by
repeated addition. On the other hand, thc image of x2 and 21 required both the
location of the unit and x. For each of the four functions students were required to
process an operation.

Analysis

Data collected was examined both quantitatively and qualitatively. Results
from 76 completed pretcas and class grades for each of these students was exam-
ined collectively. The first step of the analysis was to sort thc pretests into levels
of understanding on thc operation item. The sort produced six categories which
were:
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(1) students who were not able to locate any of the four functions correctly;

(2) students who located 2 but were not able to locate 2x;

(3) students who located 2 and 2x but were unable to locate x2 or 21;

(4) students who located 2, 2x and x2 but had trouble locating 2';

(5) students who located 2, 2x and 21 but had trouble locating x2; and

(6) students who located all four functions 2, 2x, x2 and 2'.

The six categories are hierarchical with categories 4 and 5 conceptualized as par-
allel. In the table, the categories form the structure for examining relationships
between understandings and average anticipated grade, average actual course grade,
failure rate, average score on the function item, and thc representation reported to
cause the most difficulty when solving a problem. Patterns exist both between and

Most difficult

Ave Ave % of Ave score representa-

Anticip Actual students co iunct tion (graph,
Category # of # grade grade who item tab4e,

ti Students Repeatg A=4 A=4 failed (n=3) equation)

1 5 4 3.0 0.5 60% 2.8 ( 3, 1, 1)
2 34 17 3.6 1.4 53% 2.5 (16, 5, 5)
3 19 11 3.5 0.8 63% 2.7 ( 3, 2, 11)
4 2 1 3.5 0.(:) 100% 2.0 ( 0, 0, 2)
5 2 1 3.5 3.5 0% 2.0 ( 0, 0, 2)
6 14 8 3.4 2.5 36% 2.4 ( 5, 2, 3)

within categories. First, students in categories 1 - 3 were more likely to be repeat-
ing thc course of calculus and the difference between the anticipated and actual
grade was larger. Second, the score on the function item did not sccm to be related
to understandings of operations. Since the vertical line test was thc major justifi-
cation for answers to this question, the lack of connection with the understandings
of operations is not surprising. Third and One of thc most interesting pattern was
that of self monitoring. Students in catcgoric. I - 4 (79%) expected grades of at
least a 13* but earned grades of D or lower or dropped out. Students in category 6
were better able to monitor their progress or at least their progress against stan-
dards set by we instructor. Could it be that the category I 4 students arc progress-
ing in the development of their own understandings but are not to the stage of
contrasting thc result of these understandings across conflicting concepts in their
own cognitive structures much less in comparing their structures with those being
set forth by their instructors?

Although the tables describe both within and across category patterns, exami-
nation of sample student work helped in the exploration of student understandings
of operations. Due to space restrictions, student work will be shared for categories
1, 2, 3 and 6 only.

_11
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Category 1 The five students in this category had trouble locating 2.

0 1 2 x 2x 2 2x

This student is repeating calculus but expects to get a B this time. She finds graphs
to be the most difficult representational form to work with. Her graph is similar to
the other four students in this category. There is an attempt to process most of the
functions and there seems to be a belief that the constant 2 must come before the
variables. The conflict between the location of I and 2 is not resolved. In fact, this
pattern between 1 and 2 seems to be carried over to the relationship between x and
2x. To carry this analysis any further when the role of the unit is in doubt makes
little sense. This woman continued in the class through the mid-semester exam.
On the mid-semester exam, she was able to produce only a little work on one out
of four problems, the one symbolic problem, and eventually withdrew from the
class.

Category 2. In the second category, the students were able to locate 2 but
were unable to firkd the point corresponding to 2x. Although students rarely pro-
vided any more than the diagram, this student actually gave sufficient work to help
explain his thinking.

4
0

To construct the location of 2 hc replicated the interval between 0 and I. This
logic of repeated addition was continued through his work with both 2x and x2.
That is, 2x was 2 plus x and x2 was found by taking the interval from 0 to x and
marking it off from x (x2= x + x). The location of 2' seemed to be something
beyond the others. Even though this student entered calculus class with high ex-
pectations, he was forced to drop the course before the final.

Category 3. Students in the third category correctly identified 2 and 2x. They
either stopped at this point or went on to mappings which incorrectly represented
both x2 and 2". Many interesting linkages can be found in the work of students in
this category.

x-4 . . . fso a
0 1 x 2 2x 2x

The actual relationship that this student, who is repeating calculus after taking it in
high school, wanted to communicate between x', 2x and 2' is unclear. But, it
seems as though each concept is closely related to 2x while being unrelated to 2.
That is as a neighborhood is drawn closer and closer to 2x, it would always include
x' but not 2. At what point in the shrinking of the neighborhood the location of 2'
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would be separated from 2x and x2it is difficult to say. Since this clustering of the
concepts of 2x and x' appeared in morc than 10 papers it is an example of a cogni-
tive neighborhood, a construct introduced by Ervynck (1994).

Category 6. On the opposite end of the spectrum, the group of 11 students
who wcre able to locate all four functions passed calculus with a grade of C or
better. In fact, there were three A* grades given in the fall semester, with all three
of them appearing in this category. This group included 7 students who wcrc re-
peating the course, 4 of whom took the course in high school. The graph of an A'
student is found below. This student was repeating thc class and report that hc

0 1 x
2

x 2 2 2x

found the three representational forms equally easy to work. The location of x2
and 2R are not exact but the relative positions arc close thus it was counted as
correct. He also did well on the mid-semester exam, getting 3 out of 4 of the
problems correct but did not feel confident with his results.

Discussion

Although the pretest was a written task, the results identified some interest-
ing relationships which need furthcr exploration. Work from students who either
dropped out or failed first semester calculus showed patterns of incomplete un-
derstandings of the operation of multiplication. Thcir image of multiplication re-
flected difficulty in extending thc models of multiplication beyond repeated addi-
tion with constants. Multiplication was itself still a process and in some cases, this
process produced multiple concept images within cognitive neighborhoods.

This study supports thc cognitive root conjecture. Thc idea of classification
of functions by operations may be a step in the development from functions as
process to function as object. Operations arc familiar, that is, students have used
the symbolic representations and they form the basis for later mathematical devel-
opment. Thus, they may be a candidate for a cognitive root for advanced math-
ematics.

Trends of repeated failure among these students who have passed all of the
necessary prerequisites to enter college calculus is perplexing. Why arc 76% of
these students unable to move beyond processing the functions of 2 and 2x? Why
were these advanced students not monitoring and resolving conflict between func-
tion processes? What role does the belief system play in the cognitive image and
conflict resolution? Does the multiple representation in this static task mask the
potential for identification of conflict? Would a dynamic task encourage students
for whom multiplication was still a process to reduce the multiple concepts con-
tained in cognitive neighborhoods and support their movement from seeing func-
tions as processes to thinking about them as objects and even using functions in
other processes as required in their study of calculus?

4-1140 C.
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TEACHER GUIDANCE IN AN EXPLORATORY
MATHEMATICS CLASS

Bey_llea_Li, Washington State University
Vema M. Adams, Washington State University

This paper is concerned with understanding how a scaffolding process is utilized in a natu-
ral setting of a middlc-school mathematics class. Wood, Bruner, & Ross (1976) character-
ize scaffolding as a learning proccss of a novice which is assisted and dominated by the
adult. Rogoff and Gardner (1984) also point out that "to make messages sufficiently redun-
dant" (p.109) is one way to provide scaffolding. In this study, we cxamine the classroom
discourse when a new topic is introduced to the class. The teacher (.onneets a new topic
(combinations) to old content (permutations). He uses abundant, similar, but condition
changed slightly, examples as referents to help the students attach meaning to symbols for
permutations and then begins to turn over the discourse to the students to support students'
development of that new content.

To identify scaffolding, we draw on Wood, Bruner, & Ross's (1976) descrip-
tion of scaffolding as "a process that enables a child or novice to solve a problem,
carry out a task or to achieve a goal which would be beyond her/his unassisted
efforts. This scaffolding consists essentially of the adult 'controlling' those ele-
ments of the task that arc initially beyond the learner's capacity" (p.90). Rogoff
and Gardner's (1984) use of data from a study of mothers preparing their children
for a memory test illustrate how an adult's instruction serves as a scaffold for the
learner. They emphasize that "to make messages sufficiently redundant" (p.109)
is one way to provide scaffolding. They also conclude that the adult aSSISIS chil-
dren with new challenging problems by guiding children to make connections to
more familiar contexts. Wc view scaffolding as a process that transfers responsi-
bility back and forth between the teacher and students until it is completely turned
over to the students in problem-solving situations. Errors and uncertain responses
of students in the classroom dialogue function for the teacher as signals that stu-
dents arc in or beyond their zones of proximal development (Vygotsky, 1978, 1986;
Wertsch, 1985). If students arc functioning in their zones of proximal develop-
ment, then teacher intervention may help them function successfully. Greenfield
(1984) pointed out that "Errors, either anticipated or actual, are used as a signal to
upgrade the scaffold, transferring responsibility from the learner to the te;. 'ler"
(p.136). The challenge for the teacher is to communicate in a way that helps the
teacher idcntify the students' thinking and that allows the students to participate
and mdefine the task.

We also draw on Hiebert's (1988) theory of cognitive processes involved in
increasing students' competence with written mathematics symbols. Five sequen-
tial types of processes are distinguished: "(1) connecting individual symbols with

Preparation of this paper was supported in part by National Science Foundation, Grant
No. RED-9254922. Any opinions, conclusions, or recommendations are those of the authors
and do not necessarily reflect the views of the National Science Foundation.
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referents; (2) developing symbol manipulation procedures; (3a) elaborating pro-
cedures for symbols; (3b) routinizing thc procedures for manipulating symbols;
and (4) using the symbols and :tiles as referents for building more abstract symbol
systems" (p.335). The first two processes include building referents on students'
previous experiences and manipulating referents, observing the result, and trans-
lating referents to symbol world. Their purpose is to provide symbols with mean-
ing. The subsequent cognitive processes shift from a heavy dependence on refer-
ents to a mediation of the symbols and rules themselves.

This study examines how a teacher uses scaffolding to support the above first
two cognitive processes by using abundant, similar, but condition changed slightly,
examples as referents. As part of the scaffolding process, he turns over the dis-
course to the students.

The Study

The class described in this paper was an elective class for 7th graders (5 stu-
dents) and 8th graders (13 students). Its purpose was to explore mathematical
topics that were not provided in the students' "regular" math class. The teacher
was a fifth-year teacher with a major in mathematics in his teacher preparation
program. Hc has excellent rapport with middle school students and great enthusi-
asm for mathematics. The teacher felt that hc had less time pressw e and greater
flexibility to design and run this class than other math classes. Thc classroom had
a relaxed atmosphere, yet the teacher had a firm control over student misbehavior.
He enthusiastically guided students to deal with numbers, especially large num-
bers, and made connections to real world experiences. A variety of interactions
were used in the classroom: the teacher led whole-class discussions, the students
worked individually and in small groups, and groups gave problem-solving pre-
sentations.

Data collection consisted of daily videotaping, field notes, collection of mate-
rials used by the student.s, interviews of selected students and the teacher, and an
initial and a final whole-class survey of students' attitudes and perceptions of the
class. The mathematical content during thc 8-week period of data collection was a
unit on methods of counting, including permutations and combinations. This pa-
per focuses on the introduction of a new topic and symbol. Analysis of the dis-
course revealed scaffolding patterns of discourse. From that observation, a more
serious focus on scaffolding evolved. In the paper, we attempt to show how the
teacher introduced new content, developed students' understanding through the
use of sufficiently redundant examples as re I (lents, and then turned over the learn-
ing process to the students.

Building New Content on Existing Knowledge

Prior to this episode, the tea her introduced real-life examples of permuta-
tions related to the Rose Bowl game, phone numbers ol a town, and credit card
issues. The whole-class discussions were followed by two sets of exercises worked
in small groups and one done individually. Toward the end of that topic, students
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were using symbols for permutations to present problems and calculate numerical
answers. When the teacher introduced combinations into the class dialogue, he
emphasized that it was important to note the difference between combinations and
permutations: "If you don't understand thc difference, it is going to be very, very
confusing for you." He started by building the new content (combinations) on
familiar content (permutations), pointing out differences:

Teacher: Who can explain to me what a permutation isin their own words?
Yeah, TN?

TN: A permutation is (pausel a, hut something, like a number, like 3P1,
and P stands for permutations.

For TN, a permutation was two numbers associated by a symbol P. The teacher
accepted TN's response, but then tried to help her to re-organize her understanding
and connect the symbol to vivid referents. He narrowed his question to focus on
the concept.

Teacher: What does the word mean by itself! Disregard the number
[speaking slowly with emphasis! permutation?

TN: Oh, the arrangement.

Again, the teacher did not reject TN's incomplete explanation of permutations.
Instead, hc decided to give the class a concrete example. Below, we show how the
teacher used redundancy to connect the numerical component of thc situation to
concept development.

Use of Sufficiently Redundant Examples as Referents

The redundancy Occurs in both the type and number of examples. The teacher
builds an introduction to combinations based on the students' understandings of
permutations:

Teacher: All right, now, the word permutationone key element in that
idea is a very specific arrangement of things. If 1 were to, if we're
to elect tv.o people out of the eighteen votes, the president and the
vice president in this, uh, classroomif I elect LP as the president
and LN as the vice-president, that arrangement is very important.
It's totally different than ill elected LN as the president and LP as
vice-president. It's the same tv.o people, hut I changed the ar-
rangement, and I get a different situation. So, when, in a permuta-
tion, you ch;uige the arrange' ne nt and get something different,
that's, that's called a permutation. You change the arrangement,
you get somethou; different Yeah?

TN: So, would it be, would it he like 18 times 17?

Although TN selected the right numbers to fit this example, her questioning re-
sponse indicated that she was still struggling to attach numbers to the example.
The teacher not only agreed with her, but added more verbal explanation of the



meaning of those numbers. Then, he slightly changed his example situation to
move to combinations:

Teacher: That is exactly like that 11132 [writes "iaP2" on the chalkboard]
which is how many ways I can take and arrange 2 people from 18,
would be 1,P2 Now, that's a different problemwhat ill say we're
in a magazine sale and we win, uh, say candy or ice creamand
say I just want to send two people down to the office to pick up ice
cream. That is not a permutation. Just say I picked LN and LP to
go down to the office. If I picked LN and LP to go down to the
office, that's the same thing as if I picked LP and LN to go down
to the office. It doesn't matter which one I picked first. I just
picked those two people. So if I switchtx1 the order, I picked LN
first and then LP, that's the same as I picked LP and LN. That
doesn't matter; I just sent two people down to the office to pick up
ice cream for us. Who cares what order they're in, so that's not a
permutation because the order is not important. That's called a
combination l Writes "combination" on the chalkboard).

In this introduction, the teacher utilized numbers provided by TN, connecting the
new concept to a familiar concept by example. On the left side of the chalkboard,
he listed a pattern of 15 permutations using notations such as 1131, 2P 2132, 21'1,
continuing to 51',. These notations were familiar to students. Before attaching each
notation with meaningful referents, he asked the students to calculate the numeri-

cal answers for each permutation. Then they reviewed and wrote the general for-

mula "nPr = n!/(n-r)!" on the chalkboard.
The teacher asked students to compare ,C, with 1131, using an example of choos-

ing one person from a class with one student. Ile gradually increased the number

of students in the imaginary class to two, three...five. He repeated similar, but
condition changed slightly, examples in order to link permutations and combina-
tions. There was a sense formed in the class that thc president and vice president
issue was related to permutation problems and sending students to pick up ice

crcam was associated with combinations. The teacher wrote combination nota-
tions and amounts on the right side of the chalkboard to leave a visual record in

front of the students. As the development continued, hc frequently pointed out the

slightly changed conditions for the new content. They completed thcir list of 15
permutations and 15 combinations and students looked at the groups of symbols
and numbers on the chalkboard to figure out the relationship between patterns of
permutations and combinations. TN noticed that permutations and combinations
could be connected by division: "So, we could do it like a permutation, but divide

it by two?"

Turn Over of Dialogue to the Student

The teacher encouraged more students to participate, changing his role from a

speaker who did most of the talking to one who supported and helped students to
organize their own thoughts. Dialogues in the classroom turned from lecturing by

the teacher to students' observation and participation.

219 2 0



Teacher: Check it out. For this problem. TN is saying, I can do this just like
a permutation but divide it by two and I gct, cause 3P2 is 6, divide
it by 2. I get 3. That's my answer. Let's see if it works for this
[pointing to 3C3} ?

Students used picking up ice cream to decide that 3C3 was equal to one. TN's
rule was not satisfied in this situation. The teacher pointed out that students held
different pieces of information and hc encouraged all students to participate. Many
students raised their hands to show that they wanted to contribute. At this mo-
ment, students did not understand the general relationship between combinations
and permutations yet, but they enthusiastically participated in the discussion as
they searched for pattern. Compared to the beginning of the class, thc dialogues
were very different. One student, FT, presen!ed his thoughts in fragmented phrases.
The teacher patiently gave short responses to FT's comments to help him com-
plete the statement of his discovery. Then, he shifted to recording FT's idea on the
chalkboard:

Teacher: Okay, let's explain it again, so...

FT: You kind of, like on the last one, it would he 3 x 2 x 1.

Teacher: Go ahead. [FT speaks but cannot be heard.' Okay, so that equals
(writing 313 on the chalkboardl...

FT: Oh, Yeah.

Teacher: Okay, you're saying: change this to a permutation and then do
what? (writes "= 3P3" after 3C3 = 1 on the chalkboard].

FT: Then, put this nunther, second, factorial.

Helped by the teacher, FT completed the numerical relationship between combi-
nations and permutations. The teacher went one step further to give meaning,
comparison, and explanation to combinations:

Teacher: And divide this by the second number factorial. (writing "3!" un-
der 31)31That's [pause' corret. And Mat's, how ou figure out coin
binations. Now. I'll explain to you w hy that works. When you
have 3 choose 3, there is onl one way to do it. Just send these 3
people down. But when you compare that to the permutations,
how many different w s can I nil., up these same 3 people in
permutations'? Yeah?

JI: Six.

Teacher: Six, so I have to divide. If I get a permutation okix, but all six are
the same combination, so w hat I do is just like ws' did in the last
section. You have to divide by Mc number of repeats. I pointing to
3! on the chalkboard So, there is ô repeats. or 1 factorial repeats
kir this.

As thc teacher and students elaborate on the relationship between permutations
and combinations, we notice that the teacher attempts to help students become
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involved in the discussion and connect meanings to each of written symbols to
help students to develop understandings of the new topic.

Discussion

In this classroom, cognitive processes of connecting symbols to referents and
developing symbol manipulation procedures were enthusiastically supported by
the teacher. Rather than teaching in a way that directly introduced mathematical
written symbols and merely computing numerical answers, which often occurred
in student talk, the tea:her called attention to ways of talking about concepts and
ways of writing and giving meaning to symbols. Hc built the new content (combi-
nations) on a familiar one (permutations) by providing redundant examples when
students started this novel task. Rcdundancy occurred when he utilized examples
as referents to attach meaning to each symt)ol. Similar, but condition changed
slightly, examples played a significant role of making symbols meaningful. The
teacher also switched smoothly from lcauring to involving students in the discus-
sion. In this transition process, students had opportunities to organize their thoughts,
gain insights about the meanings of those symbols and develop the ability to ma-
nipulate them.
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WHY IS THE USE OF A RULER SO HARD?

Constance Kamii, The University of Alabama at Birmingham

This study involved three days of teaching in two fourth-grade classes. A pretest and a
posttest were given consisting of (a) a NAEP item asking for the length of a line drawn next
to a ruler, (b) a Piagetian unit-iteration task, and (c) the measurement of an object with a
ruler that had the "0" mark away from its edge. It was found in the pretest that 86% of the
children had constructed the logic of unit iteration but that most of them could not use a
ruler correctly. The posttest revealed that, although there was progress, the problems found
in the pretest persisted among a third to a fourth of the children. These problems were all
related to the initial unit of measurement.

The 1985-86 National Assessment of Educational Progress (NAEP) revealed
that only 14% of the third graders and 49% of the seventh graders chose the cor-
rect answer of 5 cm as the length of the line shown in Fig. 1 (Lindquist & Kouba,
1989). The 1990 NAEP included a similar item and produced similar findings
(Mullis, Dossey, Owen, & Phillips, 1991).

Percent Responding'
Item Grade 3 Grade 7

1

Imrilip11111111111i1limii111i1111111111111111111111111111i 11111

1 2 3 4 5 6 7 8 9 10 11 12 13

How long is this line segment?'
3cm 4 1

5cm 14 49
6cm 3 1 37

8cm 30 9

1 1 cm 6 2

I don't know. 15 2

'The response rate was .80 for grade 3 and .97 for grade 7.
'An actual centimeter ruler was pictured.
Figure 1.

The purpose of this paper is to explain why the use of a ruler is difficult by
describing findings from a three-day teaching experiment in two classes of fourth
graders. I first gave a pretest consisting of three parts: (a) the NAEP question
shown atxwe, (b) a Piagetian task of unit iteration, and (c) a measurement task
requiring the use of a ruler. I then joined two teachers in their respective class-
rooms as they engaged in activities that required the use of a ruler. The experiment
ended with a posttest that shed new light on children's difficulty in using rulers.
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Table 1

Pretest

t4.4

Posttest

r4.4

NAEP question

5 cm 45 64

6 cm 48 34

8 cm 5 2

11 cm 2 0

Unit-iteration task 86 95

Tasks requiring the use of a ruler

Ruler shown in Fig. 3

Alignment with 0 (4 3/4 inches) or

ignoring all numerals, counting

intervals, and giving correct answer

18 84

Alignment with edge of ruler (3 3/4 inches) 57 11

Alignment with "1" (5 3/4 inches) 9 5

Alighment with 1/8 inch to left of 0 16 0

(4 1/2 inches)

Ruler shown in Fig. 5 (used only in posttest)

Alignment with implicit 0

(the correct answer of 13 cm)

73

Alignment with edge of ruler (12+ cm) 14

Alignment with "1" (14 cm) 14

The Pretest (given in individual interviews)

The NAEP question

As can be seen in the preceding table, 45% of our fourth graders gave the
correct answer of 5 cm, hut 48% counted the numerals 3-8 on the ruler and said the
line was 6 cm long. Half of our fourth graders thus demonstraed that they counted
points rather than intervals.
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A unit-iteration task

This task, based on Piaget. Inhelder. and Szerninska (1948/
1960) and Kamii (1991), was given to find out if our children
had constructed the logic of unit iteration. Unit iteration here
refers to the ability to use a small, tlat block (1.25 x 1.25 inches)
repeatedly to determine wl-,ether or not the two lines in an in-
verted T (Fir4. 2) have the same length. Both lines
inches long. but the vertical one looked longer be-
cause of an optical illusion. The logic of unit itera-
tion is necessary for a child to use and understand
conventional units (intervals) such as inches and
centimeters. As can be seen in the table. 86% of
our fourth graders demonstrated the loific of unit
iteration.

were 4.75 Figure 2.

Figure 3.

A task requiring the use of a ruler

To find out how children used the left extremity and "0" point of a ruler, I
asked them to measure the horizontal line of the inverted T with a ruler like the one
in Fig. 3. Only 18% of our fourth graders gave the correct answer of "about 5 (or
4 3/4) inches." The most common error (made by 57%) was to align the edge of
the ruler with the beginning of the line being measured, read the numeral corre-
sponding to the end of the line, and say that the line was "atmt 4 (or 3 3/4) inches
long." Two other kinds of errors also demonstrating the difficulty of the initial
interval. Onc was to align the "1" on the ruler with the beginning of the line and to
say that the line was "about 6 (or 5 3/4) inches long." Nine percent of our fourth
graders made this error. The second type of error was to align the beginning of the
line with a mark on the ruler about 1/8 inch to the left of the "0" mark. Sixteen
percent of our fourth graders did this and said the line was "about 4 1/2 inches
long." These children meant to align the "0" mark with the beginning of the line
but thought that the point 0 was directly above the numeral 0 (see Fig. 3).

The overall conclusion drawn from the pretest was that since most of our
fourth graders had constructed the logic of unit iteration. the use of a ruler was
developmentally appropriate to teach. More than half of the children had trouble
thinking about the first unit (an interval), but this difficulty seemed superficial
compared to the deep logic of unit iteration that most of our children demonstrated.

Three Days of Teaching

The measurement activities recommended by textbooks have two major
weaknesses. First, textbooks ask questions such as "How many centimeters wide
is your deskr that are irrelevant to children. Second, they ask "How many?"
without giving children any reason for measuring things accurately. Our classroom
activities were the following three kinds that were more purposeful and interesting.
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Measuring to compare

An example of this kind of activity was inspired
by Opt: An Illusionary Tale (Baum & Baum, 1987),
a collection of pictures such as the one in Fig. 4 ask-
ing if the height of the hat is greater than the width of
the brim. Throughout the three days of teaching, we
asked the children to use a ruler like the one in Fig. 3.

Measuring to draw

We asked the children to make drawings similar to Fig. 4 but with different
dimensions, to take home and amuse their families.

Figure 4.

Measuring to make something

The intriguing object we suggested to the children to make was a "Magic
Calendar." However, a different arts-and-crafts activity could also have been used
necessitating the accurate use of a ruler.

A particularly important part of our constructivist teaching was to avoid di-
rect teaching and, instead, encourage the exchange of points of view among chil-
dren. As Piaget (1979) said, "The confrontation of points of view is already indis-
pensable in childhood for the elaboration of logical thought. and such confronta-
tions become increasingly more iri4)ortant in th:: claboratic-it of sciences by adults
(p. vii)." When a child said, "My ruler is wrong," to another child, for example.
we encouraged the second child to respond. A frequently heard response was:
"The ruler doesn't make any difference because an inch is an inch. Sce. I'll show
you....

We learned much about children's ways of thinking by interacting with them
in the classroom. For example, when thcy had trouble figuring out how to use our
ruler (Fig. 3), they asked us for help. A possible reaction in such a situation was to
find out "where the child was" by saying, "Would you show me an inchan ex-
ample of an inch." Some children responded by pointing to the "1" on the ruler.
suggesting that an inch to them was a point or a numeral rather than an interval.
When this happened. we usually said, "I thought an inch was about this long,"
showing an interval between two lingers.

Many children aligned thc edge of the ruler with the edge of the object being
measured and counted the intervals instead of using the numerals on the ruler.
When we saw this behavior, we sometimes asked. "Wouldn't it be easier to put the
0 on the edge like this (demonstrating) so you could just read the number at the
other end?" Some children responded with a "No." Others slid the ruler to the
left, past the 0, and aligned the edge of the object with the "1" on the ruler! As they
later explained during the whole-class discussion, "Zero doesn't count." and "When
you count, you don't say 'zero-one-two. You say 'one-two-three.'" We thus
learned that some children's belief that "Iero doesn't count" was preventing them
from thinking about the initial interval.
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The Posttest

As can be seen in the table presented earlier,
the children did better on the posttest, but a large
percentage, 34%, continued to choose the answer
of 6 cm on the NAEP question.

The "acid test" required the use of an unfa-
miliar ruler (see Fig. 5). The marks on this ruler
started about 6 mm away from the edge. and the
0 point was not numbered. Another novelty was that this was a centimeter ruler.
and the children had been using only inches. Although 739 of our children gave
the correct answer of 13 cm by using the unfamiliar ruler correctly, the errors
described earlier persisted among the other students. Fourteen percent aligned the
edge of the ruler with the edge of the object and reported a length of "a little more
than 12 cm." Another 14% aligned the "1" mark with the edge of the object and
said it was 14 cm long.

Figure 5.

Conclusion

Measurement of length is introduced in kindergarten and taudit repeatedly in
subsequent years according to most state curriculum guides and nationally distrib-
uted textbooks. I thought that the use of a ruler would be more appropriate and
easy in fourth grade because 86% of our children had constructed the logic of unit
iteration. However, this logic turned out to be far from sufficient for the learning
I expected.

Mathematics educators, including the authors of the Standards (NCTM, 1989),
say that the way to build a conceptual foundation for the use of instruments is to
provide experiences with concrete objects and to ask children to estimate how
many units will be found by counting them. The experiment described above
shows the need to examine children's thinking more deeply and precisely. The
problems of the initial unit, the edge of the ruler, the "0" point, and the "1" have
been observed by many teachers and some researchers such as Heraud (1989) and
Bright and Hoeffner (1993). Further research is necessary to find out how best to
encourage children to modify their thinking about these aspects of measurement.
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EFFECTS OF DIFFERING TECHNOLOGICAL APPROACHES ON STUDENTS'
USE OF NUMERICAL, GRAPHICAL AND SYMBOLIC REPRESENTATIONS

AND THEIR UNDERSTANDING OF CALCULUS

Donald T. Porzio, Northern Illinois University

Research on the effects of using different forms of technology in calculus
instruction has typically focused on using technology to emphasize concept undcr-
standing while de-emphasizing routine computational skills. This study investi-
gates the impact of different instructional approaches to calculus by examining
their effects on students' abilities to use and understand connections between rep-
resentations when solving calculus problems. 100 participants came from intact
classes from three different differential calculus courses. The first used a tradi-
tional approach to calculus instruction that emphasized use of symbolic represen-
tations. The second was similar but iustruction stressed use of symbolic represen-
tations and graphical representations generated via graphics calculators. The third
used the electronic course Calculus & Mathemazica (Davis, Porta, and Uhl, 1994)
where instruction emphasized use of multiple representations and solving of prob-
lems designed to establish or reinforce connections between representations.

Data were collected using pre- and posttest instruments and 36 student inter-
views. The pretest and posttest measured students' initial preferences for certain
representations when solving problems. Thc interviews and posttest were used to
evaluate students' use and understanding of different representations when solv-
ing calculus problems. A theoretical framework for analyzing differences in stu-
dents' abilities to use and understand connections between representations was
developed from the notions that (a) a concept is understood if it is part of a net-
work of internal representations, (b) the degree of understanding is determined by
the number and strength of connections between representations, and (c) through
reflective abstraction, students' knowledge is constructed while solving and inter-
preting problems.

Results indicated Calculus & Mathernatica students were better able to use
and to recognize connections between different representations than the other stu-
dents. Graphics calculator students had trouble recognizing connections between
graphical and symbolic representations even though use of these representations
was stressed during the course. Results suggest the addition of a technological
component to the existing curriculum to provide easier access to representations
may not necessarily improve students' understanding of calculus. Other implica-
tions of the study's results relative to curriculum and students' understanding will
be discussed.
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THE ROLE OF MULTIPLE REPRESENTATIONS
IN LEARNING ALGEBRA

Mary E. Brenner, Theresa Brar, Richard Duran, Richard Mayer,
Bryan Moseley, Barbara R. Smith and David Webb

University of California, Santa Barbara

The transition from arithmetic to algebra is a notoriously difficult one (Booth,
1989; Hcrscovics & Linchevski, 1994). Success in algebra problem solving de-
pends both on symbol manipulation skills for solving algebraic equations and prob-
lem representation skills based on conceptual knowledge about the meaning of
word problems (Mayer, Lewis, Hegarty, 1992). To help students in this transition,
a team of teachers and researchers developed a unit on functions using three math
reform principles: (a) Instead of emphasizing symbol manipulation, we empha-
size problem representation skills. In particular, students learn to construct and
coordinat?, multiple representations of functions, including expressing functions
in words, tables, graphs, and symbols. (b) Instead of teaching problem-solving
skills in isolation we anchor them within a meaningful thematic situationmak-
ing the decision of which company should supply pizza to the school cafeteria. (c)
Instead of focusing solely on the product of problem solving, wc emphasize the
process of problem solving, in cooperative groups and through modeling by teach-
ers.

Methods
7th and 8th graders (N=157) took a series of pretests, received 20 days of

mathematics instruction on functions based on the above approach (treatment group)
or a traditional approach (comparison group), and took a series of posttests.

Results
The treatment group made larger gains than did the comparison group on tests

of solving equations (t (155) = 3.30, p < .01). The treatment group showed signifi-
cantly larger gains in correctly writing equations, completing tables and drawing
graphs (t (155) = 2.49, p < .01) as well as larger gains in using these skills while
working on word problems (t (155) = 3.30, p < .01). These results demonstrate
qualitative differences in the learning outcomes produced by different instructional
methods. The cognitive consequences of traditional instruction focusing on sym-
bol manipulation were reflected in improvements in students' ability to solve equa-
tions. Thc cognitive consequences of learning-by-understanding involved improve-
ments in students' ability to represent functional relationships in equations, tables
and figures, and to translate between these. The results were consistent with thc
idea that problem representation skills arc learnable. More importantly, students
were able to transfer these representation strategies to new situations.
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CONSTRUCTIVIST PRACTICE AND THE BOUNDS
OF METACOGNITION

Marshall Gordon, The Park School of Baltimore

The constructivist perspective, whether it emphasizes thc individual (von
Glasersfeld, 1984) or is more oriented toward a social context (Cobb, Wood, &
Yackel, 1990), holds that knowledge is constructed by the participants, not pro-
vided by others or secured by an objective reading of reality. Thus in the context of
school education, constructivist practice necessarily requires giving consideration
to each student's concerns regarding and effort toward making sense of their learn-
ing experience.

Metacognitive activities, intrinsic to the development and representation of a
constructivist-based learning environment, have been valuable in helping students
develop their mathematical problem-solving awareness (e.g.. Schoenfeld, 1987;
Confrey, 1990). In these reflection-in-action (Schon, 1987) studies, students are
assisted in the immediacy of the problem-solving experience to share their think-
ing as they go and have the opportunity to interact with the teacher toward clarify-
ing thcir intuitions and. reasoning. In contrast, the research to be presented will
explore a variation of reflection-on-action (Schon, 1987). Here students have had
thc opportunity to choose and act toward securing or changing some attitudes and/
or behavior(s) of their own that they believe would promote their thinking more
productively, critically reflect on how they arc proceeding with the teacher's assis-
tance if desired, make adjustments in their practice including the allocation of
energy, and continue toward securing a self-chosen goal. This reflects this
researcher's experience that an extended period of time is required to see the ef-
fects of decisions toward change and others' experience (Lester, Garofolo & Knoll,
1989) that there are afiectivi. ..ind contextual factors associated with the learning
environment which impact students' metacognition.

Findings are that the studoits found this effort valuable personally and their
mathematics grades increased u a statistically significant degree.
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THE EFFECTS OF VARIED CONCRETE OBJECTS ON SOLUTION
PROCESSES FOR ARITHMETIC WORD PROBLEMS:

A CASE STUDY

Ycping Li, University of Pittsburgh

This paper reports results of a study on the effects of varied concrete objects
on solution processes for arithmetic word problems. The subject was a third grade
pupil, who was asked to solve eight word problems. With each word problem,
various concrete objects were provided as possible referents. The subject was told
that either paper-and-pencil or the concrete objects could be used to solve the
presented word problem, that she could take as much as time as needed, but that
she was required to "think-aloud" as she solved the problems.

The purpose of assigning various concrete objects to the word problems was
to identify which aspect of the concrete objects determined thcir utility with re-
spect to the subject's solutions. Thc concrete objects and problem statements used
by the subject were treated as external visual representations and verbal represen-
tations, respectively. To examine the relationship between those two types of ex-
ternal representations, the researcher developed a schema based on Simon's work
on "informal and computational (non)equivalence" (1989) and on concrete and
conceptual levels. The specified tasks (i.e., the word problems and the presented
various concrete objects), the think-aloud protocols, and thc researcher's direct
observation of the student as she completed each task were the data sources used
to analyze the subject's problem-solving behaviors according to the schema devel-
oped for this study.

Results from this study suggest that: (1) The subject tended to favor concrete
objects for representing and solving word problems even when using the concrete
objects tended to be less efficient than using symbolic computation; (2) Whether
or not the number of presented concrete objects was sufficient for representing the
subsets in word problems and their manipulations is a critical factor in determin-
ing the utility of concrete objects; (3) Once the subject used concrete objects inap-
propriately as visual representations for solving a particular word problem, the
objects became a 'cognitive obstacle' for the subject in her attempt to understand-
ing and solving the problem; and (4) In making usc of concrete objects as visual
representations in her solutions, the subject adopted the principle of visual consis-
tency either between the two external representations or within concrete objects.
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EXAMINATION OF REPRESENTATIONAL PREFERENCES ON
LIMIT TASKS FOLLOWING GRAPHING CALCULATOR

IMPLEMENTATION IN CALCULUS

Nina R. Girard, University of Pittsburgh

Graphing calculators present a dramatic new challenge in the teaching and
learning of mathematics. Although many factors have led to discussion of calcu-
lus reform at the collegiate level, implementation of graphing technology has been
the main spark generating these discussions. As Kaput (1992) delineated, the ncw
technologies "re-energize" age old questions regarding educational goals, appro-
priate pedagogical strategics, as well as beliefs about the nature of subject matter,
nature of learner and their learning, and relationship between knowledge and the
knower (p.516).

The multiple-representation-of-concepts view of mathematical learning has
bcen growing in significance. This theoretical view purports that students can
develop deeper, more flexible understandings of concepts. Kaput (1989) suggested
that multiple representation allows for suppression of some. aspects of complex
concepts and accentuation of others, helping to facilitate cognitive linking of rep-
resentations and creating a whole that is more than the sum of its parts. The ability
of student.s to operate within and between different representations (graphical,
numerical, and algebraic) of the same concept or problem setting is fundamental
to the effectiveness of the technological approach of mathematical instruction.
Powerful geometrical or graphical representations of a concept can be easily added
to usual algebraic representxions with the aid of graphing calculators. Opportuni-
ties to increase depths of understanding by linking algebraic representations to
morc graphical representations arc provided, thereby enhancing visualization of
concepts.

This poster will present a microscopic view of students' responses to several
tasks presented on a final examination in first term calculus. Graphing calculators
were implemented into the college level course and a multiple representation ap-
proach was used in instruction. The tasks presented focus upon the concept of
limit, in an attempt to see with which representation (graphical, numerical/tabular,
or algebraic/analytical) students chose to solve the problem, when presented limits
that contained functions unfamiliar to them at a Calculus I level. Enlightenment as
to the students' conceptual understanding and representational knowledge and flu-
ency is suggested. Issues of conflict resolution and the role of the graphing calcu-
lator as an exploratory or confirmatory tool are also examined.
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IMPACT OF CALCULUS REFORM IN A LIBERAL
ARTS CALCULUS COURSE

Patricia A. Brosnan, The Ohio State University
Thomas G. Ral ley, The Ohio State University

This report describes the changes in a freshman-level calculus course. Survey
of Calculus, that occurred as a consequence of adopting a reformed calculus text,
Calculus by Deborah Hughes-Hallett, Andrew Gleason et al. (better known as the
Harvard Consortium Calculus or HCC text). The perspective is that of the lec-
turer.

The course is intended as an introduction to calculus for liberal arts students,
that is, students who will not be expected to use calculus as a mathematical tool in
their area of major study. The course exists becaus;.: of a faculty belief that calcu-
lus is one of the great intellectual achievements of humankind, has been a major
factor in the development of western civilization and should be part of every lib-
eral education. Prior to the adoption of the Hughes-Hallett/Gleason text however,
these reasons for calculus as a part of a liberal education were nowhere apparent in
the course. Rather, the course was a shadow of the mainline scientific calculus,
emphasizing development of skills with computational elements of calculus. Given
an audience whose interests are non-scientific and whose skills with symbolic
manipulation are not strong, the course left students with a feeling that mathemat-
ics is a collection of formulas and procedures to be memorized and then forgotten.
(One of the principal motivations for the calculus reform movement was concern
about students learning to manipulate symbols rather than understanding concepts
that form a basis for general analysis in problem solving (Douglas, 1986).

Research Questions

What factors motivated one mathematics professor to make changes
in his Survey of Calculus course?

What changes were made in curriculum, pedagogy, and assessment
as a result of these motivations?

Method

Study Participants. Students enrolled in MATH 117 A Survey of Calculus
for both the Winter (n = 104) and Autumn (n=40) Quarters, faculty (n=1). gradu-
ate teaching associates (GTA) (n=2). and a random sample of students (n=15)
selected for interviews across two 10-week quarters.

Data Collection. A cyclical process of questioning, observing, and hypoth-
esis generating occurred throughout the study. Major data sources included weekly
interviews, daily observations, field notes. and collected artifacts.
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Results and Discussion

For successful reform, the text materials must change, the instructor must
change, and the assessment must change. We will look at each of these aspects of
thc Survey of Calculus course and describe the changes in each.

The Hughes-Hallett/ Gleason text was selected because it is quite different
from traditional texts.' The essence of the change is captured in the following
quote from the preface of the text:

At every stage, this book emphasizes the meaning (in practical, graphi-
cal or numerical terms) of the symbols you are using. There is much
less emphasis on "plug-and-chug" and using formulas, and much
more emphasis on the interpretation of these formulas than you may
expect You will often be asked to explain your ideas in words or to
explain an answer using graphs...

There arc few examples in the text that are exactly like the home-
work problems. so homework problems can't be done by searching
for similar-looking "worked-out" examples. Success with the home-
work will come by grappling with the ideas of calculus.

Many problems in the hook are open-ended. This means that there is
more than one correct approach and more than one correct solution...

This hook assumes that you have access to a calculator or computer
that can graph functions, find (approximate) roots of equations, and
compute integrals numerically. There are many situations where you
may not be able to find an exact solution to a problem, but can use a
calc.ilator or computer to get a reasonable approximation. An an-
swer obtained this way is usually just as useful as an exact one.
However, the problem does not always state that a calculator is re-
quired, so use your own judgment...

This book attempts to give equal weight to three methods for de-
scribing functions: graphical (a picture), numerical (a table of val-
ues) and algebraic (a formula). Sometimes it's easier to translate a
problem given in one form into another.... It is important to be flex-
ible about your approach: if one way of looking at a problem doesn't
work, try another. (Hughes-Hallett, Gleason, et al., 1994, p. xiii)

One of the features most appealing I'm the liberal arts audience is given in the
last point: the text makes strong use of graphical and numerical representations
and (in the portion of the hook used in the course) downplays the importance of
formulas. For an audience whose algebraic skills are modest, this emphasis was
highly beneficial, allowing them to examine concepts without being required to
carry out extensive algebraic computations.

Another important feature oF the text are the examples and problems that re-
quire thoughtful application of the concepts. Below is a problem from the text to
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illustrate the type of thinking students were asked to do (Hughes-Hallett, Gleason.
et al., 1994, p. 34).

Values of three functions are contained in Table 1.16 (The num-
bers have been rounded to two decimal places.) Two are power
functions and one is an exponential. One of the power functions
is a quadratic and one is a cubic. Which one is exponential?
Which one is quadratic? Which one is cubic?

f(x) x (x) x k(x)

8.4 5.93 5.0 3.12 0.6 3.24

9.0 7.29 5.5 3.74 1.0 9.01

9.6 8.85 6.0 4.49 1.4 17.66

10.2 10.61 6.5 5.39 1.8 29.19
10.8 12.60 7.0 6.47 2.1 43.61

11.4 14.82 7.5 7.76 1.6 60.91

Another example, taken from the chapter on differentiation, iliustrates how a
traditional topic can be treated in a new and intriguing mannera Hughes-Hallett.
Gleason, et al.. 1994, p. 128)

Table 2.13 shows the number of abortions per year. A. performed
in the US in year t las reported to the Center for Disease Control
and Prevention). Suppose these data points lie on a smooth curve

A=f(t).

Mble 2.13
Abortions reported in the 118 (1972-1985)

Year, t 1972 1976 1980 1985

Number of abortions reported, A 586,760 988,267 1,297,606 1,328,570

(a) Estimate dA/dt for the thne intervals shown between 1972 and 1985.

(h) What can you say about the sign of d1A/dt during the period 1972-
1985?

Typically the second derivative is introduced as an exercise in differentiating
the first derivative of a function fix) and is used to identify the concavity of the
function, presumably useful in sketching the graph of 1( x). Those who have done
this know that points where the concavity changes are very difficult to identify on
the graph. Graphing calculators make this use of the second derivative obsolete.
In class discussion of this example, students were asked tox construct arguments
both for and against legislation limiting access to abortion. The side arguing for
limitations used the fact that the number of abortions was increasing (i.e., dA/dt >
0). The side arguing against limitations used the fact that the number of abortions
was increasing at a decreasing rate (i.e., &Aid(' < 0). In another example illustrating
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the use of the second derivative, the authors quote a member of Congress who
during the 1985 Defense Department budgct hearings complained, "It's confusing
to the American people to imply that Congress threatens national security with
reductions when you're really talking about a reduction in the increase" (Hughes-
Hallett, Gleason, et al., 1994, p.127). Examples of this sort lend credence to the
argument that calculus should be a part of a liberal education.

Change on the part of thc lecturer was motivated by several factors. The
Hughes-Hallett / Gleason tcxt provides abundant opportunities to examine and
discuss problems that probe conceptual understanding and this encouraged the
lecturer to increase time spent interacting with students (a non-trivial task in large
lecture sections) in examining ideas. Anothcr motivation for change came from
the NCTM rcforms that encourage the use of cooperative groups. Parts of the
lecture hour were regularly used to put students in groups of three or four to work
together on specially prepared problems that were turned in at the end of class. It
was a humbling experience for the lecturer to observe how his beautifully pre-
pared, carefully organized lecture presentation seemed to have made no impres-
sion on the students as they struggled to construct their own understanding whit,:
working on the problems. The ease with which a graphing calculator overhead
unit could be used in class and the integration of technology into the text was a
third motivation for change; increased use of technology during the lecture. A TI-
82 graphing calculator was used in almost every lecture. An illustration of a place
whcre thc calculator was particularly effective is in the authors' introduction to the
derivative in the form of a thought experiment in which a grapefruit is tossed up
into the air and then falls back to the ground with its height at time t recorded in a
table. Using the calculator, it was possible to reproduce the data for height and
time in one second increments as a table in the calculator. From the initial table,
the class was able to calculatk. average velocities over one second intervals about
time to. The table increment was then changed to present the height and timc in
half second increments and average velocities about to were again computcd. The
process was repeated one more time with a table having time increments of one
tenth of a second. From the three sets of calculations of average velocities, the
limiting value was clear to the students. This sort of demonstration is not feasible
with blackboard and chalk; the time required to generate the table so dominates
the process that thc calculation becomes the important issue and thc use of thc data
is obscured.

Evaluation strategy changed in several ways. First, written homework as-
signments from the tcxt replaced onc of the mid-term exams, making written prob-
lem solutions approximately 22% of the total marks for the class. Second, the
format of exam problems changed; they were more open-ended and asked for ex-
planation of the reasoning used to arrive at a solution. An example of such a
problem is the following:

You're home for a long weekend and your little sister, who is
taking Advanced Placement Calculus in high school, tells you
that she is failing because s:te doesn't have a clue as to ..vhat a
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derivative is, or how to find a derivative or what the derivative
does. Write a paragraph describing what you would do to help
her learn calculus.

On a problem such as this, the expectation was that the student would mention
something about the derivative as a way to measure the rate at which a function
changes, would give an example in Which different representations (numeric, graphi-
cal or symbolic) were used as a means of measuring rate of change, would give a
description of the mathematical definition of derivative (along the lines of "the
limiting values of the average rates of change over increasingly smaller and smaller
intervals about a specified value of the variable"), and. perhaps, give an example
of a problem in which the derivative would be used. As mentioned earlier, a third
change was use of part of the lecture hour for problem solving by students working
cooperatively in small groups. About once a week, during the final twenty-five
minutes of the lecture hour, students were asked to work in groups of three or four.
The problem was generally a topic from that day's lecture or something from the
text that had been studied recently. The group was to come to consensus on a
solution to the problem and to write a solution together. This work constituted less
than 5% of the total marks for the class and was used as a bonus, added to mid-
term scores.

The use of written homework assignments, the change in exam questions and
the group problems in lecture all contain elements of reform efforts to develop
students' facilities with written communication of mathematical ideas. The Harvard
materials provide a rich variety of problems that require careful examination of
concepts and the application of that understanding to new situations. It was im-
portant that students regarded this as a central part of their activity in the course.
which meant including it as part of the grade.

What are the perceptions of the instructor about the global changes that oc-
curred? The learning was different; the material was appropriate to students' needs
and level of sophistication. Students came away from the course with different
attitudes about mathematics. The use of the graphing calculator opens up new
ways of understanding mathematics, new ways of representing mathematical ob-
jects and aids students in their studies of mathematics. The use of cooperative
groups is an important technique in promoting student involvement in learning.
Increased use of writing in mathematics is critical to students learning conceptu-
ally rather than mechanically.
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INTERNATIONAL INFLUENCES ON THE NCTM STANDARDS:
A CASE STUDY OF EDUCATIONAL CHANGE

Douglas B. McLeod, San Diego State University
Robert E. Stake. University of Illinois

Bonnie Schappelle. San Diego State University
Melissa Mellissinos. San Diego State University

The NCTM Standards have multiple origins. In part they developed out of concerns from
NCTM committee members about textbook adoption policies that favored traditional texts
They also constituted a response to the public furor caused by A Nation at Risk, and instan
hated An Agenda for Action's 1980 recommendations on curriculum. International curricu-
lum and research projects also influenced the NCTM Standards. The initial NCTM empha
sis on standards as accountability criteria shared certain similarities with the National Cur-
riculum effort in England and Australia. where reform is reportedly stalled. The more recent
view of the Standards as aspiration may help extend the duration of their influence

The publication of the Curriculum and Evaluation Standards for Sclu,o1 1 at/i-

ematics (NCTM, 1989) was the culmination of a series of important events in
mathematics education in North America. The development of these Standards ts
usually described in the context of conference recommendations from the US
(Crosswhite, Dossey, & Frye, 1989; Romberg & Webb, 1993). but international
forces were also at work. The purpose of this paper is to describe the origins ot the
NCTM Standards and to analyze how international forces helped shape the Stan-
dards and the reform movement in mathematics.

This case study has focused on understanding the origins of the NCTM Stan-
dards, as well as their development, dissemination, and impact in K- 12 classrooins.
Our methods followed the recommendations of Stake (1994). Main sources ol
data included interviews with NCTM leaders and state mathematics supervisors in
the US. One of eight studies of educational change in the US (see Romberg &
Webb, 1993), our project is part of an international effort coordinated b the
Organisation for Economic Cooperation and Development in Paris. One goal at
our project is to explain to policy makers from abroad how a professional organi-
zation like NCTM could provide direction for educational change. a ta.k that is
usually left to government officials.

Origins of the NCTM Standards

The decline of test scores was one of several issues that were int luennal in the
push for educational reform. For example. A Nation at Ri.sk NCLI-., 1981 ) noted
the decline in SAT scores from 1%3 to 1980. NCTM leaders. howes er. put !mire
emphasis on the results from the Second International Mathematics Slud 1 SIMS)

Although the NCTM Standards were being planned before the SIMS data were
reported. the preliminary results were known to NCTM leader.. Thew leaders did
not see their task as organizing mathematics education for an intonational coinrx.
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tition; they were concerned about the weakness in the US curriculum that was
reflected in the data. As one NCTM leader put it:

We weren't being motivated by "world class standards" at that
point. [But] we did have comparative data, especially in terms
of the Japanese curriculum, which showed so much more inten-
sity than ours did.

Although the SIMS data were important in the thinking of NCTM leaders, reports
of the Second International Study (e.g., McKnight et al., 1987) were not cited in
the list of references in the NCTM Standards (1989). That omission caused some
concern, but an NCTM leader described their reasoning this way:

I think that if you base your argument for [reform] on a tempo-
ral research result, you're being reactionary rather than proactive.

. . The focus was to take the negative, the competitive state-
ments out of the document, and make the document a proactive,
positive statement. Let's say what we believe and then act on it.

The Instructional Issues Advisory Committee (IIAC)

The quality of the US curriculum was related to IIAC's concerns about ac-
countability. The earliest talk of professional standards in NCTM cirJes probably
occurred in IIAC, after that committee and the Research Advisory Committee (RAC)
received a request to help one of NCTM's affiliated groups with criteria for evalu-
ating textbwks. "There was some concern [from] several places that textbooks,
and therefore curricula, were being driven by non-professional considerations,
political log rolling, and so on." An RAC member recalled:

R AC had a request for information about research on the effi-
cacy of John Saxon's algebra. Our discussion quickly broad-
ened to the general question of evaluating curriculum materials
in the absence of standards by which to measure "success" or
desirability...1 recall that we were acutely aware that...we were
asking NCTM to abandon its long-standing and explicit policy
not to pass judgment on various curriculum efforts.

I IAC had also considered the issue and !ook on the task of developing standards
for textbook selection in early 1983, before the appearance of A Nation at Risk
(NCEE, 1983). A committee member recalled how the notion of standards got
extended:

Somehow we got onto thc idea that maybe what IlAC ought to
be about was defining professional standards in general.- not
just for selection of textbook material but for content of the
curriculum, for tz..achirig, and so on.

The recommendations ftom IIAC had a strong accountability emphasis:
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There was talk about something comparable to the Good House-
keeping Seal of Approval. We would have standards that could
be applied to textbooks [and] tests. The ones that were judged
to meet the standards then would be given the Seal of Approval
and the ones that weren't would not.

The recommendations of RAC and IIAC began to coalesce in the spring of 1983 at
a meeting of the NCTM Board of Director.:

It was interesting that not only RAC was asking the Council to
take a proactive stand, but [also IIAC. We] had already seen the
raw data from SIMS, which weren't known yet by the other board
members ... and [data from] the National Assessment of Educa-
tional Progress, too. So issues were coming to2ether. IIAC said
that we needed to look at setting some goals to stop . .. this fad
and that fad from affecting our curriculum.

Meetings of Leaders

Shortly after the publication of the Agenda. the Reagan Administration elimi-
nated all funding for K-I2 mathematics and science education from the budget of
the National Science Foundation (NSF). To the dismay of those who worked in
the Education Directorate at NSF, some NSF leaders capitulated easily to the Reagan
Administration and made the preservation of research programs in science and
engineerina their main priority. Meanwhile, A Nation at Risk (NCEE, 1983) re-
ceived "unprecedented" media attention. All America heard that "Our Nation is at
risk.... the educational foundations of our society are presently being eroded by a
rising tide of mediocrity that threatens our very future as a Nation and a people"
(NCEE 1983, p. 5). Many leaders give credit to A Nation at Risk for helpin2
establish a climate that would support change:

I think A Nation At Risk (NCEE, 1983) served primarily as a
spark plug, a starting point for people...States were requiring a
third year of mathematics and some other things and making
political decisions without ever talking to the math ed commu-
nity. So that...started a lot people talking about the need for
reform.

In the wake of A Nation at Risk, two meetings were particularly central to the
development of the NCTM Standard.s. In the words of one participant:

After A Nation at Risk came out, the Conference Board of the
Mathematical Sciences ori,aniied a retreat at Airlie House in
Virginia (funded by NSF:I. It was at that meeting that Joe
Crosswhite] introduced a motion...that there should be a set of

qaudards for school mathematics at NCTM.
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In December, 1983, a month after the meeting in Virginia, the Department of
Education sponsored a meeting at Wisconsin: "School Mathematics: Options for
the 1990s." The report of that meeting (Romberg. 1984), with its recommenda-
tions for new K-8 and 7-14 curriculum guidelines, also shows a direct link to the
Standards.

Development of the NCTM Standards

When the writers of the NCTM Standards gathered in Utah in 1987, they
were provided with a rich set of resources to help stimulate their thinking. These
materials were mainly written in English, so the number of foreign countries that
were represented was small. But the materials did include the Cockcroft report
and "a library of SMP [School Mathematics Project] materials" from England. As
one leader put it:

We tried to organize materials from other countriesEngland,
the Netherlands, Australia. Some of us spent a fair amount of
time down at Chicago looking at some of the IWirszup]
materials...The Math Curriculum Teaching Project (from Aus-
tralia( had a lot of interesting examples.

Other work from England was a significant influence at the 9-12 level:

At the time that we were beginning to start on the Standards,
there was some interesting work being done over at the Shell
Centre in England in terms of more qualitative applications of
mathematical thinking, for example, the work on the language
of functions and graphs.

As the staff member who was responsible for materials noted, "We just flooded
them with stuff." There were materials by D' Ambrosio (of Brazil) dealing with
ethnomathematics, and the writings of Freudenthal (of The Netherlands), whose
work on "didactical phenomenology" was thought to be "a little hard for most
people" to get through. Writers rarely mentioned these works, but the leadership
was clearly influenced by them, and saw them as compatible and supportive:

There was a sense that kids ought to experience mathematics
that they're reinventing some of the important ideas. And then
teachers negotiate with them the language in terms of signs and
symbols that we commonly use.

Other international researchers who had the eye of the leadership included G.
Vergnaud of France. especially his work on multiplicative conceptual fields, and J.
de Lange of The Netherlands. with his "realistic mathematics education the
work of these researchers demonstrates some of the international influences on the
Standards. especially in terms of changes in theories of learning. Steffe and Kieren
(1994) have noted the influence of constructivism on the NCTM Stanaards. A

leader comments:
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The term that we did not use in the write up of the Standards,
but we certainly talked about, is...the social constructivist no-
tion of learning.... One of the arguments that people have made
is, "Why didn't you call yourselves social constructivists?" But
that would have put off people who didn't understand that set of
notions.

Another leader reported: "I don't remember a construetivist approach being
that hot at the time that the Standards were being developed." But some writers
were definitely being encouraged to think along constructivist lines:

I remember coming back and talking with some of my
[constructivist] colleagues [in 1987], and thcy thought the idea
of standards was very authoritarianthey were pretty negative
toward it. When we met again [later in 1987], even then we
were drifting toward the Standards as more of a visiona less
authoritarian perspective.

The debates over the substance and the wording of the standards was often
intense. As an example, consider the case of a "standard" that was suggested by
one group but did not garner enough support to survive until the final draft. That
proposed standard was concerned with the way that history and culture influence
mathematics and its teaching. An early version of the standard, entitled "Histori-
cal and Cultural Significance," follows:

In Grades 5-8 the mathematics curriculum should foster an his-
torical and cultural awareness of mathematics so that students
arc able to:

Explore mathematics in relation to the arts, humanities, and sci-
ences.

Appreciate that mathematics is an invention of the human mind.

Appreciate the potential of mathematics as an enjo able activ-
ity.

Appreciate mathematics as a powerful, creative human activity.

The elaboration that was outlined for this proposed standard included math-
ematics and music. history of mathematics. recreational mathematics. and numera-
tion systems. As some writers look hack on it now, the standard would have fit
very nicely with the current interest in ethnomathematics, a topic of increasing
importance in research (D'Ambrosio & Ambrosio, 19941. At that time, how-
ever, the topic was seen as difficult to communicate and not central to the content
emphasis of the Standards. In the words of one source:

The middle school group came up wi-th the standard on culture
[bull the Standards were conceived as focusing entirely on con-
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tent, and culture was not perceived to be content. The reaction
was, "Well, this is too touchy-feely." . .. The frustration that I
had, and still have with that rejection, is that in fact there is a
whole philosophy of mathematics that was developing at that
time that looks at mathematics as a cultural creation. [But] the
members of the working groups really hadn't had a chance in
look at that literature and think about it.

One of the writers had a slightly different view, noting that "we wanted to
show that kids . . . had things back in ancient history" that connected them to
mathematics, but their arguments were not convincing:

The more interesting thing is what is in the personal culture of
each child that is mathematical. Certainly part of that is their
history. whether it be racial or ethnic or whatever. We enunci-
ated that ethno-cultural part, but we didn't have anything very
strong on the personal-cultural part.

Comparing the NCTM Standards to Reform
Efforts in Other Countries

One common interpretation of the term standards is the notion of account-
ability expressed by IIAC, which wanted to set standards that would then be used
to judge textbooks and tests. This "accountability" approach to educational change
has characterized much of the thinking in the US, as well as in England and Aus-
tralia. The National Curriculum in England is reported to have stalled over ac-
countability issues (Atkin, 1994), including the high cost of producing better tests
that are then rejected by politicians because they don't look like traditional tes.ts.
There are also problems in Australia (Ellerton & Clemens, 1994). where the de-
bates over assessment have divided the mathematics education community. In the
US, where the original focus on standards as an accountability tool has been trans-
formed in part to an emphasis on standards as aspiration, will the NCTM Stan-

dards be more likely to endure?
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RADICAL CONSTRUCTIVISM AS A BASIS FOR
MATHEMATICS REFORM

Grayson H. Wheatley Florida State University
Steven Plumsack, Florida State University

Elizabeth Jakubowski, Florida State University

This paper describes the use of radical constructivism as a basis for curriculum reform in
university mathematics courses and reports on research conducted on two of the courses
developed. The theoretical underpinning of the project is described along with the nnplica-
tions for course design and instruction. Finally, results from qualitative research conducted
on two of the courses is presented. The courses were found to foster intellectual autonomy,
challenge students to rethink mathematics from a conceptual rather than procedural per-
spective, promote confidence in their mathematics knowledge, become more positive math-
ematics learners and make connections among algebra. geometry. and calculus concepts.

It is often said that we teach as we are taught. Undoubtedly. the nature of
instruction in mathematics courses taken in college greatly influence the teaching
styles and practices of teachers. "Very few teachers have had the experience of
constructing for themselves any of the mathematics that they are asked to teach.
(National Research Council, 1989). In designing a middle school mathematics
teacher education program, we recognized the importance of having mathematics
taught in a manner compatible with the goals of their pedagogical courses. We
have much experience with methods courses following the recommendations of
the National Council of Teachers of Mathematics and the National Research Council
being offered to students who take mathematics courses based on logical positiv-
ism and behaviorism mathematics courses which arc lecture based and empha-
size practicing taught procedures. This conflict has not been lost on prospective
teachers. They struggle with the question, "Why am I being asked to teach in a
way I have never experienced in a mathematics class?" Beginning teachers will
instinctively use teaching methods like those experienced in the many mathemat-
ics courses taken in high school and college. We have not always been able to
overcome the impact of many hours listening to lectures and practicing procedures
which are then marked right or wrong. Thus, we recognized the importance of
mathematics courses for prospective teachers which emphasize sense making, en-
courage collaboration and promote intellectual autonomy.

The puipose of this paper is to describe a theoretical basis for mathematics
instruction and report findings from analyses of courses based on the theory. As
one component of our four-year teacher education project funded by the National
Science Foundation, four mathematics courses tor prospective middle school
mathematics teachers were designed; Number Theory, Algebra. Geometry, and
Problem Solving. Each course was created by a course development team (one for
each course) composed of two or more mathematicians, a mathematics educator
and several mathematics education graduate students. We were most fortunate in
having a mathematician who understood the reform movement and believed in
opportunities for students to construct their own knowledge as a mcmber of each
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team A team met for a year planning the geometry Lourse and a semester for each
ot the other courses Our thinking was influenced by the NCTM Professional
Standards (1991) and a cons tructivist epistemology (von Glasersfeld, 1995a).
Examples of the mathematics and instruction will be drawn from the geometry
and the problem sok ing courses: analyses of the other courses are in progress.

Epistemology

In designing courses and planning lessons, it is useful to have a clearly de-
fined epistemological theory. For this project, radical constructivism as described
by von Glasersfeld 1995a, 1995b) served as the theoretical orientation. In this
theory of knowing, which has been used for other mathematics educational re-
forms, it is assumed that knowledge cannot be transmitted hut must be constructcd
by the learner. Students have only their personal experiences upon which to iely
in this constructive process and each person has unique experiences. Of course a
person's experiences include other persons and thus it is not a 'lonely voyage.'
Thus activities in which students are encouraged to work together in solving a
problem, to listen, explain and challenge peers provide rich potential learning op-
portunities.

A second principle of radical constructivism has to do with the nature of knowl-
edge. For the logical positivist, knowledge is out there, out there for the behavior-
ist to observe. For the radical constructivist, knowledge is an individual construc-
tion which results from attempting to make sense of our experiences. Knowledge
is not true or false but viable or not viable. As von Glasersfeld states,

f We must I Give up the requirement that knowledge represent an
independent world, and admit instead that knowledge represents
something that is far more important to us, namely what we can
do in our experiential world, the successful ways of dealing with
the objects we call physical and the successful ways of thinking
with abstract concepts. (pp. 6-7)

A radical constructivist epistemology places importance on constructing models
of student's thinking. As von Glasersfeld states,

In the endeavor to arrive at a viable model of the student's think-
ing, it is important to consider that whatever a student does or
says in the context of solving a problem is what, at the moment.
makes sense to the student. It may seem to make no sense to a
teacher, hut unless the teacher can elicit an explanation or gen-
erate a hypothesis as to how the student has arrived at the an-
swer, the chances of modifying the student's conceptual struc-
tures are minimal. (p. 15)

Certain classroom practices are suggested by radical constructivism. First.
we must negotiate a set of social norms in which emphasis is on making sense
rather than following procedures specified by an instructor. The goal is for each
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individual to develop a rich network of schemes which are viable. The social
norms might include

A task requires time and investigation; we should not be expected to
know how to do a task but instead develop our Own procedures for
accomplishing the task. An exploratory mind-set is essential.

Students are expected to explain their reasoning to peers; viability is
established by convincing others. An assertion (proof) which stands
the test of time is said to be viable.

Collaboration is an accepted environment for learning.

The implications for the instruction flowing from this theory are:

I. The mathematics to be studied must be analyzed to determine the
major concepts and relationships.

2. It is important to build models of students thinking.

3. Based on these first two practices, tasks are designed which have
potential learning opportunities.

4. All activities must be potentially meaningful to the students.

5. Meaning must be negotiated; it cannot be transmitted or legislated.

6. A major responsibility of the teacher is to facilitate classroom dis-
course.

7. This entire process is recursive.

Procedure

Each session of the two courses were video recorded for the full semester.
Field notes were collected and ea instructor reflected on lessons after each class
session. The geometry course was taught by a mathematics education doctoral
student and the problem solving course was taught by a mathematics education
professor. The principles on which these courses were designed were:

I. The courses should focus on central ideas in mathematics and pro-
mote progressive schematization rather than specified procedures.

2. Activities must be interesting and potentially meaningful to the stu-
dents. In each case an effort was made to approach the subject from
a different perspective than they had seen previously. For example.
many of the properties of plane geometry were developed from a
study of spherical geometry. e.g.. straightness.

3. Students are to be encouraged to become intellectually autonomous
rather than simply doing what the instructor said whether it made
sense to them or not.
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4. A problem-centered instructional model (Wheatley, 1991) was
adopted.

5. Collaboration was encouraged.

6. Students were required to justify the viability of their solutions. Rather
than the teacher juddrig responses as right or wrong, students pre-
sented their solutions to the class and the class had to be convinced
of the validity of the solutioli.

7. Technology was to be used whenever feasible. For exampie, two com-
puter microworlds were developed for the geometry course and
spreadsheets were used extensively in thc number theory course.

8. Assessment was based, in large part, on informed professional judg-
ment and portfolios.

In teaching the courses, considerable attention was devoted to negotiating social
norms conducive to inquiry and intellectual autonomy. Students often entered the
courses with a belief that mathematics is a set of facts and procedures to be ex-
plained by the teacher and remembered by them. The courses were designed to
foster the view that mathematics is the activity of constructing patterns and rela-
tionships. Students were encouraged to take responsibility for their knowledge
construction in conjunction with other members of the class.

Because the instructor rejected the role of mathematical authority, the stu-
dents began to assume responsibility for justifying their actions. These justifica-
tions took the form of students presenting their solutions to problems they had
solved and responding to questions raised by their peers or the instructor. At times
students who disagreed or had an alternative solution went to the board and began
explaining their point of view without any action by the teacher; none was re-
quired. In both courses the mode of instruction utilized was problem centered
learning as described by Wheatley (1991).

Approximately one-fourth of the geometry course was devoted to a study of
spherical geometry. The decision to study spherical geometry in a course for pro-
spective middle school students was based on our belief that interesting and sig-
nificant questions could be raised which would deepen the meaning given to plane
geometry concepts such as straightness, angle. and quadrilateral. The topic was
also potentially meaningful and interesting since we do not live on a flat surface
and NASA activities have raised our consciousness of the earth as a sphere. The
statement, "The sum of the angles of a triangle is 180 degree takes on a richer
meaning once triangles have been drawn on a beach ball with marking pens and
the sum of the angles determined. In addition to spherical geometry, topics in
plane geometry and measurement were studied through problem solving.

The students became quite interested in the study of spherical geometry as
evidenced by observations, their journal entries. interviews and written evalua-
tions at the end of the course. Students were thrown into a state of disequilibrium
by some of their findings as they engaged in these activities. Of particular value
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were the two computer microworlds in which students could explore paths on a
sphere. Not only were the students motivated to study spherical geometry but they
made significant geometric (mental) constructions.

In the problem solving course, the nature of solutions became increasingly
more organized and sophisticated. Initially, students attempted to identify formu-
las and substitute numbers but soon realized this approach would not work on the
nonroutine problems they faced. But as they participated in the negotiation of a
different way of doing mathematics, they became more thoughtful about their ac-
tivity. For example. in week six of the course students presented a variety of
solutions to the following problem.

A column of soldiers 25 miles long marches 25 miles a day.
One morning, just as the day's march began, a messenger started
at the rear of the column with a message for the man at the front
of the column. During the day he marched forward, delivered
the message to the first man in the column and returned to his
position just as the day's march ended. How far did the messen-
ger walk?

This problem required rather sophisticated problem solving strategies and consid-
erable power in thinking in terms of rates. Additional information about the prob-
lem solving course can be found in Trowell (1994).

Analysis ot' the courses indicated that 1) students were challenged to rethink
mathematics concepts previously studied but not understood; 2) students devel-
oped confidence in their mathematics knowledge; 3) students became more posi-
tive as mathematics learners; and 4) students increased their competence and made
connections among algebra, geometry, and calculus concepts.

Summary

In a Call for Change: Recommendations for the Preparation of Teachers of
Mathematics, the Mathematics Association of Americi states that. ".. . collegiate
mathematics classrooms must become a place where students actively do math-
ematics rather than simply learn about it" (p. 2). This statement could be inter-
preted as embracing a constructivist approach to mathematics teaching. In this
study, evidence for the power of university mathematics courses based on radical
constructivism was obtained. While certainly not the only viable theoretical ori-
entation for successful mathematics teaching, radical constructivism, growing out
of Piagetian theory. provides a sound basis for facilitating mathematics learning.
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STUDENTS' CONCEMONS OF WHAT IT MEANS
TO DO MATHEMATICS

Linda Dager Wilson. University of Delaware

What is the response of students to the reform efforts in mathematics education? A survey
taken in September of 59 eighth grade mathematics students showed that their conceptions
of what it means to do mathematics were predominantly traditional in nature. The survey
was repeated in the spring, when these students had experienced nine months of a reform-
oriented class. The spring survey showed that students were in many respects more open in
their acceptance of alternative activities. The majority of students, however, still felt strongly
that "listening to the teacher explain" sliculd be included in a conception of school math-
ematics. There were also strong negative opinions among a majority about writing journals
in a mathematics class.

Gabe: I think explaining your thinking is stupid. If I know the answer to
a problem and I get it right, why should I have to explain how I got
it? It's a waste of time.

Mustafa: When I hear other students explaining how they got a problem.
that's when I really learn, and when I have to tell someone else
how I got the answer it helps ine think more clearly about where
that answer came from.

These are just some of the conflicting opinions of eighth graders, talking about
what it means to do mathematics. This range of opinion reflects some of the resis-
tance and some of the openness to the changes that are taking place in some math-
ematics classrooms in response to the reform movement in mathematics educa-
tion. The NCTM Standards documents (NCTM, ;989; NCTM. 1991; NCTM,
1995) call for shifts in mathematics education towards a "rich variety of math-
ematical topics and problem situations." "active student learning," "environments
that support learning,- and "assessment that is ongoing and based On multiple
sources of evidence- (NCTM. in press). One implication from these documents is
that students in "reform" classrooms will experience a much wider range of activi-
ties involved in doing mathematics. One could hypothesize that these students
would then have an expanded conception of what it means to do mathematics, so
that, for instance, writing a journal in mathematics class would not be a foreign
idea, or explaining how you got an answer might be just as important as getting the
right answer.

The Setting

The study was conducted with two clac,, of cip.hlh grade Algebra I students
in a public middle school in the Mid-Atlantic. There were 30 students in one class
and 29 in the other. Both classes were taught by thc same teacher. The gender
breakdown was 39 male, 20 female, and there were 8 nonwhite and 5 I white stu-
dents in the two classes combined.
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The teacher, Ms. Vincent, has twenty years' experience in mathematics teach-
ing at secondary and middle levels. She has been at this school for ten years. She
is actively involved in several reform-oriented initiatives at the school, state and
national levels. Ms. Vincent's teaching could he characterized as moving in the
directions called for in the three NCTM Standards document.. The minor empha-
sis in any of Ms. Vincent's classes was on the importance of explaining your think-
ing. either orally or in writing.

Methods

A Liken scale instrument was administered to the students in both classes on
the second day of school in September, 1994. Each item described an activth that
might occur in a mathematics classroom, such as "using manipulatives.- and stu-
dents were asked to respond according to whether they strongly disagreed. dis-
agreed, a:treed. or strongly agreed that this activity was a part of what it :neans to
do mathematics. The same instrument w as administered to the students in the
spring of 1995 during the la.t week of school.

After each survey in both fall and spring, tour students v,ere selected to take
part in group interviews (Ms. Vincent was not present). Students were chosen on
the basis of their responses, with the goal being that students w ith dis erse opinions
would have an opportunity to talk with each other. These inter\ .ew s were itudiotitivd
and transcribed. The eight students who were litter. mew cd in the tall made it leaf
that their responses to the items reflected not only ILW actis Ille 010, had espei I
enced in past mathematics classes, but also the a t i itle that they peisonall itpughi
"ought to be- part of a matheinatics class.

Results

The chart that follow s (Table I ) show, the results ot the sui ey toi tall and
spring. The items, which were in a random order on the sin %ey. ha%e been ieoia
nized here according to those that might be considered "tradinonal- inatheinatits
activities and those that might occur in a "reformed" classroom. Results ale Loin
bined kir the two classes, and the "strongly disagree- and "disagiee- iesponses
have been combined, as well as the "strongly agree- and the "agt cc.- so as to show
the overall percentage of students who either agree oi disagree that ,t pat tik
acto. ity is part of what it means to do matheinancs.

II we consider the first 9 items In the table to be "tiaditionaf at. IR Ines. we see
that there was strong support lot these acti\ ities, especially in the tail, k hen no
activity had a majorits disagreeing. At that tune, the acti Wes that qUdellts Iflust
()nen agreed with welt: /.0t)'nin.1; to the 1(71(Mer 1.1plaIn (g(l. liettint; the tit,h1
on'tver (92). 1)(4711; ptoblem 0,1 wot loheco IX81. and ha) lit int: ,""il'ut""("1"1
\killtti5). All but the last ot these acto. Wes dropped in percent agreement in the
spring by at least 1(1 ivrcentage points, Bs the spring. those -tiaditional- :KM Ilk-,
that drew the inost agreement were Pro( in int; omputational \kith (til). Ii Iterwri;
to the tettcher ciplow (82). and Menton:Int; bath hi( tkt7S)
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In the fall, the lowest level of agreement among the "traditional" activities
was for Using a textbook(60) and Getting an answer quickly (53). Both of these
activities lost support in the spring, and they were again the two that had the least
support at that time.

Every "traditional" activity went down in percent agreement from fall to spring,
with the exception of Showing all your work. The activities that dropped the most
were Getting an answer quickly (53 to 33), Using a textbook (60 to 42). and Get-
ting the right answer (92 to 75). The "traditional" activities that changed the least
from fall to spring were Practicing computational skills (85 to 83) and Showing all
your work (75 to 77).

Consider the remainder of activities on the list as "reform" activities. In the
fall, the activities that most students agreed werc part of doing mathematics were
Trying different ways to solve a problem (100), Using manipulatives (96), Working
in groups (94), and Using a calculator (90). These are the same activities that had

Table I.
Percent of Students (n.59) Who Agree With Each Activity

Activity Fall Spring

Getting the right answer 92 75

Practicing computational skills 85 83

Drill and practice 75 65
Doing problems on worksheets 88 75
Memorizing basic facts 83 78
Getting an answer quickly 53 33

Using a textbook 60 42
Listening to a teacher explain 96 82
Showing all your work 75 77

Working in groups 94 85

Explaining your thinking orally 73 68
Explaining your thinking in writing 63 78

Making an educated guess 85 82

Testing hypotheses 85 77

Trying different ways to solve a problem 1()0 88

Presenting solutions to the class 77 67
Using a calculator 9() 85

Using manipulatives 96 87

Listening to other students explain 79 72

Doing projects 76 80
Judging other students' work 32 64
Writing journals 19 28

Having a conference with the teacher 68 80

Putting together a portfolio 54 63
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the most agreement in the spring, though all had slightly lower levels of agree-
ment.

Students in the fall most (Alen disagreed with Writing in journals (19) and
Judging other students work il2). By the spring. Writing in journals had found
increased support (28). hut was still well below the 50% mark. However, Judging
students' work (64) had gained a majority. Overall, 6 of thc "reform" activities
gained support, while 9 lost. Thc categories that lost the most were Trying differ-
ent ways to solve pmblems ( 1(X) to 88) and Presenting solutions to the class (77 to
67). The activities that gained the most were Judging other students' work (32 to
64), Expktining your thinking in writing (63 to 78), and Having a conference with
the teacher (68 to 80). The activities that changed the least from fall to spring
were Making an educated guess (85 to 82). Explaining your thinking orally (73 to
68), and Using a calculator (90 to 85).

Colcksions

In general, there was more uni;orin agreement for the "traditional" activities
than for the "reform- activities in the fall. By the spring. there was more unifor-
mity in support for the "reform- activities. In the fall the percent agreement for
"traditional- activities is clustered between 53 and 96, while the "reform- activi-
ties range from 19 to 100. By the spring, the percent agreement for "reform-
activities is clustered between 63 and 88. v bile the "traditional- activities have
agreement levels from 33 to 83.

The greatest changes front fall to spring illustrate an increase in support for
"reform- activities and a decline in support for "traditional- activities. That is,

Judging other students' mirk rose from 32 to 64 and Esigainins; your thinking in
wri:ing rose from 63 to 78. At the same time. (;einne an answer quit klv fell from
53 to 33. Using a textbook fell from 60 to 42. and Getting the right answer fell
froin 92 to 75 Overall this would seem to indicate that students in these classes
were more open to the idea that critiquing each other's work and explaining their
blinking were important to doing mathematics, and less inclined to feel that quick
and accurate answers and dependence on a textbook were important.

When the results are broken down into the 4 separate categories that appeared
on the survey and changes are tracked from fall to spring, there is only one item
that showed a marked change in the shape of the distribution of scores froni fall to
spring. That is, for most items there were more responses of "agree- and "dis-
agree- than there were of "strongl, agree- and "strongl disagree,- so that the
decline in agreement usuall indicated a distribution that w as inerel.s shifted down-
ward between fall and spring. flow es cr. the actisity Ls/gamine your thinking in
writing was unique in this regard. In Figure I the double bar gsaph shows that
theic %AA', DOI only an inclease In support for this activit, but inure students chose
to "strongly agree- with this actis ity in the spring.

Would I make the claim that these students were in general more open to
"reform" activities in the spring than they had been in the fall? The answer. based
on this data. would have to be a "yes. but...-. On the one hand, the five categories
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that changed the most would indicate a more open set of opinions (as pointed out
above). Also. all the "traditional" activities lost support during the year, while 6
out of 15 "reform" activities gained support. However, a closer look at those
"traditional" activities that continued to have strong support in the spring indicate
that students still strongly believed that Listening to the teacher explain is very
much a part of doing mathematics. In addition, these students began the year with
a strong negative attitude toward Writing in journals. While this activity gained
some support (from 19 to 28), it was still the most negative activity on the list. In
the interviews, many students described experiences with writing in journals dur-
ing prior mathematics classes. This was not an activity that Ms. Vincent used
during the year I observed. Some students had never done this kind of activity and
couldn't imagine that it could be part of a mathematics class, while others had
done it and had a negative experience.

Implications

This study is based on a simple survey of two classes of eighth graders in one
school. Obviously it is not possible to generalize these findings very far beyond
this classroom. Yet there are some implications of this small study that may be
worth considering. The first is that, in our zeal to reform mathematics classrooms
we may find benefits in listening to students and what sense they are making of the
changes being asked of them. Second, student opinions may be important indica-
tors of the impact of reform-oriented actions. Finally, surveys such as this One
may give some clues as to which opinions might be most difficult to change.
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FACT FAMILIES AS SOCIALLY CONSTRUCTED KNOWLEDGE

Betsy McNeal, University of Pennsylvania

This paper explores the process by which mathematical knowledge is socially constructed.
Interactional analysis of a lesson on fact families shows how one third grade mathematics
class negotiated the meanings of writing a number sentence for a picture and of a fact
family. In the course of classroom interactions, teacher and students shift the lesson's focus
from number sentences that represented physical images to permutations of 3 numerals
around 2 operation symbols.

There is a large body of theoretical work on the social construction of knowl-
edge as it applies to mathematics teaching and learning. Some studies focus on
individuals' construction of mathematical knowledge while participating in class-
room interactions, others describe the development of communal definitions of
what it means to do mathematics, and still others focus on the influence of cultural
symbols on knowledge development.

Batv.;:sfeld, Krummhcucr, & Voigt (1988) apply the theory of symbolic
interactionism to the analysis of interactions in mathematics classrooms. They
argue that the meanings of objects, words, and actions lic in the meanings that
individuals attribute to them in the course of social interaction. Voigt (1992) ar-
gues that, "In classroom life the meanings of mathematical concepts and the valid-
ity of mathematical statements arc socially accomplished. . . . (E)specially in
introductory situations, we cannot presume that the learner would ascribe specific
meanings to the topic by themselves meanings which are compatible to the
mathematical meanings the teacher wants the student to ascribe" (p. 5). As teacher
and students work toward mutual understanding of a mathematical idea, they may
reach what Krummheuer calls a "working interim" where both parties come to
believe that they understand each other while, from the observer's perspective,
they have created consistent, but not completely compatible, understandings of
the topic at hand. In studying classroom interactions, the observer could therefore
infer a particular individual's knowledge of, say, fact families, from observations
of his/her interactions with the objects or with other individuals, and similarly, one
could infer the collective knowledge of fact families that is constructed by the
group through their attempts to communicate. The collective understanding that
emerges may differ from that of individual participants.

Building on this work, this paper describes the dynamic process by which
collective mathematical knowledge in a 3rd grade classroom community is con-
structed. Through analysis of one mathematics lesson, this paper furthcr attempts
to provide an example of how the students as well as the teacher influence the
nature of the knowledge developed.

The objective of the lesson examined here, according to the required text-
book, was "to use fact families to recall addition and subtraction facts" (Eicholi. et
al., 1985, p. 10). However, as teacher and students interact, the collective meaning
of "fact family" and the purpose of the lesson change. AF the class moves through

261 0
t.-) I



the 4 phases of the lesson, introduction, practice activities, written scatwork, and a
final challenge problem, the lesson intended to focus on relationships among facts
becomes a lesson in symbol manipulation.

Analytic Technique

This lesson was selected from data collected for a larger project that provided
quzlitative descriptions of the interaction patterns that emerged in a 3rd grade text-
book-based mathematics class (McNeal, 1991). This particular lesson seemed to
be a striking illustration of the theories currently under discussion among researchers
in mathematics education and educational psychology. No claims arc made that
this textbook lesson is typical.

Data from the larger study included field note.s, video recordings and tran-
scripts of 28 mathematics lessons over the first 8 weeks of instruction. Based on
the work of Rauersfeld, Krummheuer, and Voigt (1988), individual transcripts were
analyzed line by line, in chronological order, for patterns that would illuminate the
mathematical meanings and communicative practices of this community. Asser-
tions developed from each lesson were ihen compared wiLh those from each of the
previous lessons. Exceptions to emerging patterns were also tcsted against the
entire body of data following analytic procedures of Erickson (!986). Interpreta-
tion of the following transcript is thus based on analysis of the entire corpus of
data, rather than on the one episode alone.

The Lesson

The following mathematics lesson occurred on September 1 during the 6th
class session for the year. After about 20 minutes of problem solving, the class
began the textbook portion of the lesson. The actions described took 42 minutes,
and were followed by afternoon recess.

Following the suggestion in the textbook, Mrs. Rose (all names are pseud-
onyms) used pictures of dominos to elicit from the class the definition of a fact
family.

0 0

0 0

Figure 1 Figure 2 Figure 3

1 Mrs. It: Notice the domino boys and girls. [pointing to Figure 1 on the
overhead projectorl How many spots do you see on the top of
the domino here?

2 Students. 5.
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3 Mrs. R: [pointing] How many do you sec on the bottom?

4 Students: 6.

5 Mrs. R: OK. I would likc for someone just to give me, ah, an addition
number sentence for these, for this domino right here. An addi-
tion number sentence. Who cart give me one. (calls on one
student whose hand is raised(

6 Student: 5 plus 6 equals 11.

7 MTS. R: All right. [writes 5 + 6 = 11, then makes a side comment] 5 + 6
equals 11. Who can give me another addition number sentence
for this? Chris? (no response] Up there. We have one number
sentence, 5 + 6 equals 11, what else could we do? What else
could we use? Usc the numbers up there.

8 Chris: 6 plus 5?

9 Mrs. R: Wonderful. 6 plus 5 equals 11. (writes 6 + 5 = 111 Who can
give me a subtraction number sentence using these dominos?
Betty.

10 Betty: 6 take away 5.

11 Mrs. R: How many do wc have altogether. Betty?

12 Betty: (after a short pause! 11.

13 Mrs. R: 11.

14 Betty: Take away 5.

15 Mrs. R: 11 take away 5 equals what. Betty?

16 Betty: 6.

17 Mrs. R: 6. Vcry good. (writes 11 - 5 = 61 Who can give mc another
onc? Another subtraction number sentence? Karl.

18 Karl: 11 take away 6 equals 5.

19 Mrs. R: Now, look here (pointing to number sentences], boys and girls.
How many, How many facts do we have there?

20 Students: 4. Oh! 4.

21 Mrs. R: 4 facts. How many numbers, Chris, did we use? How many
numbers?

22 Chris: 3...2.

23 Mrs. R: How many numbers did we use?

24 Chris: 3.

25 Mrs. R: We used 3. We just made what wc call a fact family.

26 Student: A 1fact or fat?1 lam I y. laughs(
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27 Mrs. R: A fact family is 4 facts made out of 3 numbers. 1shows Figure
21 Let's look at this domino right here. Let's see if wc can think
of 2 addit:on number sentences for it. 1calls on Jennie whose
hand is raised1

28 Jennie: [starts to go to thc board! Urn, 1 know one for the top one 1Fig-
ure 11.

29 Mrs. R: Just, you just tell me. Just tell me. For this right here.

30 Jennie: 16 minus 5. &pals 11.

31 Mrs. R: OK. Jennie, did we have 16 ... dots?

32 Jennie: (makes a face) No.

33 Mrs. R: (laughs! All right. Who can give me a number sentence; who
can give mc two addition number sentences for (Figure 21?

Mrs. Rose focused the class on the important features of the domino (lines 1-
5), and they quickly produced the first addition fact (line 6). When she called for
a second, Chris seemed unsure what she meant, but made the expected interpreta-
tion, and no discussion was warranted. Mrs. Rose therefore did not realize that the
domino representation might produce multiple interpretations until Betty (line 10)
indicated hcr understanding that the task mquired using the 2 numbers shown in
any numbcr sentence. Although Betty's interpretation was consistent with her
classmates' responses, it was not compatible with the intended task. This prompted
Mrs. Rose to give the class more infbrmation, implying that students should use
the total number of dots (line 11). A:; she started to move on (line 27), Jennie
volunteered another fact for Figure 1, having misunderstood both the definition of
the mathematical task and the smial cue that the group had finished collecting
facts for this domino. Hcr sentence included more than the number of dots shown,
and suggestexi that shc understood the task to mean: Create a sentence using num-
bers made from the two given. (This was confirmed later wher she explained how
she had come up with her numbers.)

In the remainder of the introduction, Mrs. Rose led the c las.; through a similar
sequence for Figure 2, and then used Figure 3 to illustrate the special case of a
family with only two facts. She then gave individual students some practice ac-
tivities. These exercises required students to make fact families for three numbers
given without a picture. When students produced inappropriate number sentences,
Mrs. Rose prompted them to check that they had used only the given numbers.
For example, she wrote 1, 5, and 6 in a circle and called two students to the board,
"Make a fact family out ol these numbers. Quick as you can. (to the class) You
boys and girls see if they're correct." When Nan wrote 11 + 6 = 17, Mrs. Rose
stopped her as shc wrote 17, "What's the number you just wrote?" She then asked,
"Do you sec 17 on here?" and reminded her, "Using these three numbers." Fi-
nally, only John and Annie were still working: They had found three facts for 2, 6,
and 8, but were struggling to find the fourth. Mrs. Rose wanted to move on so the
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class would have sufficient time to complete their written assignment, so she came

to assist them.

Mrs. R: You've got 8 - 2 is 6 then you have 6 + 2 = 8, 2 + 6 = 8, what do we

still need? We've got 2 pluses, we've got one minus, what do we

still need? 1..lo we need another plus or do we need a minus? We've
already taken away 2, now what are we gonna take away? Good.

Very good.

Mrs. Rose then quickly reviewed thc instructions for each problem on the
assigned textbook pages. For example, the first problem was: 8 + 5 = 5 + 8 =

___, 13 - 5 = and 13 - 8 = When Mrs. Rose called on Mike for 5 + 8 = ____, he

replied, "5 + 8 equals . . . 15?" Pointing to something in his book, Mrs. Rose

reminded him, "We're only gonna use these three numbers, 13, 8, and 5." His

response was inaudible to the observer, but Mrs. Rose went on, "These arc the 3

numbers we're using for the fact family. Wc just said 8 + 5 is 13, now what's 5 +

8?"
Mrs. Rose asked the students to copy the mimber of the problem and thcn

write answers only. When they began to work, most of the students spoke with

Mrs. Rose about the format or instructions for their written work. When she and

the students talked about fact families, she assisted them by sayir.g, "Only use

these three numbers," or "Remember a family has four facts." In one case, the

following exchange occurred.

Mrs. R: Sec these 3 numbers you're gonna use? OK, you got 8 + 5, right?

There's 8, there's a 5, what number do we need now? [response is

inaudible] 13. Put 13 right there. Now look at these numbers,

there's 5, there's 8, what other number do we need? [no response]

There's the 5, there's the 8. 13. Put 13 right under there. OK,
now there's the13, there's the 5, now what number do wc need

here? [response is inaudible I Very good.

Mrs. Rose then put a "challenge problem" on the blackboard that she had

taken from the book for thc students to try when thcy had completed thcir work:

"Usc the 'Addition on Venus' symbols shown to write four fact-family number

sentences: A+ E = (Eicholz et al., 1985, p. 10). Mrs. Rose copied only the

three symbols, A, I, SI, and asked the students to create a fact family for these

figures. The task therefore looked likc the triples of numbers presented during the

practice activities. Only one student, John, challenged the teacher's task saying,
"Those aren't numbers. You can't make a fact family." No other students joined

his protest, showing that his interpretation of the task differed from theirs.

Discussion

This lesson illustrates the social construction of knowledge in twa ways. First,

thc group negotiated what it meant to write a number sentence for a picture. See-

ing the domino according to the conventions ofschool mathematics involved learn-



ing to see only what was in the picture (16 11 = 5 was inappropriate for Figure 1),
and learning that the entire quantity shown must bc maintained (6 - 5 was also
inappropriate). Assuming this interpretation to be self-evident put students in the
position of guessing what the teacher had in mind. This helped reproduce the
elicitation pattern (Voigt, 1985) seen here.

Second, as the lesson about related facts referred to as fact families proceeded,
the purpose and meaning of these changed. In the introduction, Mrs. Rose in-
tended building on the students' contributions, using the domino as a concrete
representation of the relationships that she believed a fact family described. The
studcnts, however, translated the number of spots on each half of the domino into
the numbers to be used in composing arithmetic facts. For them, this first part of
the lesson was not about related facts, as they did not know the term "fact family"
until they were done. It was about figuring out what thc task was. Their unex-
pected responses and her desire to avoid stating the definition in turn obligated
Mrs. Rose to point to features of the picture that implied thc meaning she had in
mind. Although several students offered number sentences that wcrc deemed in-
appropriate (6 - 5, 16 5, 3 8 for Figure 2, and 4 -4 = 0 for Figure 3) as they
tentatively tried to make sense of hcr expectations, at no timc did they challenge
her constraints or ask for explicit clarification of thc task. At this stage of the
lesson, there were at least three different under-standings of the representation and
hence of the task, but thc collective understanding was that the lesson was about
creating number sentences from given numbers.

During the practice activities, students continued to test their understanding
of the task and of fact families against the teacher's. Having seen several ex-
amples completed by this timc, they became less tentative as they received imme-
diate feedback. The exercises that presented three numerals without a picture
caused Mrs. Rose's response to inappropriate numher sentences to shift from ref-
erences to a picture ("Ilow many do wc have altogether?") to references to a list of
numbers ("Is that one of the 3 numbers?"). The collective understanding of the
lesson also shifted: Fact families were permutations of three numbers around the
+ and - symbols. When the students' confusion persisted in a lesson that seemed
simple to her, and none of hcr previous forms ol assistance were sufficient, Mrs.
Rose suggested that John and Annie check the number of addition and subtraction
facts they had.

During seatwork, instructions to provide only answers lurther separated the
definition of a fact family from relationships among the facts. This was corn-
pounded by the exchange, audible to the whole class, in which Mrs. Rose effec-
tively shifted Mike's attention from computing 8 + 5 = , to l il ling in the blank by
process of el im ination.

Despite John's protest that creating tact families lroni symbols with no con-
ventions for relating them was unreasonable, no one, including the teacher, recog-
nized thc validity of his claim. This was the final phase in the evolution of the
meaning of fact families from a set of useful relationships to a set of permutations
of three numerals around two operation signs.
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A THEORY OF SECOND-GENERATION CONSTRUCTIONS

Terry M. Price. Washington State University
Verna M. Adams, Washington State University

When a student begins to appropriate an idea from the classroom discourse, the idea is
likely to be perceived incompletely because the speaker's understandmg of the idea cannot
be conveyed in its entirety through the discourse. Under the guidance of the teacher, the
discourse serves to stimulate further development of the idea itself, the development of
connections to existing knowledge, and its use in constructing new content. The way in
which students appropriate ideas presented to them by another individual and make them
their own are what we call second-generation constructio, In this study, all students.
Including the student who presented the idea to the class because he acquired the divisibil-
ity by 8 rule from his father, were creating second generation constructions. The theory we
propose is a substantive theory (Glaser & Strauss, 1967; Glaser, 1978), not a formal theory.

In this stub-, we attempt to describe students' constructions of mathematics in
a seventh-grade mathematics class as they talk about dividing by 8. The focus of
the investigation is not students constructions in a teaching experiment. Instead.
we focus on the "everyday activity- (Lave. 1988) in the practice of doing math-
ematics in a class taught by the "regular- teacher. We look at the ways in which
students appropnate an idea presented to them by another individual and make it
their own. Because context is integral to the cognitive events involved in con-
structions (Rogoff. 1984). the phenomenon is likely- to have important characteris-
tics related to the context.

The data discussed in this paper was collected during a unit on number theory
and is part of a larger study focused on the relationship between classroom dis-
course and problem solving. Because the idea was presented by a student but did
not originate with him, the understandings and connections he developed are what
we call second-generation umAtructionA; that is, second-generation constructions
occur when a student appropriates an idea from the discourse and constructs con-
nections to her/his existing knowledge base. The student who presented the rule in
this study acquired it from his father.

A student idea is not essential to a theory of second-generation constructions
and we do nor claim to present a lull-blown theory. We focused on a single case
that occurred naturally in the classroom as a tesult ot the teacher's decision to
protnote discussions of student thinking and justification. Although the idea ot
second-generation constructions emerged limn our data (that is. it described the
developinent of a strident idea). the idea could ha \ e been introduced by the teachei.
The impon ince of student ideas is cinphasifed by the National ('ouncil 01 Teo h-
ers of Matnematics ( 1991) in their dcscription ol the teacher's role in discoin
We believe an ad \ antage to following the de \ elopment ol a student idea is
creased student ownership of the content.

Preparation of this paper was supported in part ti Niaional Science 1.oundation, ( ;taw No
RED 02S4922 Any opinions. conclusions, om recommendations are those ol the authors
and do not necessardy tellect the views of the Nationol St tenet. I turndown
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The Study

Data collection consisted of a combination of classroom observations (video
tapes, audio tapes and field notes), whole-class surveys, and interviews. We draw
on the grounded theory mcthod of Glaser and Strauss (1967) and Glaser (1978) in
which, after identifying a phenomena of intriest from the data, additional data is
collected and coded. Coding of data began as field notes were taken and contin-
ued through the analysis. Categories began to emerge during the analysis through
incident-to-incident comparisons. Thc analysis progressed to comparisons of in-
cident to properties of a category. As new categories emerged, subsequent data
collection was influenced by the results of the previous data. Analysis continued
after data collection was completed to further develop the properties of the catego-
ries. Finally, data from all sources was coordinated and sorted into groups based
on students' responses to thc final survey.

A Description of Blayne's Participation

In this section, we describe Blayne, thc student who gave the rule to the class.
The following timeline shows the amounts of timc between data-collection points.
Daily observations of the classroom began before the start of this study and con-
tinued beyond the time frame of interest to this study.

Data Collection Points and Timeline

Initial
Presentation Preseptation Presentation

Initial Class
Survey

Blayne's
Interview

Second
Survey

Sept. 21 Sept. 23 Sept. 26 Sept. 29 Oct. 6 Oct. 25

> 2 days > 1 day -> 3 day s -> 7 days > 19 days

In the interview Blayne explained that when his father told him the rule the
year before, he had been trying to determine what numbers would divide into other
numbers. His father gave him a little "trick" for 8 where you divide by 2 three
times. Blayne was motivated to remember and usc the rule. When Blayne shai cd
thc rulc with thc class on September 21, it followed a class discussion of other
divisibility rules. In spite of Blayne's familiarity with the "eight rule", his initial
statement was garbled: "You divide by 2 six or eight times." Blayne's responses to
questions from the discourse suggested that his understanding of the rule was not
connected to other knowledge. lie had initially treated his father's idea as an
isolated-packet of information to be called upon when working divisibility prob-
lems. The tollowing diagram shows the structure of what happened.

At each data-collection point, Blayne gave a nmre concise statement ol the
rulc and what it meant, but not without glitches. On the second day, for example,
he began to show on the overhead how thc rule applied to the number 56. Before
he completcd the example, he shifted from a wril ten and oral form of communica-
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Blayne accepts "idea" from Father,
using it as an isolated-packet of
information.

ITeacher instigates
discussion of idea.

IBlayne shares a concise rule with the class.

Teacher suggests connections
and asks for clarification.

Blayne actively begins to
search for connections.

Students: ask questions,
offer alternative ideas,
try to validate the idea.

Blayne shares an incomplete idea with the class

Researchers
ask questions.

Blayne clarifies tho idea, connem it to
other number relationships and forms of
the rule.

tion to an oral form only and, at the same time, switched thc number to 16. Ini-
tially, Blayne indicated that the results of the successive divisions should be "even".
By the interview he talked about thc division pr(cess as not having either a "re-
mainder" or a "decimal" result and he stated that a decimal result after the second
division meant that eight would not go into the number. We were surprised that on
the initial survey Blayne indicated that the eight rule would not always work, stat-
ing his justification: " I think that because in class we tried it and the number that
didn't work wa!, 123456M." In the interview, he revealed that he had made an
error on thc survey. His confusion stemmed from the fact that while in class, he
thought that the two- rule gave a whole number answer, but dividing by eight did
not. Later hc used a calculator and obtained a decimal remainder for lx)thcalcula-

tions.
On September 23, Blayne clearly did not know that dividing by 2 three times

could be related to 2'. By the time that he responded to the second survey, how-
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ever, he had made the connection, not only to the different symbolic representa-
tions of 8, but also to different forms of the rule that included: (a) If a number has
3 factors of 2, then it is divisible by 8. (b) If a number is divisible by 8, then you
can divide it by 2, divide the answer by 2, and divide that answer by again,
getting a whole number answer each time you divide. If any of the answers is not
a whole number, then the original number is not divisible by 8. (c) If 23 is a factor
of a number, then the number is divisible by 8. We believe that the discourse with
the teacher, other students, and researchers sustained his attention and oriented it
toward number relationships and different forms of the rule.

Blayne's responses on the second survey indicated that he had formed con-
nections to other mathematical knowledge and the rule was no longer just a trick.
He had not, however, generalized the rule to division by powers of other numbers.
When he was asked to determine if 675 was a multiple of 27 without dividing by
27, he summed the digits on both numbers and divided the results. He, however,
was not alone; only three students attempted to generalize the rule to powers of
three.

Toward a Theory of Second-Generation Constructions

From our observations of Blayne and other students, we begin to formulate a
description of the characteristics of the influence on student constructions (e.g.,
acceptance-nonacceptance) and the characteristics of the construction process (e.g.,
connections, type of justification they use) that result from the events in the class-

Acceptance/Nonacceptance of the Rule

This characteristic of thc influence on student constructions was evident in
the discourse by the ql.-...stions and comments of the students. For the following
discussion, acceptance/nonacceptance was determined by the connections that stu-
dents made to other forms of the rule and to their spontaneous use of the rule on the
surveys. That information was then coordinated with the information from the
videos and field notes about student participation in class discourse. The students
generally fell into the categories of either accepting, exploring, or resistant to the
rule, containing 9, 16, and 2 students, respectively.

Acceptance: The 9 "accepting" students revealed thcir acceptance through
spontaneous use of the rule and understandings of other forms of the rule. All of
them spontaneously used the rule as justification on the second survey for the
question: Suppose you divide a number by 2 and gct an even number. Then you
divide thc answer by 2 and get an mid number. Is the original number a multiple of
8? On the first survey, 5 of these students spontaneously divided by 2 three times
when they were asked: Is 2(X)0 a multiple of 8? Furthermore, these students had
made connections to other forms of thc rulc and, for the most part, believed that
thc rulc would always work. They relied heavily on example-based justification;
that is, they used a larger number of examples than othcr students to convince
themselves the rule worked. Thcir classro(nn participation was minimal and their
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construction process was silent. Their thinking was not evident in the classroom
discourse. Generally, whcn they did offer ideas to the class, the idea§ consisted of
examples of numbers not divisible by 8 and language clarification.

Exploration: This group of students was less accepting of the rule than the
first group. About half of this group spontaneously used thc rule in a calculation,
but no one spontaneously used the rule as justification. Only 6 out of the 16 stu-
dents in this group madc connections to other forms of thc rule. In general, these
students were undecided with respect to the rule, but were more inquisitive than
other students. They were more actively engaged in the dialogue, offering inter-
pretations of the results of the discussions, exploratory conclusions about the work-
ability of the rulc and alternate revisions of the idea. More than half of the stu-
dents who participated in thc classroom discussion fell into this group and wcrc
clearly actively trying to construct an understanding of the rule. This group did
not make up their minds about the rulc as quickly as the other two groups and gave
a mixed pattern of responses on the surveys. "Failures of context" (Edwards &
Mercer, 1987) in the discourse affected these students more than others.

Resistance: Neither student in this group spontaneously used the rulc on the
surveys or made connections to other forms of the rule. Thcy thought the rulc was
time consuming and inefficient. Onc stated: "I don't understand why you go
through the trouble. Why don't you just divide by 8 to begin with?" He had what
might be considered a healthy skepticism about proof via examples, stating th Pi. he
did not believe the rulc would always work because "Someone will pro-..e him
wrong somehow." The other student considered the rule to bc "undependable."
This group maintained thcir resistance to construction, in spite of social interac-
tion, because thcy valued efficiency. We believe that they could be persuaded to
pursue an active construction if given acceptable justi fication.

Perception of Value

Perception of value had two properties: value attached to thc rulc and value
attached to people. Unlike other students in the class, thc two who were resistant
to dealing with thc rule did not place any value on its use. Considerable value was
given to Blayne, and his confidence in his own abilities was affected in a positive
manner. Thc teacher created a positive climate where Blayne felt comfortable
expressing his idea. He was perceived by thc teacher and some of his peers as
having a higher level of understanding than was actual fact, and some students
began to perceive themselves as less competent than Blayne. Because of the
teacher's perception, Blayne was allowed more "floor time" than other students
for thc exploration of their ideas. This floor timc was significant because he ben-
efited more from the discussions than other students. His idea was given value
and, during thc investigation, was referred to as a "theory". That language implied
that it had importance, perhaps more Importance than others.
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Discussion

Much of what we want to say is left for further development in a longer paper.
In the natural environment of the classroom, the ways in which students appropri-
ate mathematical knowledge from the discourse is a nontrivial process. In gen-
eral, students acquire mathematical ideas introduced to them by someone else (e.g.,
the teacher, peers, parents). This appropriation requires precious classroom time
and special attention to the discourse. In this study. time allotted to discussion
sustained the interest in the idea. In addition, the research itself influenced the
perception of value. The role of the perception of value should not be taken lightly.
Blayne had a full year to develop ideas related to his rule, which he did not do
without the sustained interest of the teacher and other students, their questions and
their comments. An implication for planning instruction is that ideas should be
revisited over time and the discourse is an important component of the construc-
tion process.
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GRAPH, EQUATION AND UNIQUE CORRESPONDENCE: THREE
MODELS OF STUDENTS' THINKING ABOUT FUNCTIONS IN A

TECHNOLOGY-ENHANCED PRECALCULUS CLASS.

Armando M. Martinez-Cruz, National University of Mexico

Our area of research is aimed on developing a conceptual knowledge of functions in tech-
nology-enhanced classes. In this paper we report on the rust stage of ow research, docu-
menting how students who use graphing technology think about functions. In this paper we
report three models of thinking about functions (graph, equation and unique correspon-
dence) that we found among eight high school students in a precalculus class enhanced with
graphing calculators. Models emerged from their function images observed during a period
of nine months.

Current efforts to reform mathematics education advocate the use of technol-
ogy at all levels. In these efforts, an arca of inquiry that has attracted the attention
of mathematics educators is thc teaching and learning of functions through tech-
nology. In general, it is expected that computers, and more recently graphing
calculators arc the kind of media that might help students to visualize appropriate
representations of functions (Goldberg, 1987). Hence, it is conjectured that graph-
ing capabilities of computer technology might have a positive impact on the teach-
ing and learning of functions. These claims are supported by Dunham and Dick's
review of early reports on graphing calculators (1994). Our arca of research seeks
to contribute to a better understanding of how students who use graphing calcula-
tors think about functions. Three models of students thinking about mathematical
functions in a technology-enhanced precalculus class arc presented here, a bricf
discussion of the relationships between them.

Theoretical framework

The theoretical framework developed for the research incorporated historical
(cf Kleiner, 1989) and psychological contributions (processes and objects) (Sfard,
1989) to the development of functions; concept images and concept definitions
(Tall, 1989); and multiple representations. We accept a constructivist view on
mathematical knowledge.

The study and its methodology

Data reported in this paper belong to a larger project aimed to contribute to the
teaching and learning of mathematical functions through technology. This paper
involves data collected during nine months in the scholastic year 1991-1992. This
initial part of the study investigated students' knowledge and development of func-
tions in a technology-enhanced prccalculus class. Students in the Calculator and
Computer Precalculus Project (C'PC, Dcmana & Waits, 1988) use graphing tech-
nology as an integral part of thcir class. Eight students from a class participating
in the C2PC were selected for case studies of their knowledge and development of
functions. In particular, wc investigated "What are the concept images and the
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concept definition offunction that students in this technology-enhanced precalcu-
lus class have?" We relied on the interpretivist tradition of ethnographic research
for it provides methodologies for studying the evolution of change in mathematics
teaching and learning. Collection of data for each each case study invgived a
practice test on functions (Markovits, Eylon, and Bruckheimer, 1988) at the begin-
ning of the study, five interviews, daily classroom observations, researcher's jour-
nal, testing materials used in class, and a student handout for extra credit.. Con-
sideration of criteria related to the trustworthiness of the study (credibility, trans-
ferability, dependability, and confirmability) were taken into consideration as well
(Lincoln & Cuba, 1985).

Procedures

We discuss here only about students' protocols, since they provided the most
useful information on sketching students' thinking about functions. Five proto-
cols for interviewing students were selec ted or developed in the course of the study.
Items were suggested by the cascading design of the study to investigate working
hypothesis. Pertinent literature on functions was consulted to design the protocols
(Dreyfus & Vinner, 1989; Even, 1989; Fcrrini-Mundy & Graham, 1991; NCTM,
1989; Tall & Vinner, 1981). Items asked the students about the relationship be-
tween equations and functions, about the relationship between graphs and func-
tions, to decide if some given graph was a function, to decide about the existance
of a function with given algebraic features, or to provide examples of functions
Items involved discrete and continuous sets and piecewise functions.

Discussion of findings

A domain analysis (Spradley, 1979) and a coding paradigm (Lincoln & Guha,
1985) was used to analyze the interviews and testing materials. Such analysis
identified nine function images that students in the study associated with the con-
cept of function (Martinez-Cruz, 1993). Resulting images were used to build a
network of the concept. Links and emphases on the network (sec fig. 1, 2, 3)
suggested categories (graph, equation and univalence) in 'students' thinking. We
present the categories as models of students' thinking about functions.

The models

Each model is made up of the images that emerged from all the students,
however, not all images were detected on each student. Hence, these models do
not state that a student can be identific is thinking about functions as onc single
model. On thc contrary, the facts that thc concept image may be incoherent, con-
tain conflict] ve parts with the concept image itself or with the concept definition,
or contain potential see,;:s for future conflict even in the learning of a formal theory
(Tall & Vinner, 1981) arc evident here.
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Graph

The graph model refers to the graphical representation of functions. Students
associated several ideas to this representation.

1) Functions can be represented by graphs.

2) Graphs can be functions (if they pass the vertical line test or the
univalence criterion).

3) A graph is an intermediate step to decide whether or not an equation
is a function,

4) Functions are graphs.

5) All functions can be graphed.

6) Graphs arc functions.

7) Graphs come from equations.

Students' nctworks of functions images allowed us to identify connections
and missing links among their images. One of the students, Tyler, showed a strong
tendency to have a graphical representation to deal with functions (Fig. 1) (al-
though he could talk about thc equation representation or the unique correspon-
dence criterion). This significant difference with other participants (see figures 2
and 3) is reflected on his network with a thicker line around his graph image and
with an unconnected network. A second difference is how anchored his familiar-
ity image was. He recognized a function when he has seen or graphed a similar or
identical graph. Otherwise, he would ;eject a function based on his experience.
The nctworks suggests also a use of the vertical line test (but not as an equivalent
statement to the unique correspondence criterion).

CCCrtical Line Test

To produce
functions &
nonfunctions Functions if

Figure 1. A student with a graph model of functions.
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Equation

The equation model refers to the symbolic (algebraic) representation of func-
tions. It appeared as a "chain" (formula) of variables and numbers. Students
associated six ideas with this model.

1) A relationship between x and y.

2) Functions come from equations.

3) A means to represent functions.

4) Functions are equations.

5) Not all functions arc equations.

6) Not all equations are functions.

Sara's network (Fig. 2) is a representative of an equation thinking. She relied
more on an algebraic representation than on other images to deal with functions
(as represented with a thicker line). A connected network is a main difference with
Tyler's network and which suggests a progress on her thinking about functions.
Six students showed similar networks (except for the existence of the regularity
image or for their consistency on recognizing the equivalence between the unique
correspondence criterion and the vertical line test). Such consistency plus a reli-
ance on the unique correspondence criterion is a characteristic of the unique corre-
spondence model.

Figure 2. A student with an equation thinking of functions.



Unique correspondence

The unique correspondence model refers to the formal definition for a func-
tion introduced in this class (and at times stated as "one output for every input").
Students attached four images to this model.

1) A property of functions.

2) An implicit equivalence to the vertical line test.

3) A definition of a function.

4) A means to decide if equations or graphs (continuous or discrete) are
functions.

Figure 3 shows the network of the single student who relied more strongly on
the unique correspondence model than on any other model. This nctwork also
shows consistency on recognizing the unique correspondence criterion and the
vertical line test (notice the thickness of both boundaries).

Figure 3. A student with a unique correspondence thinking of functions.

A difference between the equation and the unique correspondence models is
recognizing the vertical line test and the unique correspondence as equivalent and
using this recognition consistently to apply the appropriate one in a given task.

Links between the models

The vertical line test is one of the links (among others) that differentiates the
nctworks. Studcnts recognized the vertical linc test as:

1) A means to decide whether or not a graph is a function.
2) A means to decide whether or not an equation is a function.
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,

3) A property (condition) of functions.
4) An equivalent statement to the univalence criterion.
5) A means to produce graphs of functions or non-functions.

A second difference among the networks is the link given by translating from
a given representation (algebraic usually) to another representation (graphic) to
recognize functions.

Implications

Although a student may have images belonging to all three models as pre-
sented, it is noted that our data suggest that for some studcnts one single model
was more anchored in their mind than others, and they acted accordingly. Hence,
they could not cope with some of the tasks presented during the interviews. Our
second part of the research deals with interpreting results in the classroom. In this
case, we apply the findings to teach explicitly "the knowledge and procedures of
each succeeding stage of development" (Carpenter & Fennema, p. 5).

References

Carpenter, T., & Fermenta, E. (1991). Research and cognitively guided instruction. In E.
Fennerna, T. Carpenter, & S. Lamon (eds.). Integrating research on teaching and
learning mathematics. Albany, NY: SUNY.

Demana, F. & Waits, B. (1988). The Ohio State University Calculator and Computer
Precalculus project: The mathematics of tomorrow today! The AMATYC Review,
10(1), 46-55.

Dreyfus. T., & Vinner, S. (1989). Images and definitions for the concept of function.
Journal for Research in Mathematics Education, 20, 356-366.

Dunham, P. & Dick, T. (1994). Research on graphing calculators. The Mathematics
Teacher 87, 440-445.

Even, R. (1989). Prospective secondary mathematics teachers' knowledge and
understanding about mathematical functions. Unpublished doctoral dissertation.
Michigan State University. Lansing, MI.

Ferrini-Mundy, J. & Graham, K. (1991). Research in calculus learning: understanding qf
limits, derivatives, and integrals. Paper presented at the Joint Mathematics Meeting,
Special Session on Research in Undergraduate Mathematics Education, January,
1991. San Francisco, CA.

Goldberg, E. P. (1987). Believing is seeing: how preconceptions influence the
perception of graphs. Proceedings of the International Conference on the
Psychology of Mathematics Education, X/. pp. 197-203. Montreal, Canada.

Lincoln, Y. S., & Guha, F.. G. (1985). Naturalistic inquiry Newbury Park, CA: Sage
Publications.

Kleiner, E. (1989). Evolution of the function concept: A brief surrey. The College
Mathematics Journal, 20(4), 282-300.

211,i 282



Markovits, Z., Ey Ion, B. S., & Bruckhcimer, M. (1988). Difficulties students have with
the function concept. In A F. Coxford and P. Shulte (Eds.) The ideas of algebra.
1988 Yearbook. pp. 43-60. Rcston, VA: NCTM.

Martinez-Cruz, A. (1993). Knowledge and development of functions in a technology-
enhanced high school precalculus class: a case study. Unpublished doctoral
dissertation. The Ohio State University. Columbus, Ohio.

NCTM. (1989). Curriculum and evaluation standards in school mathematics. Reston,

VA: The Author.

Sfard, A. (1989). Transition from operational to structural conception: the notion of
function revisited. Proceedings of the Psy hology of Mathematics Education, v. 3,

pp. 151-158. Paris, Frapce.

Spradley, J. P. (1979). The ethnographic interview. New York: Holt. Rinehart and
Winston.

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics, with
particular reference to limits and continuity. Educational Studies in Mathematics,

12,151-169.

Tall, D. (1989). Different cognitive obstacles in a technological paradigm or A reaction
to: "Cognitive obstacles encounteral in the learning of algebra". In S. Wagner & C.

Kieran (eds.) Research issues in the learning and teaching of algebra. Research
agenda for mathematics education, v. 4. pp. 87-92. Reston, VA: Lawrence Erlbaum
Associates and NCTM.



A GROWTH-OR1ENTED ROUTE TO THE REIFICATION OF
FUNCTION

David Slavit, Washington State University

This paper presents an alternate perspective for utilizing the action/process/object frame-
work when discussing student conceptions of function. This perspective extends previ-
ously used frameworks by incorporating student conceptions that deal with functional prop-
erties and situational contexts, but differs in the analysis of the nature of the functional
properties that are considered. Thc hypothesis is that students not only use notions of set-
based correspondences and transformations to think of functions as mathematical objects,
but functions are also conceived as mathematical objects that possess (or fail to possess)
growth properties of specific functions. These properties include symmetry, linearity, con-
tinuity. etc. It is argued that all students who develop a structural view utilize functional
properties, but a focus on different kinds of properties produce different conceptions of
function. Empirical evidence is used to support the theory.

Theories Of Student Conceptions Of Function

I am astonished when I see some of the analyses which purport
to he the scientific foundations on which school curriculums are
to he built and find no mention of these general ideas of ordcr
and arrangement and precision. I am told that the school should
teach children how to make change and how to measure wall
paper and how to tell time and that sections of arithmetic should
be devoted to these specific tasks, but I look in vain for any
appreciation of the fact that the school ought to lead pupils who
have only a hazy and unsystematic notion of the world to see the
value of arrangement and order in all thinking and to cultivate
the general ideas of regularity and precision.

Charles Judd, 1928

Operational Views of Function

Thc action/process/object theory of conceptual development has received con-
siderable attention in recent studies of functional understanding. Evidence exists
that students initially acquire an action or operational view of function (Briedenbach
et al., 1992; Sfard, 1989). This involves function as an operation that exists dy-
namically. An action view involves understandings pertaining to the computa-
tional aspects associated with functions, such as an arithmetic process or a "func-
tion machine." It is important to note that an action view, by definition, is con-
cerned only with local functional properties. It is only when one can see relation-
ships between sets ol inputs and outputs that a more structural view of function
can occur. But making relationships between sets of input-output ordered pairs is
not an easy task (Sfard and Linchevski, 1994). The problem is compounded when
functional symholisms are confronted in very different forms (such as graphs and
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equations) and when functional ideas are confronted through purely mathematical
symbols that lack a contextual basis (Fi lloy and Rojano, 1985). For example,
whcn a student is asked to factor a difference of squares, what kinds of functional
understandings are being built? What structural understandings of function can be
acquired when a student solves a linear equation of the form ax + b = 0? In the
latter example, if the student is allowed an opportunity to reflect on the solution,
what can be acquired is a relationship between thc x- and y-values of the x-inter-
cept of the function. While reflections on this relationship support the action view
of function, they can do little to promote more structural views of the concept
unless this relationship is seen as a specific, local property that the entire function
possesses. Otherwise, intercepts can become local phenomena of a function or set
of functions, providing very specific information about one aspect of growth be-
havior or situational context.

Structural Views of Function

I will define a structural view of function as an extension of the action view.
This will first be done by reexamining existing theories, especially those of Sfard
and Dubinsky. An alternate theory for a structural view of function will then be
presented that, while borrowing heavily from previous ideas, discusses student
development in a different context. Sfard (1991, Sfard and Linchevski, 1994)
defines a structural conception as the reification of an operational view. For ex-
ample, considering the expression 3(x+5) + 1 as a certain number rather than a
computational process illustrates the beginnings of a structural view since the ex-
pression is considered to bc a fixed value of an unknown. Generalizing this con-
ception to involve the notion of variable, where the above expression simulta-
neously denotes several processes, represents thinking in line with functional al-
gebra and is considered to be a structural conception.

My use of the word structural incorpmates this perspective, but also includes
a different domain of student thinking as well as a diffc:cnt context for the use of
the phrase "functional property." This different context deals less with direct rela-
tionships between input-output pairs arid more with specific growth properties
that functions can possess or fail to posNcss. As will be illustrated, the connections
between the two different perspectives lie in the fact that both involve understand-
ings of functional properties. Furthcr, some functional properties (e.g., intercepts)
arc tied to individual input-output pairs, while othcr functional properties (e.g.,
monotonicity, symmetry) arc tied to more global views of function that relate to
numerous input-output pairs. Other properties arc harder to classify (e.g., continu-
ity). Hence, the two structural views outlined below are not meant as contrasting
or opposing -iewpoints, but rather complementary ways of thinking about the con-
cept of funct ,on as a mathematical object.

Relational conception of function. Sfard (1989; Slard and Linchevski, 1994)
and Dubinsky (Briedcnbach ct. al., 1992) describe routes through which studonis
may reify the function concept (Dubinsky uses the term encapsulate to denote the
case when stud;:nts develop object-oriented conceptions of function). I will define
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relational conceptions as those which deal with relationships between sets of in-
puts and outputs, conceptions in line with Sfard's previously discussed use of the
term structural. Briedenbach et al. (1992) provide evidence to suggest that in-
struction which utilizes computcr programming can promote relational concep-
tions. They define a process conception of function as a complete understanding
of a given transformational activity which can be performed on a function. Stu-
dents are more able to comprehend notions such as 1-1, onto, and invertibility
once a process conception is achieved. They state that. thc process conception is a
precursor to an object-oriented view of function. Several people, including Confrey
and Smith (1995), argue that most textbooks and curricula support the develop-
ment of function as a correspondence relation rather than as a covariance relation.

Growth conception of function. A second view of function beyond an ac-
tion conception involves an understanding of functional properties specific to dif-
ferent kinds of functions. In previous writings I have referred to this conception as
a growth-oriented view, but 1 have changed the terminology to highlight the con-
nections between the two object-oriented conceptions that arc described here.
Briefly, a growth conception of function deals with the gradual awareness of spe-
cific functional growth properties of a local and global nature, followed by the
ability to recognize and analyze functions by identifying the presence or absence
of these growth behaviors. Global properties include symmetry and periodicity,
and local properties include intercepts and points of inflection. There is evidence
(Slavit, 1994) that the multi-representationa capabilities of graphing technologies
can lead students to develop a growth-oriented approach to the reification of func-
tion. Through an intensive look at elementary functions, students may understand
function to be a related set of procedures and functional properties in a variety of
functional representations. In essence, the procedures performed on functions give
rise to an understanding of functional properties, other than those more familiar
with the relational view (e.g., invertibility). These properties can be specific to a
function class (such as linear slope) or generalize to several function classes (such
as symmetry). A student can then conceive of function as an object possessing or
not possessing these properties (Slavit, 1994). Particular contexts elicited by the
semantic domain of the functional situation can also enrich the meanings in the
conceived functional properties.

Prior work in this arca (Slavit, 1994; Ruthven, 1990) has lcd me to hypoth-
esize that the growth-oriented view develops in three stages. First, the growth-
oriented view involves an ability to realize the equivalence of procedures which
exist in different representations. Noting that the processes of symbolically solv-
ing f(x) = 0 and graphically finding x-intercepts are equivalent (in the sense of
finding zeroes) demonstrates this awareness. Second, students develop the ability
to generalize procedures across different classes and types of functions, particu-
larly in algebra courses which introduce the elementary polynomials in a tradi-
tional sequence. Students at this second stage can translate procedures across
representations (Stage 1), but are also beginning to realize that some of these pro-
cedures have analogues in other types of functions (such as finding x-intercepts of
linear and quadratic polynomials). Third, once a student has become familiar with
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various functional properties, he or she can "see" a function as an object either
with or without these properties. For example, a quadratic function could be viewed
as a continuous function with exactly one extrema, at most two zeroes, and which
is -,ymmetric about a vertical line (with, of course, second-degree growth). Just as
a relational view is convenient when dealing with set-based operations on func-
tions (such as composition), a gowth-oriented conception helps to relate specific
examples of functions to their corresponding growth behaviors.

The development of a growth-oriented conception of function will take time
since it is dependent on knowledge of several different functional properties, rep-
resentations, and classes of functions. If linear and quadratic functions are studied
almost exclusively, as is the case in many high school Algebra I courses, then a
student's "library" of functional properties will be quite small. To this student.,
functions are certainly well-behaved and continuous, have very simple growth
behaviors, are either monotonic or change the direction of growth once, and are
zero at most twice. When other polynomial (usually up to fourth- or fifth-degree),
exponential and logarithmic, trigonometric, radical, and absolute value functions
are added, as is the case in many high school Algebra H courses, the student's
library of functional properties will increase, and a growth-oriented conception of
function could deepen. By seeing examples of different types of functions that
share functional properties (linear and simple radical functions sharing monoto-
nicity, quadratic and simple absolute value functions sharing a unique extrema,
quadratic aad some trigonometric functions sharing symmetry), and by noting simi-
larities and differences in the functions, thc student can relate specific properties
to a variety of exemplars. But not all radical functions are monotonic, nor are all
trigonometric functions symmetric. Further delineations relative to specific func-
tion classes continually need to be made in order to classify functions in regard to
functional properties, but this is an exercise that could only strengthen a growth-
oriented view. This situation suggests that the question of the sufficiency of the
kinds of functions that are currently most often studied in today's high schools be
reexamined in regard to allowing students access to a broader array of functional
properties. An obvious question concerns the adequacy of thc functional proper-
ties normally encountered in regard to a student's development of the growth-
oriented view. Perhaps other types of functions should be introduced to allow for
a broader range of functional properties to bc introduced. These could include
discontinuities, finite domains, multivariable functions, or non-functional relations.
One dimension on which this question should be addressed is the types of func-
tions which give rise to contexts and situations that support investigation of alge-
braic and functional ideas. The connection of a functional property to a situational
meaning can help strengthen an understanding of that property. It is also interest-
ing to note that some functional properties, such as cusps and points of inflection,
are not usually studied until ideas and techniques of calculus can help make them
more explicit. This suggests the consideration of the role of functioa in advanced
mathematics as another dimension to address the above question.



Synthesis of the Views

The previous views of function arc not presented as disjoint avenues of stu-
dent development, nor are they intended to completely describe all of the ways in
which students can develop a concept image of function. Further, the above dis-
cussion of the growth-oriented conception is in line with characteristics of algebra
courses which utilize multi-representational instructional approaches, as well as
student responses to this instruction (Ruthven, 1990; Slavit, 1993, 1994; Teles,
1989). It must also be stated that the intent of this paper is not to develop a stage
theory for the development of function. It is quite possible that a growth-oriented
conception of function may be the first structural view that the student possesses,
but it is also possible that it may be the last. Instruction is likely to influence the
sequencing of this development.

Students who acquire a structural view can investigate functional contexts
without a reliance on procedures and local function behaviors. Instead, emphasis
can be placed on global behaviors such as growth rate or on relationships between
specific local properties. The structural view is needed in order for a student to
establish a proceptual understanding of functional notations (Gray and Tall, 1994),
an understanding that transcends the action/object duality. Students who see func-
tional notations proceptually can have the flexibility to think about function as an
action, an object, or both. Further flexibility arises when the student is able to
consider functions as mathematical objects in more than one way, such as the
above relational and growth-oriented views. A structural view also allows the
student to better understand actions performed on a function, such as a "shift"
translation (e.g., changing f(x) to f(x + 3)) or taking a derivative. It would be quite
difficult for a student to completely understand an action he or she performed on a
function if a structural view of function was not yet achieved.

Most importantly, we must remember the comments of Schoenfeld et al. (1993):

Saying when a student actually "has" the object perspective is
not a simple matter. It is not a yes/no kind of knowledge, but
one of degrees, and the process of learning is not of simple mono-
tonic growth, but one that includes a fair amount of oscillation
(p. 88).

Empirical Support

Prior studies provide some empirical support for the theory. However, it should
be clearly stated that a theory of a growth-oriented conception of function should
be supported by more data before any curricular decisions arc made which have
the thcory as a basis.

But there is evidence that students obtain a growth-oriented view of function,
particularly when exposed to instruction that makes uses of graphs and graphing
technologies. Ruthven (1990) found that students who used graphing calculators
were better able to describe a given graph in symbolic terms, and that their ability
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to do this relied heavily on their knowledge of functional properties. These stu-
dents were also better able to identify and distinguish between classes of func-
tions. Confrey and Smith (1995) argue that students are more likely to think of
functions in terms of the covariation of two variables rather than in terms of the
relational view which currently dominates the curriculum. However, they fall
short of investigating student conceptions of functional properties as they relate to
overall growth behavior, focusing only on general covariation relationships (e.g.,
in the linear equation y=2x+3, the established relationship could be "twice x plus
three").

Slavit (1994) provides long-term data from a year-long study conducted in a
high school Honors Algebra H course which made extensive use of graphing cal-
culators. Questionnaires, test items, and case study interviews were r.orded.
Data indicated that some students reified function using growth-oriented notions.
The strongest evidence came from an analysis of translation tasks, in which stu-
dents used functional properties to relate different function representations, par-
ticularly when the graphic representation was involved. Further, because the in-
struction primarily focused on elementary polynomials, the students made false
generalizations in regard to the properties which functions can possess, such as the
need to be continuous. This led to misconceptions in their overall concept image.
In addition, several examples of a growth-oriented view were found to "naturally"
occur during problem solving episodes.
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IMPOSSIBLE GRAPHS

Tracy Noble, TERC
Ricardo Ncmirovsky, TERC

Jesse Solomon, Brighton High School
Joe Cook, Paige Academy

Graphs without a timc axis, such as velocity vs. position graphs, offer interesting possibili-
ties for exploring graphing and motion. Relations depicted by these graphs are not limited
to functions. In this paper, we describe interviews with a high school student named Olivia
who uses a motion detector to create such graphs. While exploring which gjaphs are logi-
cally impossible, she encounters the constraints of the velocity vs. position graphing envi-
ronment, which we argue arc a crucial part of learning about this type of graph and about
the relation of velocity to position.

Introduction

In any mathematical representation, there are things that are impossible to do.
In a graph of distance vs. timc, for instance, the graph line cannot come back to the
left, because time cannot go backwards. This constraint arises from the formal
properties of distance vs. time graphs, and from the way we understand distance
and time. Students of mathematics arc generally discouraged from considering
the impossible cases in any representation; they arc encouraged, instead, to con-
sider cases of possible graphs, since those arc the cases they will likely encounter.
However, we argue that for any type of graph, considering the impossible graph
shapes and trying to understand why these graphs arc impossible is an important
aspect of learning about the constraints of the graph, and thus thc logic that gov-
erns how one moves in that graphic:1i space.

In this paper, Olivia, a senior high school, uses a motion detector to create
graphs of velocity vs. position (v vs. p). These graphs are an important part of
dynamical systems modeling (Tufillaro, Abbott, and Reilly, 1992), in part because
they represent the state of a moving object (given by its position and velocity) as a
single point on the graph, creating a compact representation of a systcm's behav-
ior, in which thc relatiorship between the velocity and position of an object deter-
mines which graph shapes arc possible. For example, the simple harmonic motion
of a weight bouncing up and down on a hanging spring, assuming no damping for
simplicity, could be represented as a sine wave on a position vs. time graph that
evolves to the right for as long as the motion lasts, or as an ellipse on a v vs. p
graph, drawn over and over as the weight continues to bounce:

The work reported in this paper has been supported by NSF Prime Grant # RED-
9353507. All opinions and analyses expressed herein are those of the authors, and
do not necessarily reflect the views of the funding agency. 1 he authors thank Paul
Wagoner, Tracey Wright, and Mark Ogonowski for their editorial feedback.
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Figure 1

As we see in Figure 1, the constraints on graph shapes in velocity vs. position
space are different than those wc are accustomed to in temporal graphs. A velocity
vs. position graph can double back, because position can decrease as well as in-
crease. However, if the position increases, the velocity must be positive, so thc
graph line must lie above the x-axis; similarly, if distance decreases, the line of the
graph must lie below thc x-axi3. Thus it is possible to create the ellipse in Figure
1, but it can only be created in a clockwise direction, so that the line is above the x-
axis while it extends to the right, and below the x-axis as the line comes back to the
left. The realm of impossible graphs is thus more complex than in the ca.sc of
temporal graphs, where any figure that doubles back on itself or has a perfectly
vertical line in it is impossible to make. It provides a rich territory for exploring
the distinctions between possible and impossible graphs, and for investigating
motion from a new perspective.

As Olivia determines which graphs are possible and which are impossible in
velocity vs. position space, we learn about how she distinguishes between the two.
In some cases, Olivia does "thought experiments," in which she traces out a graph
shape on the computer screen at the same time as she describes the physical mo-
tions needed to create the graph. In this way, she finds that some graphs are not
physically realizable. Olivia also uses physical experiments with the car to find
out what is possible, but experimentation doesn't always provide the final answer
for her. We have found that the relationship of her physical experiments to the
rules she constructs about what are possible graphs is more complex than the rela-
tionship described in textbooks as "the scientific method". Olivia's thought ex-
periments and her physical experiments both help her to distinguish possible from
impossible graphs, and she uses both of them in unusual ways that can help us
understand how to makc sense of the realms of both impossible and possible graphs.

The Interviews

Olivia was in 12th grade at a Boston-area public high school at the time of the
interview, had a strong background in science and math, and felt competent in
these subjects. Olivia IA, as one of five students in this study, each of whom was
interviewed for five hour-long sessions, using individual teaching experiments
(Cobb and Steffe, 1983). The interviewer, Tracy Noble, posed some pre-deter-
mined problems to the students, but also encouraged them to explore questions of
their own whenever possible.

Tracy and Olivia spent the first interview playing a game in which they made
drawings to represent their motions of a hand-held toy car. At the start of Olivia's

3
292



MD

second interview, Tracy introduced the motion detector to her, with the minimal
explanation necessary for Olivia to start using it. The motion detector senses the
distance from itself to the nec:est object in its path, and the software (MaeMotionn4)
uses this information to compute the velocity of the object in real time (See Figure 2).

1E:DoT computer

tape line

toy car on table

Figure 2

Episode 1 - Direction of Motion on a Graph
Tracy and Olivia spend about 20 minutes using the motion detector to make

velwity vs. position graphs of the car's motion before Olivia makes a graph which
is a large oval, half above and half below the x-axis (See Figure 3), and tr:-.; to
determ,le where on the graph her motion started. [In this figure, Olivia's gestures
with the cursor are represented in the left column, and her associated utterance is
shown ir the right column]

Figure 3.

Notes on Episode 1: In trying to determine how she started her motion,
Olivia does a thought experiment in which she imagines moving from left to right
along the bottom half of the graph: "Did I start here [left-most point of the oval]
and zoom off [tracing with the cursor the bottom half of the oval, from left to
right]". Olivia "fuses" the graph and the motions of the car on the table in her
language, speaking about "zoom[ing] off," while moving the cursor on the com-
puter screen and also referring to her motion of the car on the table. (Ochs, Jacoby,
and Gonzales, 1994; Nem irovsky, Tierney, and Wright, 1995). She uses her move-
ment of the cursor along the graph to try to imagine the physical situation that
would create the graph, and finds a contradiction, "because to go further away you
have to be going [tracing from left to right along top half of oval] a positive veloc-
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ity away from it [the motion detector]," but she had been moving the cursor from
left to right along the bottom half of the oval, where the velocity is negative. Olivia's
thought experiment allows her to imagine creating a graph in a direction that would
not have been possible, and to understand why it is not possible.

Episode 2 - The Vertical Line, an Impossible (;raph

After a few minutes more of discussion, Olivia and Tracy make several more
velocity vs. position graphs, and Tracy suggests organizing the shapes in a table
with three columns. Olivia and Tracy fill in the "Easy" column with "oval,"
"waves," and "crazy shapes." In the Difficult column, they place "circle" and
"horizontal line" (See Figure 5). They leave the third column blank.

Olivia asks, "Vertical line was pretty easy, wasn't it?" and she finds a way to
make two vertical lines show up on the computer screen, by removing the car from
the range of the motion detector, seemingly creating a huge velocity peak, but
actually creating a graph that does not represent thc car's motion. Olivia quickly
realizes this, and attempts to make a vertical line while keeping the car in the
motion detector's range, moving it toward and away from the motion detector
quickly, creating the following graph:

Figure 4

Olivia:

Tracy:

Tracy then adds
places "vertical

distance 3 m

ItsThe problem is you have to go very quickly in no, very quickly
in no Ipausel distance, which is impossible unless; no, it's impos-
sible.

[pointing tt, the nearly-vertical sides of the ovalsl What about this--
these? What would you cal! these guys here I the nearly vertical
sidesI?

They're pretty close to vertical but they're not actually !vertical).
I mean, they can't be I vertical I. They're just very quick.

thc title "Impossible" to the third column of the table, and Olivia
line" as the first entry in this column.
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Notes on Episode 2: This is the first discussion in which Olivia uses the term"impossible" to describe the making of a particular shape. 3he has encounteredgraphs which were difficult to create before, but the vertical line has a new quality:it disobeys a rule she constructs for this graphical space: the rule that you can't go"very quickly in no distance."
When Tracy asks Olivia about some of the nearly-vertical lines of her graph,Olivia responds by saying that "they can't be" vertical lines. Even if Olivia saw avertical line produced at this point, this statement suggests that she would notbelieve that it was both truly vertical and truly representing the motion of the car.She has determined that an actual vertical line would be impossible, trusting hersense of the logic of this graphical space more than she trusts the mechanicsof themotion detector and graphing program. This is a case which does not fall into thetypical model of trusting an experiment tc determine the validity of an idea ortheory.

Episode 3 - Table of Shapes
Throughout the rest of this interview, and part of her next interview, Olivia fills inthe table of figures even further. The final table is represented below in Figure 5:

EASY
1) oval
2) waves
3) crazy shapes
"looks absurd "

DIFFICULT
1) circle
2) Horizontal line

3)

IMPOSSIBLE
1) vertical line

2) rlirrimirlilk

4) AM
WO

0 3)

Mr
4)

5)

5)

Or

Figure 5
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Olivia uses her rule that an object has a positive velocity going away from the

motion detector and a negative velocity going toward thc motion detector to deem

the counter-clockwise spiral impossible ("Impossible" #2). Shc also develops a

new rule that "anytime you want to look at something la graph] which doubles

back on itself, it has to go below thc horizon I x-axisj," that is, no doubling back

(coming back to the left) without crossing the x-axis first. Olivia uses this rule to

classify the vertical spiral (#3) and thc circle above the x-axis (#4) as impossible.

Conclusions

Finding the ways in which she cannot move causes Olivia to articulate some

rules about how she can move, which help her to undcrstand the logic of this

graphical space and how to move within it. Far from limiting Olivia's exploration,

her encounter with the constraints of this graph leads her to imagine a group of

several "Impossible" figures that she could never create using the motion detector.

Olivia uses a number of resources to make sense of the possible and impos-

sible graph shapes shc imagines. Her experiences of moving in front of thc motion

detector and trying to understand the resulting graphs, have helped allow hcr to

describe a graph in a way that "fuses" the graph shape and the motion needed to

create it. Thus, Olivia's tracing out of a graph shape wwks as a thought experi-

ment involving both hcr tracing a particular graph shape on the screen and her

imagining a particular motion of thc car. This ability to "try out" a graph shape

without actually performing thc motions becomes an important tool for distin-

guishing between possible and impossible graphs. Olivia's fusion of graph shapes

and the motions needed to create the shapes also helps hcr to create a set of rules

that govern how one can move in the graphical space, based on thc logic of physi-

cal motion. Olivia's confidence in these rules is sometimes stronger than the con-

fidence she shows in physical experiments themselves, contrary to some tcxtbook

descriptions of the scientific method, in which theories "arc accepted only so long

as they arc consistent with all observed facts" (ShortIcy and Williams, 1971, p. 2).

Olivia's experience of exploring impossible graphs is valuable to her in large part

because of thc way she experiences a graph shape, the quantities that are graphed,

and thc motion that would make the graph, all as parts of a whole experience that

blurs the distinction between physical event and representation.
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COLLEGE CALCULUS STUDENTS' USE OF VERBAL AND
GRAPHICAL REPRESENTATIONS TO INTERPRET

RATE OF CHANGE MODELS

Maria L. Blanton North Carolina State University
Wendy N. Coulombe North Carolina State University
Sarah B. Berenson, North Carolina State University

While the calculus reform movement has seen a variety of new approaches to
teaching, there has been general agreement that both conceptual understanding
and connections between calculus and the real world need to be emphasized. As. a
result of the reformed pedagogy, the study of the concept of rate of change has
become a growing field in mathematics education.

The purpose of this study was to explore students' ideas about rate of change
models developed from linear and nonlinear functions. Verbal and graphical rep-
resentations were used to gain insights about the ideas concerning rate of change
that students bring to a first semester college calculus course. These representa-
tions were embedded in real-world contexts to enable the researchers to explore
the connections students make between calculus and ratc of change models in real
world situations. In addition, we were interested in how these students make a
transition between graphical and verbal representations.

A total of ten students were individually interviewed on videotape. Students
were selected for the interviews primarily on a volunteer basis, although some
effort was made to insure diversity among the participants with regard to gender,
race, and high school background. A clinical interview format was used in the
spirit of Piaget.

Some interesting themes have emerged from the data. For example, students
seem to have difficulty controlling for two variables in both nonlinear functions
and functions of zero slope. Also, students appear to be able to construct graphs
from given verbal scenarios more easily than they arc able to interpret graphs
using words.
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FOSTERING CONNECTIONS BETWEEN CLASSES
OF POLYNOMIAL FUNCTIONS

Judith Curran Buck, Plymouth State College

The "units" pertaining to the classes of polynomial functions within thc alge-
bra curriculum have ordinarily separated linear functions, quadratic functions, and
polynomial functions of higher degree into disjoint topics. NCTM (1989) advo-
cates that connections bc promoted between the topics in the mathematics curricu-
lum to increase the potential for retention and transfer of mathematical ideas.

This report highlights results of a recent qualitative study (1994) that used
clinical interviews to probe into the connections made between the classes of poly-
nomial functions by a group of Algebra II students. "Connections" here refers to
knowledge that relates to all classes of polynomial functions; as an example, for
all polynomial functions, the zeros can be determined graphically from the points
of intersections of the graph with the x-axis. Thc interviews were followed by
"teaching episodes" (Steffe, 1984) designed to contribute to the students' forma-
tion of connections by presenting linear functions as the "building blocks" of other
classes of polynomial functions. Computer software was used in both the inter-
views and teaching episodes to aid in the graphical investigations.

Analysis of the clinical interviews reveals that graphical exploration of poly-
nomial functions made the connections across classes more salient for the stu-
dents. The students were often inhibited from making connections algebraically
because of the sequence and thc content of instruction. The method of building
polynomials from linear expressions used in the teaching episodes not only fos-
tered connections between the classes of polynomial functions, but also between
the graphical and algebraic representations of these functions. In particular, the
relationship between the zeros of a polynomial. f(x), the roots of the equation,
f(x).0, thc factors of the polynomial, and the intercepts of the grap'i became more
evident across classes.
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GRAPH KNOWLEDGE: UNDERSTANDING HOW STUDENTS
INTERPRET DATA USING GRAPHS

Susan N. Friel, University of North Carolina-Chapel Hill
George W. Bright, University of North Carolina-Greensboro

There are abundant opportunities for research on how children learn and un-
derstand both thc proccss of statistical investigation and the statistical concepts
related to using this process. This paper discusses a research study that focused on
middle school students' abilities to read and to move between different graphical
representations (i.e., line plots, bar graphs, stem-and-leaf plots, and histograms)
before and after instruction. The representations that are discussed were selected
for a number of reasons. First, the representations are common in the school math-
ematics curriculum. Sccond, understanding the process of data reduction and the
transitions from displays of raw data to those which present grouped data is an
inherent part of developing graph knowledge, as is understanding the structure of
the graphs themselves. Third, considering the ways students respond to questions
involved in interpreting data by reading graphs provides insights into students'
graph knowledge.

During Fall, 1994, we conducted a study of the ways that students in grades 6,
7 and 8 made sense of information presented through graphical representations
and made connections between related pairs of graphs. Students were tested both
before and after an instructional unit developed specifically to highlight a particu-
lar sequence of graphs that took into consideration increasing degrees of data re-
duction and building connections between pairs of graphs. Small samples from
each grade were also interviewed before and after the unit. Data from the inter-
views and the tests of these samples of students arc used to illustrate the difficul-
ties and successes that students experienced in attempting to understand the mate-
rial from this unit.

Using Curcio's (1989) three components of graph comprehension (reading
the data, reading between the data, and reading beyond the data) as an organizing
framework for reporting results, specific attention in this session will be given to
the nature of the responses students made to selected written problems presented
by pre- and post-instruments. In addition, we also will look at students' building
transitions between pairs of graphs (i.e., line plots and bar graphs; stem plots and
histograms) and ways in which they use information from one graph to construct
its paired representation. Wc have sought to address both the need for context and
an awareness of thc process of statistical investigation within the assessment envi-
ronment. This research provides a framework both for looking at students' knowl-
edge of graphing (in the statistical sense) and for developing a research agenda
related to this area.
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A NEW STRATEGY FOR EQUATIONS AND GRAPHS

Susan Hagen and Harold Mick, Virginia Tech

Our research investigates a new strategy that students use to construct a knowl-
edge of equations and graphs based on transformations. Major factors in the con-
struction process are connections between geometric and algebraic representations.
Our hypothesis is that the key to making these connections is using ordered pairs
to serve as a "conceptual bridge" between graphs and equations. With the connec-
tions established, transformations from one graph to another correspond to changes
of coordinates that correspond to changes of graphs.
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To illustrate one direction, from graph to equation, suppose we write the equation
of the solid parabola shown to the right with our new strategy. We let (r,$) be a
generic point on the solid parabola. Our task is to find a relationship between r
and s.. Since we know the relationship between coordinates of points on the par-
ent parabola, we move the solid parabola to the parent by translating right 3 units
followed by a vertical scale by a factor of 4. This transformation corresponds to
the change of coordinatcs (r,$)--+(r+3,4s). Since the point (r+3,4s) lies on the
parent, we know that the second coordinate is equal to the square of the first. In
symbols we write, 4s = (r+3)2. Therefore r and s satisfy the equation

1 ,
Y = --(X 4- 3)2.

4

Our data have been collected in university precalculus classes, high school precal-
culus classes, and from secondary mathematics teachers enrolled in an indepen-
dent study course. Preliminary results suggest that the definition of a graph is
difficult for students to apply both to writing equations and sketching graphs. The
students who develop an understanding of the point connection in both directions
use the point's coordinate addresses to determine thc direction.
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STUDENTS' CONSTRUCTIONS OF POSITION AND VELOCITY
DURING CBL" EXPLORATIONS

Kathy M. C. Ivey, Western Carolina University

To mathematically empower students, rcform documents have emphasized
the need for contextually based mathematics problems (NCTM, 1989; NCTM,
1980). Yet in undergraduate calculus, students seldom encounter any real quanti-
tative data. Even "reform calculus" materials concentrate on data supplied to stu-
dents through graphs or tables. Prior studies have looked at high school students'
confusion of the graphs of a function and its derivative (Nemirovsky & Rubin;
1992) and at college physics students' development of the concept of velocity
from observing rolling bails (Trowbridge & McDermott; 1980). This study con-
siders what students come to know about position and velocity functions when
they gathcr and analyze data of their own motion.

Using a Texas Instruments CBL- (Calculator Based Laboratory') System,
college students in first term calculus gathered and interpreted quantitative data.
A CBL is a hand held unit which collects physical data when paired with a TI-82
orTI-85 graphing calculator and a sensing probein this instance a Vernier Ultra-
sonic Motion Detector. Lab days were videotaped, with informed consent from
the students, and individual students and faculty members were inte, viewed using
a semi-structured interview format.

Analysis of videotapes revealed several categories of understandings and mis-
understandings about calculus concepts. One observation is the effect that actual
physical enactmelt had on students' concepts of thc relationship between position
functions and velocity functions. This paper examines how students' construc-
tions of the position function and velocity function changed during an early CBL
lab activity and considers the robustness of their altered understandings. The influ-
ence of physical enactment of position functions on students' understanding of the
concepts of position and velocity appears to be related to the impact of manipulatives
use on young children's understandings of basic arithmetic. This line of research
holds promise for understanding students' constructions of basic calculus con-
cepLS.
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THE FUNCTION CONCEPT IN COLLEGE ALGEBRA

Robert Mayes, University of Northern Colorado
Larry Lesser, University of Northern Colorado

The curriculum development project ACT in Algebra was instituted to ad-
dress pedagogical and curricular concerns in college algebra. The project focuses
on applications, concepts, and technology. Thc preliminary text for the project
took its name from these three foci, ACT in Algebra. The project has several goals.
First, the curriculum materials and pedagogy are based on current research on the
most effective techniques for improving student concept and problem solving ability.
Second, applications are used to motivate and introduce new topics. Students
analyze discrete data in numerical and graphical form, then apply discrete tech-
niques to find a mathematical model. Third, technology is used as a tool in the
exploration of mathematical concepts and applications. Fourth, the use of small
group learning is used to promote communication, connections and conceptual
understanding in mathematics. The use of group projects in the classroom and in
the computer lab promote active student learning, since students construct knowl-
edge through communication with othcr students. Assessment of higher level cog-
nitive abilities requires a change in how student success is measured. ACT in
Algebra assesses conceptual understanding and problem solving through group
written reports.

In the spring semester of 1995 a study was conducted to study the effects of
the preliminary ACT in Algebra curriculum and pedagogy. The study addressed
the following questions: How does the ACT Curriculum enhance a student's con-
ceptual understanding in mathematics and a student's ability to model and solve
realistic problems? Does the ACT Curriculum improve student attitude towards
mathematics and the usc of technology in the learning and teaching of mathemat-
ics? What is the effect on student learning of a pedagogy stressing cooperative
learning, active student construction of knowledge, and computer laboratory ex-
periments?

The focus of the poster session will be to report on qualitative research into
the effects of the ACT curriculum on the student's concept of function and atti-
tudes towards mathematics. The powerful qualitative research software, Atlas/a,
was used to analyze transcriptions of videotaped student interviews. The results
of this analysis will be reported.
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STUDENT ACTIVITY AND FUNCTIONS:
A PROPOSED FRAMEWORK

Georgianna T. Klein, Grand Valley State University

Research literature has proposed several models for describing understand-
ings students have when studying functions. A dominant theme in several models
is to characterize functions as being understood operationally or structurally, or as
processes or objects (Hare & Dubinsky, 1992; Sfard, 1991). A second theme
addresses wholeness of the function conceptwhether a function is seen as a single
entity, includes domain and range, is reversible, can be operated on, etc. These
models are closely related to curricular goals mathematics teachers have for high
school students' understanding and often reflect a teacher's perspective, rather
than actual student activity. Built into many existing models is the assumption that
if students do not have at least partially coherent conceptions of functions per se,
they are considered not to have conceptions of functions at all.

This session draws on research in a high school class on functions and on
themes existing in the literature to propose an alternative framework. The model
separates issues related to the function concept per se from student activity with
functional relationships in problems. It consists of two complementary parts, one
for perspectives students take when working with functional relationships in prob-
lems and a second that addresses whether students see problems as being about
functions and the extent to which students understand the function concept as a
whole. Following Confrey and Smith (1994), the first part of the model will de-
fine correspondence and covariation approaches, but will distinguish dynamic and
static versions of each. The second part will distinguish three levels of wholeness,
which are then crossed with two dimensions of awareness of functions in the prob-
lem. The poster will explore how these two parts are related and what the frame-
work can contribute to discussing students' understanding of functions.
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STUDENT UNDERSTANDING OF THE EQUIVALENCE BETWEEN
ALGEBRAIC AND GRAPHICAL REPRESENTATIONS OF A

FUNCTION

Eric J. Knuth. University of Colorado at Boulder

Multiple representations of functions are an important topic in first year high
school algebra, yet many students leave high school lacking an understanding of
the equivalencies between these representations. The importance of this ability to
use multiple representation systems is emphasized in the NCTM Curriculum and
Evaluation Standards. "(students should he able to] translate among tabular, sym-
bolic. and graphical representations of functions" (p. 154). Many studies have
been conducted that have investigated students' conceptions of functions, inter-
pretations of graphs, or understanding of different representation systems of func-
tions. A fewer number of studies though. have specifically examined how stu-
dents understand, and to what depth they understand, the equivalence between the
algebraic form of a function (i.e., its equation) and its graphical representation.

Research results are presented from a study which examines student under-
standing of this equivalence between the algebraic and graphical representations.
The study k)oks specifically at how students understand the following question:
What does it mean to have the graph of an equation? Using a matrix sampling
technique, seven teachers presented two hundred eighty-four high school students.
varying in level from first year algebra through calculus. with a series of questions
designed to provide insight into their understanding. An examination of the stu-
dents' responses shows an overwhelming reliance on the algebraic representation
of a function, even on tasks where the graphical representation would seeni more
appropriate.

The study also includes in depth analysis of interviews of two students, a first
year algebra student and a pre calculus student. The focus of the analysis is mainly
concerned with students' inadequate or lack of connections between the algebraic
and graphical representations of a function character-lied by a treatment of the
domains as essentially independent. The students predominantly view the tasks
from a process dualistic perspective. The discussions with the two students also
suggest that the flexibility in moving between and within representations is no
easy task. The analysis of the students' thinking points to gaps in the understand-
ing of fundamental connections between the representations.
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GEOMETRIC UNDERSTANDING IN GIFTED STUDENTS
PRIOR TO A FORMAL COURSE IN GEOMETRY

Marguerite M. Mason, University of Virginia

This study investigated whether the van Hide model accurately described the geometric
thinking of students in the 6th through 8th grades identified as academically gifted. The
results from 120 students who completed a 25-item multiple choice test and 64 students
who participated in 30-45 minute individual interviews were analyzed. The gifted students
demonstrated higher overall van Hide levels than thc usual student entering i high school
geometry course. Many lacked correct basic definitions, but they would attempt to deduce
the definitions from contextual clues. Once thcy established a dermition, correct or incor-
rect, most students reasoned consistently from it. However, gifted students, particularly the
35.8% that skipped levels, need Level 2 and 3 experiences to provide a foundation for their
reasoning.

Dutch educators P. M. van Hic le and Dina van Hiele-Geldof proposed a lin-
early-ordered model of geometric understanding which asserts that a successful
learner passes through five hierarchical levels of geometric thinking in order. The
purpose of this study was to investigate whether the van Hide model accurately
describes the geometric thinking of students in the 6th through 8th grades who had
been identified as academically gifted.

The van Iliele Model

Levels of Geometric Thought

According to the van Hie le model of geometric understanding (van Hie le,
1959/1985; van Hide, 1986; van Hicle-Geldof, 1984), students progress through
five sequential, hierarchical levels of thought as thcir understanding of geometry
develops: visualization, analysis, abstraction, deduction, and rigor. The learner
cannot achieve onc level without mastering thc previous levels. While a teacher
can reduce content to a lower level and it may appear to be mastered because the
student has rotely memorized, a student cannot skip a level and still achieve under-
standing (Clements & Battista, 1992). Progress from one level to the next is more
dependent on educational experiences than on age or maturation.

Previous Research

Burger and Shaughnessy (1986) found mainly Level 1 thinking for subjects in
grades K-8. Fuys, Geddes, and Tisch ler (1988) found entry levels of 1 and 2 with
6th and 9th graders, but several students, especially those deemed above average
in mathematics ability prior to instruction, exhibited Level 3 behavior by the comple-
tion of the six hours of clinical interviews and instruction. Usiskin (1982) found a
hierarchy of levels existed in the 2,699 students enrolled in 99 high school geom-
etry classes that he examined. Almost 40% of his students finishing high school
geometry were below Level 3. Mayberry (1983) found sufficient evidence among
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19 undergraduate preservice elementary teachers to support the hierarchical as-
pect of the theory, but she rejected the hypothesis that an individual demonstrated
the same level of thinking ill all areas of geometry included in school programs.
These results were replicated with preservice teachers in Spain for Levels 1 through
4 (Gutiórrez & Jaime, 1987; Gutidrrez, Jaime, & Fortuny, 1991).

This study examines whether the van Hie lc model accurately describes the
geometric thinking of gifted students prior to a formal course in geometry and
makes comparisons with what has been found with other populations.

Method

The present study focuses on students in the 6th through 8th grades who have
been identified by their school districts as gifted. Thc subjects had mathematics
percentile ranks of 97 or above on the Iowa Test of Basic Skills or the Stanford
Achievement Test and teacher recommendations indicating other distinguishing
characteristics relevant to mathematics achievement. The population consists of
120 students, drawn from over 50 different school districts, who participated in a
National Science Foundation sponsored Young Scholars Program targeted for gifted
youth from rural areas during 1990-94. None of the students included in this study
had taken a formal course in geometry.

Paper-and-Pencil Tests

To enable comparisons with a large general population of students enrolled in
high school geometry classes, the 25-item multiple choice paper-and-pencil test
developed by the Cognitive Development and Achievement in Secondary School
Geometry Project (CDASSGP) (Usisk in, 1982) was administered to all 120 gifted
students. Thc test, with 5 proposed answers per item and 5 items per level, was
originally developed to test the van Hide theory. Answering 4 of 5 questions
correctly at a level in this test indicated mastery of that level. If a student mct the
criterion for mastery of each level up to and including level n and failed to meet
the criterion for mastery of all the levels above level n, the student was assigned to
level n. If the student could not be assigned to a level in this manner, the studcnt
was said to "not fit."

The Interviews

Sixty-four randomly selected subject.s participated in a 30 - 45 minute indi-
vidual interview, conducted by thc researcher. The questions used as a starting
point in the interview were a subset of the instrument developed by Mayberry
(1981). Thc entire Square Strand and other questions of interest were employed.

0 -
f
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Results and Discussion

Paper-and-Pencil Tests

The distribution of the CDASSGP test scores in this study appear in Table 1.
Table 1
% of Subjects at Each van I liele Level as Determined by the CDASSGP Test

not mastered

van Hiele Level

Grade n 1 1 2 3 4 5 no-fit

8 46 0.0 15.2 10.9 26.1 2.2 10.9 34.8
7 36 2.8 8.3 8.3 25.0 5.6 2.8 47.2
6 38 7.9 23.7 23.7 7.9 7.9 2.6 26.3

Total 120 3.3 15.8 14.2 20.0 5.0 5.8 35.8

Table 2
% of Gifted Students and Students Entering I ligh School Geometry at Each van
lliele Level on the CDASSGP Test Excluding "No-Fib"

not mastered

van Hiele Level

Grade n 1 1 2 3 4 5
8 30 0 23 17 40 3 17
7 19 5 16 16 47 11 5
6 28 11 32 32 11 11 4

Total 77 5 25 22 31 8 9
High

School 241 27 51 15 7 0 0
* Data for students entering high school geometry were reported by Senk (1989, p. 315).
Other data is from gifted students in the current study.

Despite thcir younger age, these gifted students demonstrated higher overall
van Hick levels than the usual student entering a high school geometry course.
Senk (1989), using this same CDASSGP instrument with students beginning a
high school geometry course, found 241 students who "fit the model". The distri-
bution of thcir levels is shown in Table 2. Of the 77 gifted students who "fit the
model" in the current study, only 5% had not mastered Level 1 and 17% were
classified as having attained van Hide Levels 4 or 5. In Senk's study, only 22%
were above Level 2 compared to 49% of the gifted students in the current study.
However, as seen in Table 1, over 35% of the gifted subjects tested did not fit the
model. This is in contrast to the CDASSCIP study in which only 12% of the over
2,600 students about to take high school geometry did not fit the model.
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In comparison to students closer to their own age, Fuys, Geddes, and Tisch lcr
(1988) found no one functioning above Level 2 in interviewing 6th and 9th grade
average and "above average" subjects while Burger and Shaughnessy (1986) found
mainly Level 1 thinking in grades K-8.

Proof Readiness. To examine the predictive powcr of a student's van Hide
level, Senk (Usiskin & Senk, 1990) compared the levels indicated by the CDASSGP
test prior to a high school geometry course with their performance in proof writing
as measured by the CDASSGP Proof Test at the end of the course. Applying hc
findings to this study, only 5% of the gifted students, all 6th and 7th graders, have
not mastered Level 1 indicating a probability of success in proof writing of less
than .35. 25% have mastcrcd Level 1 with a probability of successful proof writ-
ing between .35 and .60. Thc remaining 70% have van Hide levels 2 or greater
and so have probability of proof writing success greater than .75.

Interviews

The percentage of subjects at each van Hide level as determined by the inter-
views is given in Table 3 for the Square and Right Triangle Strands. Guided by the
findings of Burger and Shaughnessy (1986) and Fuys, Geddes, and Tisch ler (1988)
of the levels that students of these grades might bc expected to attain, no Level 5
questions were administered and Level 4 was administered only in thc Square
Strand.

Table 3. Percent of Subjects at Each van l fide Level as Determined by the
Interviews in the Square and Right Triangle Strands

Grade

not mastered

n Strand

van Hiele Level

1 1 2 3 4 no-fit

8 20 square 0.0 0.0 35.0 25.0 20.0 20.0
rt. A 0.0 20.0 20.0 45.0 n/a 15.0

7 24 square 0.0 0.0 25.0 8.3 45.8 20.8
rt. A 0.0 20.8 12.5 50.0 n/a 16.7

6 20 square 0.0 5.0 30.0 10.0 35.0 20.0
rt. A 10.0 30.0 10.0 25.0 n/a 25.0

Total 64 square 0.0 1.6 29.7 14.1 34.4 20.3

rt. A 3.1 23.4 14.1 40.6 n/a 18.8

Analysis of the interviews indicated that the van Hide levels are hierarchical
in gifted subjects. Excluding the 15 subjects who exhibited mastery of the highest
levels uf both thc square and right triangle strands administered, only 8 of the
remaining 49 subjects were deemed to be thinking at the same level in the two
content areas.
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Concepts and Logical Reasoning

Burger and Shaughnessy (1986) have characterized the van Hie le levels as
very complex structures that involve the development of both concepts and rea-
soning processes. This dual nature of geometric understanding in gifted students
is particularly evident in thc portions of thc interview-, dealing with isosceles and
equilateral triangles. Even though isosceles and equilateral triangles are a stan-
dard part of the school mathematics curriculum prior to the end of sixth grade, as
shown in Table 4, the subjects provided a wide range of definitions for the term
"isosceles triangle."

When questioned, 14 subjects of the sixty-three admitted that they were un-
sure of the correct definition of isosceles triangle, but 12 of these students pro-
vided definitions such as no sides congruent, all sides congruent, all angles less
than 90°, or containing one angle greater than 90°. Only two subjects answered "I
don't know" when asked for a definition of an isosceles triangle. Many of these
definitions appear to be deductions based on the structure of previous questions.

Table 4. Number of Students At Each Grade Level Providing Specific
Definitions of "Isosceles Riangle"

Grade
6 7 8 Total

At least 2 sides = 5 8 (5)8 3 (3)' 16
2 sides ..,, interpreted as "at least 2" 2 (1 )a 7 (1)4 7(1)a 16
2 sides =, interpreted as "exactly 2" 3 1 4(1)° 8
2 sides =, inconsistent interpretation 2 2 0 4
2 sides = with 3rd side different 0 1 4(2)4 5
No sides @ 2 2 2 6
All sides @ 2 0 0 2
2 = <s 2 (1)c 8 (8)c 4 (3)c 14
All <s < 90° 2 (1)° 0 0 2
One < > 90° 0 2 0 2

l don't know 1 0 1 2

Notes. 'Number in parentheses refers to number of subjects who also referred to 2 angles
or at least 2 angles being the same, bOne subject defined an isosceles triangle as being "a
3-sided figures with all angles < 90° and with 2 sides of the same length and 2 angles that
arc the same" with the exactly two interpretation. 'Number in parentheses refers to
number of subjects who also referred to two sides or at least two sides being the same.

Once they gave a definition, most students reasoned consistently from it. For
example, one 8th grade girl who defined an isosceles triangle as "The sidcs are all
different sizes", answered the question "Arc some right triangles isosceles tri-
angles?" by saying "Yes. A triangle could have a 90° angle and have two different
angles for the rest." Only four students were inconsistent is applying their stated
definitions.



Conclusions and Recommendations

The reasoning ability of these gifted subjects was far beyond what may have
been anticipated, given their lack of knowledge of basic definitions and concepts.
Many of these gifted subjects had not been exposed to or did not remember what
the critical defining attributes of various figures were. However, they tended to
look for similarities and differences in figures and deduce what the defining at-
tributes might be. Many of the students lacked correct basic definitions of terms
such as congruent and similar, but they would attempt to deduce the definitions
from contextual clues. Once they established a definition, correct or incorrect,
most students reasoned consistently from it. Deduction is a strength of most of the
subjects. However, they have not been exposed to the "rules of the game" and so
do not know how to construct an acceptable formal geometric proof. It should be
noted that deductive reasoning is a skill which can be developed outside the con-
text of geometry, as it apparently has with many of these subjects.

Despite their younger age, these gifted students demonstrated higher overall
van Hide levels than thc usual student entering a high school geometry course.
Using probabilities developed in the CDASSGP study (Usiskin & Senk, 1990),
70% of the students, who were able to have a level assigned, have a probability of
proof writing success greater than .75. However, gifted students, particularly the
35.8% that have skipped levels and do not fit the modei, need Level 2 and Level 3
experiences in order to provide a foundation for their reasoning. Provided with
this additional foundation, gifted middle school students should be capable of a
proof oriented geometry course.
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THE ROLE OF BUILDING 3-D MODELS IN
THE SENSE MAKING OF GEOMErRY

Alejandro So lam, Florida State University
Grayson H. Wheatley, Florida State University

Norma Presmeg, Florida State University

Current research in the area of geometry (Stigler, Lee, & Stevenson, 1990;
Clements & Battista, 1992) shows a substantial number of students arc failing to
learn geometry meaningfully. Investigating in greater depth how students create
images that help them make sense of geometry seems to be a viable way to be-
come more knowledgeable in this area. The goal of this research was to construct
explanations of the ways in which students create imagery and how thcy use it in
geometrical situations. For the purpose of this paper, a focus was placed on the
construction and use of geometrical models by participants, and how this experi-
ence hc'ped them to create useful images for their learning of geometry.

Methodology

The qualitative emphasis on process has been particularly beneficial in educa-
tional research (Bogdan & Biklen, 1992). Hence, given the focus of this research,
a qualitative approach was taken as the research methodology. A constructivist
perspective (von Glascrsfeld, 1987) was used as the umbrella under which this
research was conducted. During data collection, the main strategics used to gather
information were participant observations as they build models of cubes, trun-
cated tetrahedron and prisms, formal and informal interviews, and participants'
reflections about their experiences during thc building of three-dimensional mod-
els.

The participants in this research wcrc two prospective high school mathemat-
ics teachers during thcir junior year of study. The selection was based on the
scores they obtained in the Wheatley Spatial Ability Test (WSAT) (Wheatley, 1978).
One participant had a high score on the WSAT and the other one near thc mean on
the WS AT.

Findings

Building three-dimensional models seems to be very powerful in facilitati.ig
students' understandings of geometry. In this study it was found that participants
valued the experience of building three-dimensional models prior to becoming
engaged in geometrical tasks. This experience helped them solve problems in-
volving area and volume of geometric figures. Participants improved drastically
thcir construction of relationships as a result of being able to build three-dimen-
sional models. As would be expected, the transformations they used to solve pro-
posed tasks were heavily influenced by their previous experiences. Overall, the
building of three-dimensional models proved to promote richer quality of imagery
in participants that helped them to construct meanings and thus, to solve tasks not
only more accurately but also more creatively.
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THE DEVELOPMENT OF A STUDENT THEORY:
THE ROLE OF DISCOURSE

Verna M. Adams, Washington State University
Terry M. Price, Washington State University

This study examines the role of the discourse in the development of students' understand-
ings of a rule for d-termining if a number is divisible by 8. The rule was suggested by a
student in a seventh-grade mathematics class. Its validity was investigated in whole-class
discussions that occurred on 3 consecutive days. In addition to making field notes and
videotaping classroom interactions, what students learnal was investigated through the use
of whole class surveys and interviews with 9 out of 29 students. The discourse served to

sustain the investigation, to assist students' development of the idea and to confuse stu-
dents. Confusion occurred as a result of "failures of context" when the discourse failed to
deal with the complexity of the language structure involved in a rule and to discriminate
meanings of words such as even and evenly.

Learning always takes place in everyday activity, whatever that
activity might be. (Lave, Smith, and Butler, 1988, p. 79)

Current perspectives on the teaching and learning of mathematics suggest that
the everyday activ;ty in mathematics classrooms should include students talking
about mathematics. As a result of that talk, students will be introduced to ideas
they have not previously developed on their own. It follows then that a student's
understanding can be expected tO evolve under conditions of systematic coopera-
tion with the teacher and other students. Moreover, because students' mathemati-
cal understandings arc anchored to the contexts in which thcy are learned (Lave,
1988), students understandings will be anchored to the classroom discourse. Ac-
cording to Vygotsky (1978), the introduction of a ncw concept into the discourse
in the classroom initiates a long and complex process in which the student eventu-
ally appropriates the concept. He argues that the deliberate introduction of new
concepts into thc dialogue, rather than precluding the spontaneous development of
those concepts, charts new paths for their development and "may influence favor-
ably the development of concepts that have been formed by the student himself"
(p. 152).

The Study

The students in this study were 29 "average" seventh-graders in one math-
ematics rlass; the teacher was the regular classroom teacher. At the beginning of
almost every class, 10 to 15 minutes were used for an activity called mental math.
The remainder of thc 45-minutc class consisted of whole-class discussion, indi-
vidual seat work, or small-group work. This paper focuses on a theory about
divisibility by eight that was presented in a whole-class discussion at thc cnd of thc

Preparation of this paper was supported in part by National Science Foundation, Grant No.
RED-9254922. Any opinions, conclusions, or recommendations are those of the authors
and do not necessarily reflect the views of thc National Science Foundation.
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sixth week of school. Wc identify the student who presented the theory by the
fictitious name of Blayne. Our investigation followed the recommendation of
Lave, Smith, and Butler (198S) to focus on the activity of learners, with an empha-
sis on what is actually occurring and what is being learned. In this report we
discuss the role of the discourse in these components of the investigation.

Method

Our method of investigation draws on the grounded theory method of Glaser
and Strauss (1967) and Glaser (1978) in which, after identifying a phenomena of
interest from the data, additional data is collected and coded. Selection of this new
data is determined by the emerging theory in order to maximize the information
relevant to the theory.

Initial data collection, consisting of daily videotaping and recording of field
notes of the classroom activities and the collection of curriculum materials, began
in the fourth week of school before the start of this study and continued beyond the
scope of the study to the end of a unit of instruction on number theory that was 4
weeks long. The topic of interest emerged from thc data when Blayne suggested a
rule for dividing by eight. Although wc use the word rule in this paper, the teacher,
the students, and the researchers during the data collection referred to it as Blayne's
theory. Blayne, with the support of the teacher, led the class in an investigation of
the validity of the procedure that he proposed.

In order to investigate the extent that Blayne's theory was appropriated by
other students, several stages of data collection occurred. Blayne discussed his
rule about dividing by eight on three consecutive class days. Videotaping and
field notes of these presentations were followed by an initial whole-class survey
and then by individual interviews of 9 students. These interviews were evaluated
at the end of each day and new or modified hypotheses about student understand-
ings were considered. Upon completion of the interviews, a second whole-class
survey was constructed and administered in order to determine if students had
incorporated the ideas into their understanding to the point where they would be
able to generalize the rule to dividing by 27.

Overview of the Analysis

The key players in this study were (a) Wayne, who presented the theory of
divisibility by eight, (b) the teacher and (c) other students who participated in the
class discussions. The teacher orchestrated the discussion without telling the stu-
dents exactly what to think. She made attempts at getting students to explain their
understandings of thc theory and gave positive feedback to students by telling
them that she liked their ideas. She occasionally corrected student statements
about language or the procedure.

What Occurred? Discussions of divisibility by eight occurred in this class
on 3 different days consisting of 2 minutes of discussion, 13 minutes, and then 17
minutes. Blayne's first explanation was garbled and the teacher asked him to
think about it overnight. The next day, she asked him to present his theory at the
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overhead to the whole class. On the third day, she asked him restate it so the class
could determine if the rule would always "work." On the second day, Blayne
stated his theory as "Anything that you arc trying to find out if eight goes into, you
have to divide by 2 three times, and if the answer to those three are even, then it
will go into eight." Later his language became "If all three of those answers are
even, then you can divide it by eight." and "If the answers come out even." Even
was clarified with the help of the teacher to mean that it would not have a decimal
in the answer.

In the class discussions, students tried to validate Blayne's theory using their
own numbers. The magnitude of the numbers used by Blayne was limited to 2-
digit numbers. Other students, however, used numbers with up to 8 digits. The
interview data indicated that students generally had a comfort zone with numbers
up to about 100. Thus, through the use of numbers outside their comfort zone,
students made the discussion into a true investigation aimed at deciding if the
procedure would always work. The tcachcr made three attempts to get students to
draw conclusions from their examples and three attempts at closure by making
statements such as "it seems to work." Students puzzled over whether or not they
were talking about "even numbers" or "dividing evenly." They asked if Blayne's
ideas were related to 23 and if you could construct similar divisibility rules for
other numbers. One student wanted to know if the answers were the same when
one divided by 2, three times and when one divided by 8. At the end of the 3-days
of discussion, some students appeared to be convinced that Blayne's method of
determining whether or not a number was divisible by eight was valid. Others
were skeptical, offering hypotheses such as "maybe thc theory works if all the
digits are even," conclusions such as "I don't think it works, not all even numbers
work," and questions such as "Why not just divide by eight tO begin with?" The
teacher left the discussion open by telling students to go home and try some ex-
amples in order to answer some of their questions.

The surveys and interviews revealed that students who did not believe the
theory would always work had different reasons for rejecting the idea. One student
said "no" because other theories also worked. Two students were skeptical of the
justification process. One explained: "I don't know why I think that, I guess
because there must be a number out there that can fool him." Two types of justi-
fications were used by students to either accept or reject the theory. Problem-
specific justification was an explanation based on a particular problem, rather than
several examples. Another type of justification, example-based justification, was
characterized by comments such as "because I have used it a lot," and "because we
have worked on problems in class and out of class and it always worked." Some
of the students' justifications were either missing or uninterpretable.

What was learned? The classroom discourse revealed gaps in Blayne's un-
derstanding of his own theory. For example, when a student asked if the theory
had anything to do with 2, he answered, "I don't know." An interview with Blayne
revealed that he had learned the procedure from his father. In effect, he had ac-
cepted the idea but had not developed an understanding of it. By the time of the
second survey, Blayne's reTonses indicated that hc had filled in some of the gaps
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in his understanding. He recognized that "A numbcr is divisible by 8 if it has 3
factors of 2" and "If 23 is a factor of a number, the numbcr is divisible by 8." He,
however, did not generalize the procedure to create a rule for dividing by 27.

Ten students actively participated in the discussions, interjecting comments,
conjectures and questions. These students either (a) indicated that they did not
understand the theory, (b) believed that it would work, (c) did not believe it would
work, or (d) felt that it was too long or too much trouble. In thc initial survey, 11
students spontaneously used Blayne's theory in response to the question: Is 2000
a multiple of 8? Another tcn students divided 2000 by 8, onc student guessed, and
four students based their answers on misconceptions that can be connected to other
divisibility rules. One student reasoned: "8 goes into 200, so it should go into
2000." Two students did not complete the survey.

On the second survey, several questions investigated language issues from the
class discussions. For example, the words divided by were often misused. Only 8
students had an understanding of how to interpret these words. Nearly half (13)
divided the small number into the large number, and 3 always interpreted from left
to right. Thus, for many students, the information that influenced their interpreta-
tion was the size or the order of the numbers. Students also were less secure with
the language "3 factors of 2" than with "2 to the third power" as a meaning for the
notation "23." An examination of the discourse revealed that the language "3 fac-
tors of 2" was not explicitly connected to the notation.

Students' interpretation of what it means to say that the rule worked was dif-
ferent from the researchers' interpretation. Students considered the rule to "work"
if the number was divisible by 8 and "not work" if the number was not divisible by
8. One student concluded that Blayne's "theory isn't always going to work." We
took this to mean that she thought the rulc was not valid. In the interview, a differ-
ent interpretation emerged and wc concluded that the student understood the thoory,
but not the language of the question that had becn posed:

Interviewer : Is 86 divisible by 2?

Student: Yes. [She showed that 86 divided by 2 wa. 431

Interviewer: Is 43 divisible by 2?

Student: No.

Interviewer: So what does that tell you?

Student : That it's not divi.ible by 8.

Other issues related to the students' understanding surfaced in the interviews.
Some students, for example, did not connect the theory to w hat they already knew.
One student , explained: "I don't use it. It doesn't make sense and I think its just
too long." Yet when she was asked to factor 64, she created a factor tree by divid-
ing by 2 to get 32, and then dividing 12 by two to get 16, and so on. When the
interviewer attempted to see if she v. ould connect her technique to Blayne 's theory
she responded: "I don't know, mine just seems a little bit easier than Blayne's. .

.. maybe because I've been doing mine and I has en't been doing his." The student
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claimed that dividing an even number by two "only works really if you are trying
to make a factor tree." Although she used the method.in the context of the factor
tree, she refused to utilize it in the context of divisibility by eight.

The Role of Discourse

The discourse made a difference in the way the student rule developed. One
example of this influence was that the effect of using large numbers in student
examples was to push the ideas outside the students' comfort zones to create a
problem-solving situation for which they did not have a clear method of solving.
The discussions, however, were sprinkled with instances of language errors and
procedural errors related to division, factors, and multiples that appeared to create
some confusion. These difficulties point to a need to practice "talking mathemat-
ics" in order to coordinate thoughts and words in ways that communicate the
thoughts. Thus the classroom discourse provided an opportunity for students to
develop thcir skills in using mathematical language.

Overall, the discourse functioned in a positive way for students, especially for
Blayne. He began to consider his ideas in new ways, to refine the language that he
used, and to connect thc rule to concepts such as factors and powers. The dis-
course also created some confusion for Blayne. On the initial survey he indicated
that he did not believe that his own theory was always true. In an interview he
explained that this response was a result of one of the examples given in class, but
that he had since changed his mind.

Student misunderstandings that occurred seemed to be attributable to a lack
of closure; that is, the discourse did not provide a definitive conclusion about what
dividing by 2 three times implied. Failures to resolve some of the issues raised in
the discussions can be related to what Edwards and Mercer (1987) refer to as
learning failures related to a failure of context. They suggest that "'learning fail-
ures' arc not necessarily attributable to individual children or teachers, but to the
inadequacies of the referential framework within which education takes place. In
other words, they are failures of context" (p. 167). Failures of context occurred
because the discourse failed to adequately differentiate ideas, particularly to dif-
ferentiate meanings of some of the words. For example, in the class discussions,
the word even had two different meanings. It was first used to narrow the set of
numbers to "even numbers." To be divisible by two a number must be even. It

was also used to mean that there was no remainder whcn one divided. Confusion
of these meanings leads to different conclusions only on thc third division when
testing Blayne's rule for divisibility by eight.

Differentiation of meaning was important for the word worked because the
rule works in two ways: The rule tells you that a number is divisible by eight or
that a number is not divisible by eight. Many of the students used only the first
meaning. A complex discourse structure is implicit in the rule; three different if-
then statements, for example, arc relevant to understanding the rulc. In this study,
the rule was explained via examples. The complexity of the implicit discourse
structures was not part of the discussion. We conclude that more dir1/4..ct attention to
language structures is needed in order for students to participate effectively in
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clAssroom discourse that is focused on validating mathematical ideas. If students
are going to discuss each other's theories and validate the correctness of the math-
ematics on their own then they need to begin to have some understanding of math-
ematical language structures.

Finally, as noted by two students, efficiency is a weak purpose for the study of
divisibility by eight or any other divisibility rule. The context for the discussion of
divisibility by eight in this classroom was that of validating the rule, not just using
it. Within this context, students could connect ideas to factors and powers of num-
bers, to generalize the structure of the rule to other numbers, and to develop an
understanding of mathematical language. A strong purpose for including divis-
ibility rules in the curriculum is to build a greater understanding of numbcrs and
number relationships.
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THE EFFECTS OF WRITING TO LEARN MATHEMATICS
ON THE TYPES OF ERRORS STUDENTS MAKE

IN A COLLEGE CALCULUS CLASS

Mary K. Porter, St. Mary's College
Joanna 0 Masingila, Syracuse University

This study examined how engaging calculus students in Writing to Learn Mathematics
affected the types of conceptual and procedural errors that the students made on their ex-
aminations. Students in two sections of an introductory college calculus course in Fall 1994
were the respondents in this study. We used Hiebert and Lefevre's (1986) characterization
of conceptual knowledge as a framework to guide our examination of studcnts' conceptual
knowledge. To analyze the errors the students made, we developed a classification system
and used some of the ideas and methods of Movshovitz-Hadar, Zaslavsky and Inbar (1987).

Many college students experience difficulty with doing mathematics (Kolata,
1988). It is not unusual to find students that use mathematical procedures with
little or no understanding of thc concepts behind these procedures (Hiebert &
Lefevre, 1986; Schoenfeld, 1985). Some research (e.g., Oaks, 1988) has sug-
gested that a student's difficulty in mathematics can be related to that student's
beliefs that mathematics consists only of meaningless symbols and operations.
Such students do not realize that there arc concepts behind their procedures. They
have a rote conception of mathematics that encourages them to learn only by memo-
rizing, which ultimately prevents them from succeeding in mathematics (Oaks,
1990).

Some mathematics educators have suggested that students may be encour-
aged to change their conceptions of mathematics through the use of Writing to
Learn Mathematics (WTLM) (e.g., Oaks, 1988), and that WTLM may benefit stu-
dents' development of conceptual understanding (e.g., Gopen & Smith, 1990; Rose,
1989). However, no comparative research has been done to determine whether
WTLM's proposed benefit to conceptual understanding is an actual benefit. Two
comparative studies (Guck in, 1992; Youngberg, 1990) have investigated WTLM's
proposed benefit to procedural ability; both of these studies focused on students in
an algebra course.

Aim of the Study and Guiding Frameworks

The purpose of this study was to examine the e flee t of WTLM on the concep-
tual understanding and procedural ability of studems in an introductory college
calculus course. Hiebert and Lefevre (1986) characterized conceptual knowledge
as that which is part of a network comprised of individual pieces of information
and the relationships between these pieces of information. We are using Hiebert
and Lefevre's characteri/ation as a framework to guide our work in examining
students' conceptual knowledge. To determine if WTLM helps students improve
their conceptual understanding and affects their procedural ability, we are devel-
oping and will use an error classification system, based on the work of Movshovit-
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Hadar, Zaslavsky, and Inbar (1987), whose work serves as a guiding framework
for our data analysis.

Methods and Data Sources

Students in two sections of an introductory college calculus course in Fall
1994 were the respondents in this study. Both classes were taught by the same
instructor (the first author) with an emphasis on the mathematical concepts rel-
evant to the course. One class, the WTLM group, participated in writing activities
both inside and outside the class. The other class, the comparison group, were not
assigned any writing activities. However, whenever the WTLM group was given
a writing activity, the comparison group was given an activity that involved the
same concepts as the WTLM's activity. Activities from both classes were dis-
cussed in class and assessed by the instructor.

Students in the WTLM group participated in a variety of writing activities.
Occasionally, the students were given impromptu writing prompts during class
time, to which they were asked to respond in writing. However, because class
time is limited, the students were also given writing activities that were completed
outside of class. The WTLM students were asked to write about topics related to
course concepts and procedures. In these writing activities, the students were asked
to explain course ideas in their own words, to discuss the relationship between
course concepts, and to think, on paper, about concepts and procedures of the
course. Students were also asked to reflect, in writing, on their study habits and
performance in the coursc, and about the beliefs they hold about mathematics.

Some examples of writing activities arc as follows:

Explain to a friend, in writing, what a function is.

What is a derivative?

Why would someone want to find a derivative?

How are Rolle's Theorem and the Mean Value Theorem related?

Explain the First Derivative Test. Why does it work?

What is the best way to study for a mathematics class? Why?

Discuss your reaction to your performance on the test. Discuss ways
in which you could improve your preparation for and performance
on the ncxt test.

The comparison group did not participate in thc writing activities. However,
whenever the WTLM group was given a writing activity (generally twice a week),
the comparison group was given an assignment or quiz. (graded or not, depending
on whether the WTLM group's activity was graded) that will involve problems of
the same content as the WTLM group's writing activity. F0r example, when the
WTLM group was asked to describe, in writing, all of their thoughts and actions as
they attempted to solve a certain homework problem, thc comparison group was
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asked to solve the same problem and be prepared to discuss their thoughts and
actions. Both groups received feedback on their work through written comments
and discussion in class.

The data for the study consist of studcnt responses from both classes on three
in-class examinations and one final examination. All examinations were identical
for both classes. The examinations included both routine exercises and nonroutine
problems. We used ideas from the error classification system developed by
Movshovitz-Hadar et al. (1987) as a basis for our data analysis. Movshovitz-
Hadar et al. developed a classification system for errors in secondary mathematics
(not including calculus). They classified student errors according to the following
six categories: (a) Misused Data, (b) Misinterpreted Language, (c) Logically In-
valid Inference, (d) Distorted Theorem or Definition, (e) Unverified Solution, and
(f) Technical Error (Movshovitz-Hadar et al., 1987). We used this model, and Hiebert
and Lefevre's (1986) framework of conceptual understanding, as a starting point,
and described categories that emerged from our data for classifying students' er-
rors in calculus, which has not been previously done. We analyzed the students'
errors in a qualitative manner that Movshovitz-Hadar et al. called constructive
analysis.

Findings

Discussion of the Categories that Emerged

By analyzing three midterm examinations and the final examination at the
cnd of the semester, we collected 1,241 errors that we considered for this study.
We noted 636 other errors but did not categorin these since we were concentrat-
ing on students' conceptual and procedural understanding of calculus ideas and
these errors wcrc not specific to calculus and involved mathematics content the
students were taught in previous courses. We classified the 1,241 errors into the
following categories: (a) Procedural, (h) Conceptual, and (c) Indeterminate. We
will describe each category and give its characteristic elements. In order for an
error to fit in a certain category, it must meet thc criteria for at least one character-
istic element.

The Procedural Error category consists of errors involving procedural knowl-
edge, as defined by Hiebert and Lafevre (1986); procedural knowledge is com-
posed of two parts: (a) the symbols and syntax of mathematics, and (b) thc rules,
algorithms, and procedures for performing mathematical tasks. The two parts of
procedural knowledge are incorporated in the three characteristic elements of the
Procedural Error category. The first characteristic clement is that the error vio-
lates one or more of the syntactic rules for writing mathematical symbols in an
acceptable way. The second characteristic element involves writing a symbol in-
completely or improperly. Note that this does not include valid mathematical terms
or symbols that are used improperly but written correctly. An example of this is

from a student who wrote "Ion wi him! using a function, f. The third character-
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istic element is that there is an error in the statement of or use of a rule, procedure,
or algorithm used for completing mathematical tasks in a stcp-by-stcp, linear fash-
ion. Note that this does not include errors in selecting an appropriate procedure or
in evaluating the outcome of a procedure. An example illustrating this clement is
a student who used a distorted version of the quotient rule in calculating a deriva-
tive.

The Conceptual Error category consists of errors involving conceptual knowl-
edge, as defined by Hiebert and Lefevre (1986); conceptual knowledge is that
which is part of a network comprised of individual pieces of information together
with the relationships lac tween these pieces of information. We have determined
eight characteristic elements for this category.

The first characteristic element of this type of error is that a procedure that is
inappropriate for the problem at hand has been selected. For example, part of the
solution for a problem involved finding the derivative of a function but a student
found the limit of the function instead. The second characteristic element is a
failure to reject an answer that is unreasonable or whose incorrectness could have
been discovered by checking. An example of this is the student who determined
that a particular circle had a radius of -4. We developed these two characteristic
elements based on Hiebert and Lefevre's (1986) discussion of errors that involve
conceptual knowledge that is associated with a procedure: "Conceptual knowl-
edge, if linked with a procedure, can monitor its selection and use and can evaluate
the reasonableness of the procedural outcome" (p. 12).

The third characteristic clement is "translating an expression from natural lan-
guage into a mathematical term or equation that represents a relation different
from the one described verbally" (Movshovitz-Hadar, Zaslavsky & Inbar, 1987, p.
10) or vice versa. The fourth characteristic element is "designating a mathemati-
cal concept by a symbol traditionally designating another concept" (Movshovitz-
Hadar, Zaslavsky & Inbar, 1987, p. 10) or referring to a mathematical concept
using language traditionally used in reference. to a different concept; for example,

using f'(2x 4) to mean dx (2x .1). The fifth characteristic element is "in-

correctly interpreting graphical symbols as mathematical tcrms or vicc versa"
(Movshovitz-Hadar, Zaslavsky & Inbar, 1987, p. 10) or incorrectly interpreting
mathematical symbols. An example illustrating this element is a student who in-

terpreted f'(3) = -8 as the point (3, -8). The third, fourth and fifth characteristic
elements arc based on Movshovitz-Hadar, Zaslavsky and Inhar's (1987) Misinter-
preted Language category. They describe their error category in the following
way: "This category includes those mathematical errors that deal with an incor-
rect translation of mathematical facts described in one (possibly symbolic) lan-
guage to another (possibly syml,olic)" (p. 10).

The sixth characteristic element of this type of error is making a logically or
conceptually invalid inference. That is, invalidly drawing ncw information from
information that was previously given or inferred (Movshovitz-Hadar, Zaslavsky
& Inbar, 1987). For example, a student who was given the statement of thc Inter-



mediate Value Theorem"if f is continuous on the closed interval [a, b], then f
takes on all f(x) values between f(a) and f(b)"was then asked "Can the theorem
be used to show that f is continuous?" The student responded that this statement of
the theorem could be used to show that f is continuous. Another example of this
type of error occurred in a problem that required the student to find the absolute
maximum value of a function. The student found a critical value (x) for the func-
tion and claimed that the function reached a maximum at this x-value without
actually determining where f increased and decreased (or any other evidence).
The seventh characteristic element is making a statement without providing suffi-
cient motivation for it or explanation of the reasons why the statement is true. Our
sixth and s'.nzenth characteristic elements arc based on Movshovitz-Hadar, Zaslavsky
and Inbar's (1987) Logically Invalid Inference category: "In general, this cat-
egory includes those errors that deal with fallacious reasoning and not with spe-
cific content" (p. 10).

The eighth characteristic clement of this type of error is making a statement or
giving an answer that contradicts or neglects a nonprocedural (in the sense of Hiebert
& Lefevre, 1986) principle, definition, or theorem. For example, a student did not
list certain x-valucs as points of discontinuity even though they were points of
discontinuity. Another example of this type of error is a student who stated that the
limit of a function existed even though the right-hand limit did not equal the left-
hand limit. Our eighth characteristic clement is related to the Distorted Theorem
or Definition error category of Movshovitz-Hadar, Zaslavsky and Inbar (1987)
that contains errors concerning "the distortion of a specific and identifiable prin-
ciple, rulc, theorem, or definition" (p. 11).

The Indeterminate Error category consists of errors that involved (a) both
procedural and conceptual knowledge and where it was not possible for us to cat-
egorize the error as predominantly procedural or predominantly conceptual, or (b)
neither procedural nor conceptual knowledge. This error category, and examples
of error we classified as indeterminate, will he discussed more fully during the
presentation.

Connection Between WTLM and the Error Categorization
Rose (1989, 1990) has identified a variety of perceived benefits of writing in

mathematics. The benefits she categorized as beneficial to students as writers
included, among others, that writing can (a) promote understanding, (b) facilitate
reasoning and problem solving, (c) help generate meaning, (d) reveal what was
misunderstood, (e) stimulate the posing of questions, (I) promote independent learn-
ing, anti (g) help retention of content. It was our intent in this study to examine
whether some of these perceived benefits arc actual benefits. Thus, we explored
whether students who were engaged regularly in WTLM over the course of a se-
mester would make fewer and/or a different type of conceptual and procedural
errors.

At the present, we have categorized the 1,24 I errors into the three categorized
that emerged from the data and were supported by the frameworks guiding our
study. Up until now, all the data has been anonymous. We arc now beginning to
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examine the connection between WTLM and the type and frequency of errors.
This will be discussed in detail during the presentation.

Significance

This study adds to the growing body of research on WTLM in an important
way by addressing the lack of comparative research on the proposed benefits of
WTLM. This study also yields information that is valuable to educators who seek
ways to improve students' conceptual understanding.
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A CASE STUDY OF SUPPORTING TEACHERS WITH MATHEMATICS
REFORM IN LANGUAGE MINORITY CLASSROOMS

Yolanda De La Cruz, Northwestern University

Background of the Study

This study involves six non-Spanish speaking first-year teachers in predomi-
nately Spanish-speaking classrooms. These teachers felt unprepared to meet the
challenges of teaching mathematical reform methods and especially in doing so
with their language minority students. They contacted a former university profes-
sor for assistance. The six teachers and the university yofessor formed a bi-monthly
support group. These meetings were used to share ideas and develop mathematical
activities that would include the Spanish-speaking students.

Dealing with Language Differences

Math groups were formed by putting a Spanish-speaking student, a bilingual
student, and English-speaking students in each group. The bilingual student acted
as the language broker whose role was to bridge language barriers. Large charts
and class-size manipulatives were used by teachers to facilitate concept under-
standing. Math centers that reinforced previously taught concepts allowed teach-
ers to work with individual groups that required more assistance. Some of the
math centers included activities such as dice games. Parcnt volunteers and cross-
age tutors were available at times to work at the math centers.

Integrated Curriculum

Integrated curriculum units allowed teachers to include math in other content
areas. This gave them enough math class time to "play around" with math content
and adapt it to their students' needs. One unit connected math and literature. Teach-
ers selected books on Aztec culture and had students write reports on the subject
matter. For mathematics they built "Aztec Pyramids" using blocks to make build-
ings and then calculated the area and perimetcr of each model. Science and math
were integrated in a body unit where functions of the human body were studied. In
mathematics class students measure limbs and recorded all the measurements to
find the classroom average and the mean.

Daily surveys created material for graphs. Students worked in small groups
to decide how to represent, analyze, and interperet data to the class. Teachers
found out more about the personal lives of each student through these daily sur-
veys.

Conclusions

This study clearly indicates that teachers need more support in creating class-
rooms that will meet the diverse needs of their students as well as use ncw reform
teaching practices. Language does not have to be a barrier so that Spanish-speak-
ing students have only lower-level cognitive experiences if brokers exist for most
purposes and if students will work in small groups.
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THE SOUND OF SILENCE: REFLECTIONS ON A COOPERATIVE
GROUP'S PROBLEM SOLVING INTERACTIONS

Michael D. Hardy, The Florida State University

In "Interaction and Children's Mathematics," a paper presented at the 1993
AERA annual meeting, Steffe relays a tale of two boys working cooperatively on
a computer to solve a problem but engaging in very little dialogue. He goes on to
argue that despite thc scarcity of verbal exchanges, the boys influenced one an-
other via their individual interactions with the computer. This might lead one to
wonder, "If dialogue in a larger cooperative group were sparse, would the partici-
pants tend to influence one another's learning in a positive manner?" This ques-
tion is of importance because verbal interaction is often recognized as the source
from which cooperative groups draw their power to facilitate learning. Although
discourse is a, if not the, major catalyst of learning within a cooperative setting,
neither language nor social interaction is limited to the spoken medium. Accord-
ingly, there is no reason to assume that limited verbal interaction prevents the
members of a cooperative group from serving as a positive influence on one
another's learning. Having been a member of a cooperative group in which ver-
balizations were often sparse, my and my partners' reflections, on our problem
solving interactions, may support broadening the traditional conccption of a suc-
cessful cooperative group.

Silence was commonplace in our group, particularly in the early phases of the
problem solving process. There were a myriad of reasons for this, among them
pride, competition, mutual respect, a desire to "conquer the problem," the need to
internalize problems, and simply a limited need for specch. Neither the silence nor
the mild competition prohibited communication which occurred both verbally and
nonverbally. Further, our efforts to communicate were facilitated by mutual re-
spect, the diversity of talents within the group, and compatibility of both relevant
knowledge and thought processes. Moreover, the frequent periods of silence did
not prevent us from influencing one another. In light of this, I conclude, as did
Steffe, that limited verbalizations do not preclude the occurrence of meaningful
and influential interactions. Accordingly, educators need to take care to construct
concepts of successful cooperative groups which are versatile enough to allow
some groups which engage in limited verbal interaction to be characterized as
successful.

Reference

Steffe, L. P. (1993, April). Interaction mut children's mathematics. In Children's
construction of the rational numbers of arithmetic. Symposium at the annual
meeting of the American Educathmal ReNcarch Association, Atlanta. GA.

3 332



THE CONSTRUCTION OF MATIIEMA1ICAL MEANING
IN BILINGUAL CONVERSATIONS

Judit Moschkov:ch, Institute for Research on Learning

While several studies have focused on discourse in monolingual mathematics
classrooms (Cobb, Wood and Yackel, 1993; Pimm, 1987), researchers have only
recently begun to consider mathematical communication in language minority class-
rooms (Brenner, 1994; Khisty, McLeod, and Bertilson, 1990). Despite the steadily
increasing population of American students, estimated to be 5 million, who are
classified as limited in English proficiency (one million of these in California, a
large percentage of them Latinos), there has been little research addressing these
students' needs in mathematics classmonis.

The poster presents the preliminary analysis of research exploring how L atino
students construct mathematical meaning during bilingual (Spanish and English)
conversations. The study focuses on the social, linguistic and material resources
that support the construction of meaning and thc refinement of students' descrip-
tions and explanations. The poster summarizes the preliminary analysis of video-
taped conversations between secondary students and examines: 1) how the two
languages (Spanish and English) and registers (everyday and mathematical) serve
as resources or obstacles for constructing meaning; and 2) how different math-
ematical activities and representations structure the usc of English and Spanish.

In general, the research on language and learning mathematics presents a view
of students as facing several discontinuities: from first language to second lan-
guage, from social talk to academic talk (Cummins, 1981), and from the everyday
to the mathematics register (Halliday, 1978; Pimm, 1987). Rather than seeing these
as discontinuities, I take the perspective that students' construction of knowledge
is socially and materially situated (Lave and Wenger, 1991)-that is, viewing what
students are doing as they learn mathematics as constructing meaning while using
the social and material resources available to them.
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CONSTRUCTING STATISTICAL UNDERSTANDING USING
MATHEMATICAL STORYTELLING

Susan Prion, University of San Francisco
Mathew Mitchell, University of San Francisco

This paper reports on the effect of a learning method designed to improve
students' statistical understanding. The tool is a mathematical "storytelling" pro-
cess aimed at helping students to construct their own meanings of selected statisti-
cal techniques through an innovative and provocative application of the statistical
analysis. The storytelling device, called a Think Paper, is given to graduate-level
statistics students as a weekly homework assignment.

The NCTM and others have encouraged relating ncw mathematical material
to previously acquired student concepts and experiences. One novel way to do
that is by asking students to create their own mathematical stories using those
concepts. The purpose of the storytelling was to promote both connectedness and
active learning within students. The results of this storytelling activity was hy-
pothesized to be twofold: (I) students would learn more effectively, and (2) teach-
ers would have a more reliable source for monitoring misconceptions and errors
among students. If this storytelling process provides a reasonable and rich mea-
sure of student understanding, then storytelling via Think Papers may also provide
an imporuint source for improving instruction and remediation in the classroom.

Think Papers were assigned to push students to connect new statistical con-
cepts presented in class with their own knowledge. All Think Papers were struc-
tured around some sort of coltroversial issue. Students were provided with some
statistical results to help them answer a question concerning the controversy. Think
Papers were purposely designed so that there was no "right" answer in terms of
the social science controversy presented. However, each Think Paper contained
at least one possible probe for students' misconceptions regarding the interpreta-
tion of the numbers presented. Each Think Paper was given after an introductory
class about a specific statistical concept over a two semester statistics course. Stu-
dents responses were limited to 2 wriuen pages.

Since students were required to writc a short essay, their responses were much
richer and illuminating regarding a% "deep understanding of the concept that would
be indicated through more traditional measures such as practice calculation prob-
lems or multiple-choice questions. This paper illustrates key findings from our
initial analysis of these student products.
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DEVELOPMENT OF CONCEPTUAL UNDERSTANDING
IN DESCRIPTIVE STATISTICS

Mary M. Sullivan, Curry College

Literature that discusses differences between novices and experts describes
fields ranging from chess to physics. Researchers have studied novice learners in
many contexts including experimental design (Fenker, 1975; Goldsmith, Johnson,
& Acton, 1991; Magnello & Spies, 1984), and statistics related to rcscarch (Fenker,
1975). Some researchers employed methodology and analysis that resulted in a
visual representation of thc developing understanding (Fenker, 1975; Goldsmith
et al., 1991); however, they did not describe their curriculum or teaching method.

The presenter recently completed a research study in which conceptual under-
standing in descriptive statistics was analyzed after student-centered, activity-ori-
ented instruction. Thc four-week curriculum comprised the first part of a semes-
ter-long course in undergraduate statistics for non-majors. Its goal was to decrease
the amount of lecture instruction and increase thc level of active participation by
students through hands-on activities, large and small- group discussion, and col-
laborative learning experiences. Faculty who taught the curriculum supported active
learning experiences in elementary statistics.

Through use of a word association task comprised of all possible pairs of 13
descriptive statistics concepts, which students rated for relatedness between them,
and multidimensional scaling techniques, geometrical representations of student
understanding were created before and after instruction and compared to the geo-
metric representation of understanding by faculty experts. Analysis of studcnt
configurations reveals that while they develop understanding of central tendency,
variability, and data characteristics concepts, their organization of concepts lacks
the tight structure apparent in the faculty representation. In addition, the studcnt
configurations reveal that they fail to conceptualize broader ideas relative to a
distribution of data in the early part of the course. Since descriptive statistics
concepts are the foundation upon which concepts related to probability distribu-
tions, sampling, and inferential statistics rest, the analysis of the development of
basic descriptive statistics concepts points to the need to create oppportunities to
revisit elementary concepts throughout the course so that understanding continues
to grow.
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TELL ME A (STATISTICAL) STORY

Mathew Mitchell University of San Francisco
Susan Prion, University of San Francisco

This poster presents a selection of student-designed products from an experi-
mental curriculum titled Statistical Thinking, and reports on the effect of the cur-

riculum on students' statistical understanding. The primary tool used in the cur-

riculum was the leaching Sheet, a statistical storytelling device used in helping

students construct their own meanings and understanding for statistical selected

techniques.
The Statistical Thinking curriculum was designed for tenth grade students.

The curriculum covered the concepts of central tendency, variance, z-scores, ef-

fect sizes, correlation, and linear regression. Most of the curriculum was com-
puter-based and used the spreadsheet program Microsoft EXCEL®. The curricu-
lum was implemented over an 11-weck span during the Spring of 1995. The pilot

high school consisted of students from low to middle income families; 85% of the

students were non-white.
Students c.,.eated two kinds of products with EXCEL®. First, they acquired

and practiced statistical concepts by building a statistical playground that would
calculate the particular test under study. (Note: students were not allowed to use

any of the in-built statistical functions provided by EXCEL® except for SUM,
MAX, MIN, and COUNT.) Second, the students were challenged to construct a
teaching sheet, an interactive spreadsheet developed for use by a "novice" in order

to learn the statistical concept.
Teaching sheets were theorized to be effective because students learn more

when they use their new knowledge to teach others (e.g. Benware & Deci, 1984).

Students needed to include three key ingredients in their teaching sheets: (1) text,

sound, or graphics that provide a storylinc explaining the purpose and importance
of the statistical concept, (2) a well organized number playground where the user

could try out various combinations of data and see the effects on thc resulting
statistical calculation, and (3) a visual representation (in addition to the analytic

representation) of the statistical concept.
The student products presented at the poster session provide strong evidence

that "regular" students are quite capable of engaging successfully with the process

of constructing teaching sheets. The poster will highlight the teaching sheets de-
veloped by previously low-achieving female students who seemed to do particularily

well with this curriculum.
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THE DEVELOPMENT OF PROBLEMSOLVING PROCESSES
IN A HETEROGENEOUS EIGHTH GRADE ALGEBRA CLASS

Sidney L. Rachlin, East Carolina University

The primary purpose of this study is to evaluate the application of a process approach
(Rachlin, Matsumoto, and Wada, 1992) for the teaching of algebra with a heterogeneous
class of eighth grade students. The assessment is conducted by identifying the processes
used by (above average, average, and below average) algebra students in solving standard
and nonstandard problems ranging across a content x process x form matrix (integers,
fractions, polynomials) x (generalizations, reversibility, flexibility) x (expression, equa-
tion). To give sonic perspective to the analysis, the processes used by the eighth grade
studmts are compared to processes identified by Wagner, Rachlin, and Jensen (1984) using
the same series of interview tasks with ninth grade students in Georgia and Alberta.

Mathematical Form and Content in Algebra

Regardless of what content society ascribes to problem solving and algebra,
there is a need for research on the learning and teaching of the curriculum at two
levels that of the students and that of the teachers. The algebra project of the
University of Hawaii provides one example of how federal, state, and local fund-
ing have combined to support a decade of research on the design of an algebra
curriculum.

Much of the content of elementary algebra appears in one of two forms: in
expressions (combining or simplifying terms; operations on polynomials, opera-
tions on rational expressions, etc.) or in equations (solving equations and inequali-
ties, graphing of functions, solving systems of equations, etc.). Both of these forms
rely upon the use of variahles (literal symbols: x, y. z, ...) for their written expres-
sion. The algebra tasks used in this study were designed to probe students' concep-
tual and operational understanding of variables, expressions, and equations.

Content

The mathematical content considered in this study included all of the topics in
a typical Algebra I text, with the notable exception of the "standard" algebra word
problems. Although all tasks in the study were presented to students in a verbal
format, it was felt that the age/coin/mixture/distance problems of elementary alge-
bra involved special translation problems that went beyond the scope of this project.
As mentioned earlier, explicit consideration was given to including in the inter-
view tasks problems involving the content areas of integers, rational numbers, and
polynomials, as well as the operations of addition/subtraction and multiplication/
d iv i s ion.

Psychological Processes in Learning Algebra

A basic premise of this study was that the learning of algebra, beyond the
level of rote memoriration of formulas and algorithms, can he regarded as a kind
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of problem-solving process. That is, even the application of formulas to "routine"
textbook exercises involves some degree of problem-solving activity on the part
of most students, at least inivally. Thus, in addition to considerations of math-
ematical form and content, three well established problem-solving processes were
used to guide the development of interview tasks reversibility, generalization
and flexibility (Krutetskii, 1976). Standard problems arc used as foundation tasks
upon which the process tasks arc constructed. For example, thc following sample
tasks involve polynomials operations and equations:

Standard

Reversibility

Ability to
Generalize

Flexibility

Algebraic Expressions
Multiply: (2a + 3)(2a- 3).

Find the binomial which multi-
plied by 2a- 3 equals 4a2 - 9.

Find 2 binomials whose product
is a binomial ... a trinomial ...

has 4 terms ... has 5 terms.

Can you find the binomial which
multiplied by 2a - 3 equals
4a2- 9, another way?

Equations
Solve: 4a2 9 = 0.

Find an equation whose
solutions are ±f(3,2) .

Find a quadratic equation
whose solutions are prope

fractions.

Solve:
Solve:
Solve:

4a2 - 9 = 0.
4(a+1)2 - 9 = 0.
4(2a+1 )2 - 9 = 0.

Reversibility

Krutetski i (1976) describes reversibility as "an ability to restructure thc direc-
tion of a mental process from a direct to a reverse train of thought." For example,
in the expression a + b = c, v,e might be given values for a and h, and be asked to
find a value for c. The reversibility of this addition incorporates three variations:
where thc values of a and c arc given and the value of h is to be found, where thc
values of band c arc given and the value of a is to he found, and where the value of
c is known and both a and b are to be found. To possess complete reversibility of
addition of whole nunthers, children should tse able to solve problems involving
all three variations: 5 + b = 7, and a + 2 = 7, and a + b = 7.

Correspondingly, a student who possesses complete reversibility of addition
of polynomials should be able to solve the following three problems:

1) What polynomial added to 5x2 + 3xv equals 3x2 + y2?

2) The trinomial 2.r2 3xv + y added to what polynomial equals
+ 72?

1) Find two polynomials with at least one non-similar term such that
their sum is +

Generalization

Krutetskii (1976) considered the ability to generalize mathematical material
to be on two levels: first, the ability to subsume a particular case under a known
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general concept and second, the ability to deduce the general from particular cases,
to form a concept. This notion of generalimtion is commonly reflected in the or-
dered series of exercises found in most mathematics texts in which increasingly
more complicated extensions of a form are made. For example, the following se-
ries of polynomials, algebraic fractions, and real numbers provides a generaliza-
tion for addition:

1) Find three integers whose sum is 2.

2) Find two polynomials whose sum is Sx= + 2x + 4.

3) Find two fractions whose sum is

4) Find two fractions whose sum is
2x + 7

8

5) Find two real numbers whose sum is 12.

Krutetskii's (1976) second level of the ability to generali:e mathematical
material is the ability to deduce the general from particular cases. For example,
students' concepts of a difference of two squares are examined through their dis-
cussion of open-ended tasks stich as: Find two binomials such that their product is
a binomial.

Flexibility

Flexibility was identified t) Krutetsku (1976) as the ability to switch from
one level of thinking about a problem to another. Flexibility can be shown either
within or across problems. Within problem flexibility refers to the case with which
a student switches from one method of solving a problem to another method of
solving the same problem. Ilow students perceive a problem shapes the approach
that they will use to solve the problem. The various solution paths which a student
selects establish the structure for the problem. For example, the task "What num-

ber divided by 24 equals ,-1-?" has a wide variety of appropriate, structures depend-

ing on the way in which the task is perceived: e.g.. as equivalent fractions, a pro-
portion, a division problem, an equation, etc. A student who is unable to solve this
problem as a division problem because of a lack of skill in operations with frac-
tions may still solve it by thinking of the problem as a proportion. Interview tasks
such as the following are used to investigate students' alternative ways to solve the
same problem:

a. Solve the following equation for r.: 7 5x = 32.

h. Solve the equation above another way.

c, Write an equation like the equation above that has a solution of -4.
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The ability to switch from onc approach to another, more efficient, approach
is a question of degree. Across problem flexibility refers to the degree to which a
successful solution process or. a previous problem fixes a studcnt's approach to a
subsequent problem. Many students solve the following equations without seeing
a connection between them:

Solve each of the following for x:

a. 2x = 12

b. 2(x + 1) = 12

c. 2(5x + 1) = 12

Design Of The Study

This investigation of the development of problem-solving processes in el-
ementary algebra replicates the methodology of an earlier pair of studies conducted
in Athens, Georgia with eight ninth-grade algebra students and in Calgary, Alberta,
involving four ninth-grade algebra students. The data obtained in these earlier studies
is used to represent a norm for traditional algebra programs. The present study
contrasts the 92 hours of interviews from these studies with over 70 hours of inter-
views collected from ten high, average, and low achieving eighth grade algebra
students in four heterogeneous classes.

Participants

A total of 4 boys and 6 girls (4 with above average, 4 with average, and 2 with
below average achievement levels) were selected from four Algebral classes taught
by the same junior high school math teacher in a suburb of the greater Denver area.
As an experiment, all eighth grade students in the school were enrolled in a con-
cepts of algebra course. This course covered the content of beginning algebra us-
ing the text Algebra I : A Process Approach (Rachlin, Matsumoto, and Wada, 1992)
All teachers using the text, including the special education teacher and a substitute
teacher participated in 45 hours of inservice preparation for teaching by a process
approach. Since the decision to participate in this experiment was not made until
May of the year preceding the project, no effort was made to prepare the seventh
grade students for taking algebra in eighth grade. A ftcr completing the concepts of
algebra course, thc students were tested to determine which students would be
permitted to use the concepts of algebra course for their algebra credit and which
students would follow this course with a year of traditional algebra. At the end of
the year students who failed the concepts of algebra course were asked to take the
Orleans-Hanna Algebra Readiness Test to determine if they were prepared to take
algebra in ninth grade. With the exception of three students who refused to take the
test, all students tested were measured as ready lor algebra.
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The Hawaii Algebra Curriculum

The University of Hawaii Algebra Learning Project designs instructional ma-
terials and methods to help students of all ability levels develop problem-solving
processes as they learn algebra. A basic premise of the project is that if we are to
meet the literacy needs of the future; students must do more than memorize formu-
las and get answers. They must learn to think mathematically and communicate
their thinking. Hence this project alters the sequence of algebra content and in-
structional methods to foster the development of understanding.

The Hawaii Algebra Curriculum is:

is based on research into how studcnts think and learn.

offers a problem-solving approach to algebra. Concepts are intro-
duced through problem situations.

allows students to construct their own methods to solve mathemati-
cal problems. There is more than one right way to solve a problem.

offers students non-routine tasks to encourage the development of
problem-solving processes such as reversibility, flexibility, and the
ability to generalize.

promotes open-ended inquiry appropriate for individual differences
in any classroom.

allows time for students to grasp concepts, make generalizations, and
refine their skills.

Hawaii Algebra has been identified as a promising practice by the Laboratory
Networking Program at thc U.S. Department of Education's Oi lice of Educational
Research and Improvement. The program grew out of research into how students
tackle problems. Students were given problems to solve and asked to think aloud
as they tried to find different solution paths. The research confirmed the project's
belief that students differ in the time they need to grasp a new topic.

The algebra curriculum has bccn redesigned to include many open-ended ques-
tions. As students discuss their approaches to solving homework problems, they
gradually internalize the process of algebra. To allow time for this development,
students are given one or two nonroutine problems from a topic every day for three
to eight days, thus working simultaneously on several concepts each day. From
then on, a topic is treated as a skill and reinforced through practice exercises in
later problem sets.

Interview Tasks

This study provides a replication of two conducted ten years earlier by in
Wagner, Rachl in, and Jensen (1,)84). The tasks and procedures used in thc present
study mirror those used earlier.1 he two populations arc very different the prior
studies were conducted with students who took algebra by ninth grade, while the
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present study includes the total eighth grade student population. To better under-
stand the nature of the role of a process approach in developing algebraic thinking,
the processes used by the eighth grade students are compared to processes identi-
fied with ninth grade students in Georgia and Alberta.

The interview procedure was adapted from one used by Rachlin (1982) and
refined by Wagner, Rachl in, and Jensen (1984). The tasks were given to a student
one at a time, with only one problem on a sheet and plenty of room for the student
to write. The students were asked to think aloud as they attempt to solve each
problem. If the students lapsed in their verbalization, they were encouraged to tell
what they were thinking. If a student appeared to be having a lot of difficulty, hints
were provided. At first the hints were general (What are you trying to find? What's
giving you a problem?), but if the frustration continued the hints increased in speci-
ficity. The hints ranged from pointing out a particular error to directed teaching of
a new generalization, concept, or skill.

The interviews were flexible in design. No two interviews were alike. On the
one hand, a problem was rarely left incorrect or incomplete. On the other hand, if
the interviewer noticed something of interest in a student's response, the inter-
viewer created new questions to follow the direction of the student's thought.

Analysis of data

The analysis of this study is too lengthy to be included in the confines of this
abbreviated report. Transcripts of the experimental data have been coded and con-
trasted with the normed data provided by the earlier studies. What is unusual at
this site is the attempt to have all eighth grade students (including special educa-
tion students) taking algebra in un-tracked classes. The results from the study pro-
vide qualitative evidence of the strengths and weaknesses of this approach. Copies
of the full report will be distributed at the presentation and are available from the
author upon request.
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AN EXAMINATION OF THE RELATIONSHIP BETWEEN THE
PROBLEM-SOLV1NG BEHAVIORS AND ACHIEVEMENTS
OF STUDENTS IN COOPERATIVE-LEARNING GROUPS

Patrick Mwerinde, University of Delaware
Christine Ebert, University of Delaware

This study examined the problem-solving behaviors, strategies, and achievement of college
student.% enrolled in a one-semester College Algebra and Statistics course, with respect to
the content areas of quantitative literacy, connections between algebraic and graphical rep-
resentations, and mathematical modeling. Four instructional units of this course were cho-
sen - two in which the studcnts were assigned to cooperative-learning groups and two in
which the students worked independently. Thc findings suggest that students who work in
cooperative learning groups clearly exhibit important problem-solving behaviors such as
persistence and a willingness to explore alternative solutions; however, they still experi-
ence difficulty explicating the connections between mathematical actions and/or processes
and the mathematical concepts.

Conceptual Framework

Cooperative-learning strategies have been credited with the promotion of criti-
cal thinking, higher-level thinking, and improved problem-solving ability of stu-
dents. Current research that examines behaviors that occur during group problem-
solving sessions sccm to indicate that groups engage in behaviors that are similar
to those exhibited by expert mathematicians when they solve problems (Artz &
Newman, 1990; Schoenfeld, 1987); that is, they engage in monitoring their own
thoughts, the thoughts of their peers, and the status of the problem-solving pro-
cess. Researchers who have studied cooperative learning at the college level gen-
erally have found that students learn just as well as in more traditional classes and
often develop improved attitudes toward each other and toward mathematics (Dees,
1991; Slavin, 1995; Brechting & Hirsh, 1977; Chang, 1977; Davidson, 1971; Olsen,
1973; Shaughnessy, 1977; Treadway, 1983). Although it is not clear which com-
ponents of cooperative learning arc responsible for improvements in higher-level
thinking, attempts have been made to identify the components. One conjecture is
that dealing with controversy may he such an element. Smith, Johnson, and Johnson
(1981) report on a study in which they suggest that higher results on achievement
and retention of thc students in the "controversy group" may be attributed to the
"cognitive rehearsal of their position and the attempts to understand the opponents
position" (Smith, Johnson, & Johnson, 1981, p. 652). This work provides impor-
tant information concerning the efficacy of cooperative-group learning and the
key components which contribute to higher-level thinking. I lowever, research
which considers both the problem-solving behaviors, strategics, and achievement
of college students enrolled in traditional courses also needs to he coralucted. In
this study, we not only examined the problem-solving behaviors, strategics, ;Ind
achievement of college students assigned to cooperative learning groups, but de-
signed problem-solving experiences consonant with the course curriculum that
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focused on the connections between mathematical actions and/or processes and
the underlying mathematical concepts.

Methodology

The subjects chosen for this study consist of 108 students enrolled in four
instructional units of College Algebra and Statistics at a major university located
in the Mid-Atlantic states. Two experimental groups and two control groups were
randomly selected. An attitude scale and a pre-test of algebraic ability were ad-
ministered to both the experimental and control groups on the first day of class. In
the experimental sections, students were assigned to cooperative learning groups
based on their performance on the pre-test (each group contained four students I

high score, two middle scores, and 1 low score). In the control sections, students
were told that they could work with fellow students on the various activities/labs,
but were not specifically assigned to groups. Throughout the semester, problem-
solving behaviors, strategics, and achievement were assessed through four tasks
which focused on the connections between the mathematical actions and processes
and the mathematical concepts. The first and fourth tasks took place in a regular
classroom setting and consisted of problem sets devoted to thc topics of quantita-
tive literacy and modeling exponential functions. The second and third tasks took
place in the computer laboratory setting and consisted of computer labs devoted to
exploring the connections between algebraic and graphical representations of lin-
ear functions (set in the context of depreciation) and determining the best math-
ematical model for a particular set of data. Each of the four tasks were videotaped
(some problem-solving activity was recorded for each group) and audiotaped (the
problem-solving discourse was recorded for each cooperative-learning group within
both experimental sections). In addition, the initial and final problem-solving ses-
sions devoted to quantitative literacy and exponential modeling were also video-
taped for the control sections. Thc written work that accompanied each of these
tasks was also analyzed with respect to their ability to explicate the conncctions
between actions and/or processes and mathematical concepts. At the cnd of thc
semester, the attitude scale with some additional Open ended questions concerning
cooperative learning groups was again administered to all of thc students.

Results and Conclusions

The results of the students MSAT, the prc-test of algebraic ability, and the
questions concerning the number of years of high-school mathematics and their
previous university mathematics history were analyzed to determine between-group
siMilarities and differences. Seventy-eight students comprised thc experimental
group and thirty students made up the control group. The results arc summarized
in the table at thc top of the next page.

These results indicate that thc base-line assessments were consistent within
each group. The MSAT, pre-test of algebraic ability, and the number of years of
high school mathematics all indicate that thc experimental sections were more
capable and more experienced mathematically than the control sections. In addition,
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Table I. Baseline Data

MSAT MSAI Pretest Yrs. HS University Math History

Group Mean St. Dev. 1st Class Remedia! Other

Ctrl. n.30 470 70.36 4.65 3.62 53% 37% 10%

Exp. n.78 485.14 88 5.30 3.93 64% 28% 8%

more of the students in the control sections had taken and passed the non-credit
remedial algebra course prior to enrolling in the current course.

The attitude scale, a 10-item Liken scale administered both prior to instruc-
tion and at the end of the semester, assessed the students' views about learning in
general, thc role of the teacher, and whether they learn mathematics better while
working alone or with other students. Prior to instruction, both groups favored
working with other students as the better way to learn mathematics. At the end of
the semester, students' responses to the question, "I found working in cooperative-
learning groups to be (please elaborate)...," ranged along a continuum from "ex-
tremely enthusiastic" to" helpful, but..." to "not at all useful." The results of this
question arc indicated in the following table:

Table 2. Responses Concerning Cooperative-Group Learning

Categories of

Responses

Extremely

helpful

Helpful, but... No comment Not useful

Control Group 53% 28% 5% 14%

Experimental Group 60% 13% 7% 20%

Following instruction, both groups still favored working in cooperative-learning
groups. However, significant differences emerged with respect to the role of the
teacher. The number of experimental group members who strongly agreed that
"the role of the teacher is to facilitate learning" increased dramatically. Members
of the control group remained ambivalent concerning the role of the teacher. The
comments of many of the students with respect to working in cooperative-learning
groups are represented by this excerpt from the Attitude and Cooperative Learning
Assessment.

At first I didn't like working with other people because I usually

study and work alone in order to memorize and teach myself
information (which is hard to do with others). But by the end of
the semester I enjoyed working with my group and I studied
with 3 others for the final exam.
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With respect to whether working in cooperative-learning groups has affected prob-
lem-solving strategies, the student writes:

I have listened to and heard other strategics and learned new
solving and thinking patterns.

The course grades indicate how well each group did with respect to the stan-
dardized achievement criteria and are recorded in the following table:

Table 3. Final Course Grades

Achievement A or A- B+,B,B- C+,C,C- D+,D,D- F

Level

Control 30% 33 1/3% 26 2/3% 3 1 /3% 6 2/3%

Experimental 21% 29% 35% 14% 1%

It is interesting to note that the control group did much better in the course
than the experimental group although all of the baseline assessments indicated
otherwise. There arc several possible explanations. One possible explanation is
the differences between the two groups in terms of thc number of students who
took and passed the remedial algebra course prior to taking the current course.
Another possibility centers around the differences between the problem-solving
activities and/or labs and the standard exam questions.

Throughout the course, the results of the videotapes, audiotapes, and written
work were analyzed to determine thc nature of the problem-solving behaviors,
strategics, and achievement of both groups. Of particular interest were the video-
tapes of the cooperative learning groups working on the lab devoted to examining
the connections between graphical and algebraic representations of linear depre-
ciation functions. In this laboratory activity, students were asked to estimate graphi-
cally, identify the graphical feature they utilized to answer the question, algebra-
ically answer the question, and describe how the graphical and algebraic represen-
tations were related. Results indicate that those students in the cooperative-learn-
ing groups, like those of the "controversy group" identified by Smith, Johnson,
and Johnson engaged in the type of mathematical discourse that would enable
them to form connections between graphical and algebraic representations. Re-
sults of the written responses on this lab were significantly higher for the students
in the cooperative -learning groups than those in the control group. However,
students in the cooperative-learning groups still exhibited some difficulty expli-
cating the connections between mathematical actions and/or processes and the
mathematical concepts. Furthermore, the standardized assessments (multiple-choice
questions with some free-response parts) did not emphasize forming these con-
nections. All of these factors could contribute to the differences in the standard-
ized achievement of the two groups.

These findings provide convergent evidence concerning both the problem-
solving behaviors and achievements of cooperative learoing groups and suggest
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the kinds of group activities which may facilitate higher-level thinking and ira-
proved problem-solving ability.
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HELP-SEEKING WHILE PROBLEM SOLVING: ADULT CARE-
GIVERS AND THE ZONE OF PROXIMAL DEVELOPMENT

Vicki Zack, St. ueorge's School and McGill University

This investigation is part of an on-going, larger study which is looking at joint activity and
appropriation of new understandings in an inquiry math classroom setting. Instances of
help-seeking which occurred while children were endeavoring to solve non-routine prob-
lems at home were analyzed. Considered in this study were (1) the kind of help sought by
the child, (2) the kind of help offered by the adult, (3) how extensive the help was, and (4)
the sense the child made of the help. The data sources included the childxen's writing in
their math logs, and their explanatory presentations subsequently given to peers in class.
Findings suggest that (1) the children sought and mceived help predominantly with respect
to problem-solving strategics and mathematical concepts, (2) interactions with adults were
evenly distributed among all the students, the adept, moderately adept, and less adept in
that some did ask for help while others rarely or never did, and (3) the less adept children
were less specific in describing the kind of help sought/received while the more ldept
children's' requests were morc specific and focused.

The overall goal of the on-going study of which this report is a part, is to
investigate "how much students appropriate from interactions with others so that
they can claim this knowledge as personally meaningful" (Roth, 1995, p. xv). The
specific focus of the present investigation is on the child-adult interaction in the
context of help-seeking behavior. This is in accordance with Bussi's (1994) recent
assertion regarding the need to give attention to the role of the adult vis-a-vis joint
activity in problem solving. At the same time, Webb (1989) has pointed out the
lack of research on help-seeking. Nelson-Le Gall and her colleagues (Nelson-Le
Gall, Gumerman, & Scott-Jones, 1983) have spoken of help-seeking as a problem-
solving skill. They suggest that it is vital to look at who seeks help, what type of
help is sought, and at what point in the problem-solving process help is sought,
and insist that these are all central questions for theories of problem solving (p.
280). Some researchers have concluded that help-seeking denotes dependence,
while others have felt that it is a sign of initiative-taking (Nelson-Le Gall et al.,
1983). Help-seeking may well he tied up with metacognitive awareness. Do the
children know that they do not know? and Do they know what it is they need to
know? (Fitzgerald, 1983). Thus for this component of the study, I considered spe-
cifically the help-secking which occurred while the children were solving non-
routine mathematics problems at home, and when help was sought, looked at the
ensuing written explanations done at home and the oral explanations given by the
children in class.

The theoretical framework of the study draws upon Vygotsky's view of the
interaction which leads to learning. mainimns that it occurs on two planes, first

Several aspects discussed in the paper were elaborated in the course of discussions with
Barbara Graves. Barbara's contributions have been pivotal to my growth. This research was
supported by a Social Studies and Humanities Research Grant from the Government of
Canada #410-94-1Q7.
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the social and then the psychological plane; "first it appears between people as an
interpsychological category, and then within thc child as an intrapsychological
category" (Vygotsky, 1981, p. 163). One vital component derived from this basic
tenet is that of the zone of proximal development . As a theoretical construct the
zone of proximal development (ZPD) has been used in a variety of ways to date.

Most commonly it has been operationalized in conjunction with an apprenticeship
model (see for example, Lave, 1977, Rogoff, 1990, or Cazdcn, 1981) in which the
adult expert is guiding in a step-by-step way, and relinquishing control by degrees
when the learner is 'ready'. In contrast to this view, a number of researchers sup-
port the premise that any help which leads to conceptual change in the ZPD can be
considered to have assisted growth (Tharp & (Jallimore, 1988). In the context of
this study, and keeping with this latter view, I regard the zone of proximal develop-
ment as a conceptual space in which new understandings can arise as a result of
joint activity.

The school and classroom site of this study is a community of practice of
inquiry math (Richards, 1991), in which the children are expected to publicly ex-
press their thinking and engage in mathematical practice characterized by conjec-
ture, argument and justification (Cobb, Wood, & Yackel, 1993, p. 98). Therefore

any analysis of what occurs in the joint activity in this classroom differs in essen-

tial ways from much of what has been featured in the literature. Admittedly, the
children's work in joint activity with adults and peers may perhaps incorporate
some features of the apprenticeship model. However, the activity in a problem-
solving environment is more diffuse and in some ways more complex than that in
a teacher-centered textbook-based classroom setting. For example, thc primary
focus is not on the learning of procedural patterns, as was the case in regard to the
long-division algorithm which was the focus of learning in the 'construction zone'
in the Newman, Griffin & Cole (1989) classroom study. In our setting, the children
arc encouraged to grapple with non-routine problems, and arc seen to deliberate

and solve the problems using diverse idiosyncratic approaches (Zack, in press). In
our community, there arc many pJtential SOUR:CS available to thechildpeers in
class or at home via telephone, the teacher in class, and the caregiver at home.
These multiple sources not only enrich the child's environment but also increase
its complexity by posing additional challenges as children attempt to understand
alternate approaches (Zack, 1993).

Data collection and data analysis

I have been a classroom teacher and researcher in a Grade 5 (10-11 year-olds)
classroom for the past 6 years. Problem solving is at the core of the mathematics
curriculum. In addition to the in-class problem-solving sessions, the children also
work on one challenging mathematics problem at home each week (Problem of
the Week), and arc expected to write in detail in their math log about what they did
as they worked on the problem. The children arc told they must work hard alone
on thc problem at first. They are asked not to seek help, and the parents arc asked

to refrain from assisting. However, if thc children decide they must seek help, they

arc asked to write about their dill iculties, about whom they approached for help,
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and about how the person helped them. Subsequently in class, each child discusses
her/his solution with a partner, and then in a foursome; the problem solutions are
then discussed in a group of twelve. The in-school problem-solving sessions are
videotaped.

The data analyzed for this paper were drawn from two years worth of Prob-
lems of the Week, 1993-1994, and 1994-1995; 8 problems which had been as-
signed in both years were chosen for the analysis. The class size each year was 25
and 26 children respectively. Considered in this study were (1) the kind of help
sought by the child or (2) offered by the adult, (3) how extensive the help was, and
(4) the sense the child made of the help (intrapsychological), as seen in the writing
in the math logs, and the explanatory presentations subsequently given to peers in
class. I looked for instances of the following: (a) the child had a correct answer
and had sought help; (b) the child had a correct answer and had not sought help; (c)
the child had an incorrect answer and had sought help; (d) the child had an incor-
rect answer and had not sought help. In the cases where the child had a correct
answer and had sought help, and that child subsequently shared her/his steps with
a partner or small group, I looked at the videotape and at my focused observation
notes to see whether that child was able to explain, and to justify her/his actions.
Thc students know they are expected to go beyond just sharing their answer with
each other; each child is expected to tell how she/he arrived at the answer, and to
attempt to explain why it works.

I also looked to see at what point in the problem-solving process the child
sought help at home. Polya's (1945) stages of clarifying, representing, solving,
and checking were considered; instances of help-seeking from adults were almost
exclusively related to stages of representing and solving. In order to analyze fur-
thcr the kinds of help the children reported they had been given by the adults, I
used categories which had emerged from a previous study which dealt with
children's reports of the kinds of help peers gave in class (Zack, 1994). The cat-
egories were as follows:

Category #1: parameters or conditions of the problem

Category 42: factual, straightforward information
Category 43: problem-solving strategies (included as well diagnosing errors,

getting started)

Category #4: mathematical concept (e.g.. fractions, decimals, percents)
Category 45: essence or key idea in a problem

Category 46: alternate solution (i e. rine v.hich is simpler or a(.sthetically more
pleasing).

Findings

Findings suggest that interactions with adults were evenly distributed among
all the students, the adept, mixlcrately adept, and less adept; some did ask for help,
while others rarely or never did. Overall, the frequency with which children did go
to caregivers at home for help was low. This may he due in part to the teacher's
request that they do their best to work on the problem diligently on their own; it
may be due to the fact that some children feel (as they had reported in reference to
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another componcnt of the study) that they gain more from working with peers in
the classroom than from working with adults, since children of the same age "speak
the same language"; it may in part be due to the shying away from challenging
problems on the part of some of the caregivers. One finding which emerged was
related to cases in which extensive input had been given to less adept children by
an adult (parent, babysitter, or tutor). In the 6 cases (out of 13 instances) which I
had thc opportunity to observe, the children were able to present the solution but
they could not adequately defend or explain the specific components of the solu-
tion strategy to their peers.

The results indicate that whcn interacting with adults, the children sought and
received help predominantly with respect to problem-solving strategies (Category
#3) and mathematical concepts (Category #4). Interestingly, within the child-child
interaction the incidence of occurrence of explanations related to mathematical
concepts had been very low (Zack, 1994). Other findings suggest that the less
adept children arc less specific in describing the kind of help sought or received
while the more adept children are more specific and focused in their requests and
descriptions. In addition, there were two striking instances in which adept children
were seen to do much with only minimal input from a parent.

A number of children who did not find the explanations of the caregiver help-
ful continued to seek to make meaning, and at times were seen to connect the help
given by peers in class to the attempts made by the caregiver. In one instance a
child did understand his older brother's explanation; however, the child sought
and developed another approach (giving me, the teacher, credit for a hint) which
he felt would be more accessible and meaningful to his peers when he presented
his solution in class the next day. His writing in his math log signaled to me his
willingness to pursue alternative ways of solving and presenting, as well as his
awareness of the various registers of mathematical discourse, some more 'user-
friendly' and more likely to be understood by peers than others. Of interest as well
was the finding that the children appeared selective about whom they approached
for help at home, and at times spontaneously volur.tecred the reasons why one
candidate was preferred over another.

One aspect worthy of future study is that of the relationship of the gender of
the caregiver to the kind of help that is given. Confrey (1995) noted recently that in
studies of mother-child versus father-child interactions, researchers have reported
that mothers tend to decenter toward thc child's activities and goals, while fathers
tend to coax thc child to accomplish their (the !'athers') goals. Due to the small
number of instances, no conclusions could be drawn from occurrences in this study;
however, it seemed from the few instances that thc mode of working in regard to
non-routine problem-solving situations might be less related to gender than to the
adult's own level of development vis-a-vis mathematics.

This report constitutes a preliminary investigatiel of how children and
caregivers might learn about mathematics through joint activity. The facc-to-facc
interaction between parents (and other caregivers) aryl children is an important
area of investigation which needs to be examined more broadly and in greater
detail. The results of such an investigation would contribute both to our general
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understanding of the social construction of knowledge, and to our more specific
understanding of the workings of the zone of proximal development.
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MIDDLE SCHOOL STUDENTS' UNDERSTANDING OF AVERAGE:
A PROBLEM-SOLVING APPROACH

Jinfa Cai, Marquette University
John C. Moyer, Marquette University

This study used an open-ende6 problem:solving approach to teaching and assessing middle
school students' understanding of the concept of arithmetic average. Three main results of
this study show evidence of positive instructional impact on students' understanding of the
concept of average: (1) the number of students who gave correct answers increased from
pretest to posttest; (2) on the posttest, more students used appropriate strategies to solve the
average problems than on the pretest; (3) more students used multiple representations on
the posuest to explain their solutions than on the pretest. The findings of this study indicate
that learning the concept of average is cognitively more complex than the computational
algorithm suggests. However, with appropriate instruction, students can have an under-
standing of the concept beyond the computational algorithm.

Arithmetic average is one of thc important and basic concepts in data analysis
and decision making. It is not only an important concept in statistics, but also an
everyday-based concept (National Council of Teachers of Mathematics (NCTM),
1989). The arithmetic average is found by adding the values to be averaged and
dividing the sum by the number of values that were summed. Although the com-
putational algorithm suggests that arithmetic average is a simple concept to under-
stand, previous research (e.g., Cai, 1995; Mevarech, 1983; Pollatsck, Lima, &
Well, 1981; Strauss & Bich ler, 1988) has indicated that both pre-college and col-
lege students have many misconceptions about the average concept. The miscon-
ceptions arc not due to students' lack of the procedure for calculating an average,
rather they are due to thcir lack of understanding of the concept of average.

The purpose of this study was to examine students' existing understanding of
the average concept as well as the impact of open-ended problem solving instruc-
tion on their understanding of the concept. This study is an extension of an earlier
study in which Cai (1995) used a multiple-choice task and an open-ended task to
examine sixth-grade students' knowledge of arithmetic average. He performed a
fine-grained cognitive analysis of the students' written responses. He found that
the majority of the students knew the "add-them-all-up-and-divide" algorithm for
calculating average, but only about half of the students showed evidence of having
an understanding of the concept of average. The earlier study (Cai, 1995) also
suggests thc value of using an open-ended task to assess students' understanding
of the average concept and to examine their problem-solving processes. This study
extended the earlier study in two ways: (1) this study used two open-ended tasks to
examine middle school students' knowledge of arithmetic avcrage; and (2) this
study also examined the instructional impact on students' understanding of the
arithmetic average through a pretest and posttest design.

Preparation of this paper was supported in part by a grant from the Ford Foundation. Any
opinions expressed herein are those of the authors and do not necessarily represent thc
views of the Ford Foundation.
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Method

Subjects
Subjects numbered about 150 middle school students from a public school in

a large urban school district. Students in the school are ethnically and culturally

diverse, and 75% of the students arc on a free or reduced lunch program. In this

paper, only those students who took both the pretest and the posttest are used in the

analysis, which includes 123 students (46 sixth-graders, 33 seventh-graders, and

44 eighth-graders). It should be indicated that students had been briefly exposed

to the average concept in previous years.

Pretests and Posttests
Figure 1 shows the two tasks used as pretests and posttests. In these tasks,

students were asked to provide answers and, importantly, they were also asked to

explain how they found their answers. In particular, Problem 1 requir...:s students

to figure out a simple mean of four numbers, and Problem 2 requires students to

find a missing number when the first four numbers and the average of the five

numbers (including the missing number) are presented graphically. In order to

solve Problem 2, students must have a well-developed understanding of the aver-

age concept. Students were allowed about 15 minutes to complete these two prob-

lems. The posuest, which consisted of the same two problons as the pretest, was

given about six months after the pretest.

Instructional Treatment
In this study, teachers used an open-ended problem-solving approach to teach

the average concept with understanding. The instructional materials included those

developed by Bennett, Maier, & Nelson (1988), which emphasize "averaging" as

Problem 1
John, Jeff, Joyce, and Jane each has a
stack of blocks, which are shown below.

John's Icif loyLes lanes

What is the average number of blocks
for those four people?

Prublem 2
Later Bob joined them. When Bob
came in, the average number of

blocks for John, Jeff, Joyce, Jane,

hn s low yces Janes Bob's Average

and Bob became 8.
How many blocks did Bob have so
that the average for the five people
was 8?

Answer: Answer:

Explain how you found your answer. Explain how you found your answer.

Figure 1. Tasks



an evening-off process. The materials stress that averaging can be used as an
effec live tool for making sense of a sct of data rather than as a simple computation
process. In addition to using the materials developed by Bennett et al. (1988),
teachers also used a variety of average-related problems in their classroom (Meyer,
Browning, & Channell, 1995). The teachers met with two university professors
(the authors) regularly to discuss instructional materials and approaches. The teach-
ers were encouraged to develop their own instructional materials based on the
discussions in the regular meetings. The focus of the discussions was on ways of
teaching the average concept with ...mderstanding, not just on the computational
algorithm.

Data Coding and Analysis

Data coding and analysis were completed using a classification scheme adapted
from Cai (1995). In particular, each response was coded with respect to four dis-
tinct perspectives: (1) numerical answer, (2) mathematical error, (3) solution strat-
egy, and (4) representation. To ensure the inter-rater reliability, the two authors
randomly selected 20% of the student responses and coded them independently.
The inter-rater agreement ranged from 87% to 99%.

Results

Since grade level differences were not a focus of this study, the results are
reported in an aggregated manner. There arc three separate sections.

Numerical Answer and Mathematical Error

The numerical answer was what the student provided on the answer space on
each task, and was judged correct or incorrect. With respect to the correctness of
numerical answers, students improved significantly from the pretest to the posttest.
Specifically, on the pretest, only 51 and 19 students respectively answered Prob-
lems I and 2 correctly. On thc posttest, however, 104 and 84 students respectively
gave the correct answers for Problems I and 2. Examination of the correctness of
both problems shows that the percentages of students who gave correct answers
for both problems increased significantly from 11% (13 of 123) on the pretest to
64% (79 of 123) on thc posuest (z = 7.57, p < .001). Thc significant increase in
students with correct answers from the pretest to posttest provides evidence of the
instructional impact on student understanding of the average concept.

Examination of paired answers on the pretest shows that 80% (41 of 51) of the
students who were able to solve Problem I failed to correctly solve Problem 2. On
the posttest, 24% (25 of 104) of the students who were able to solve Problem I
were still unable to correctly solve Problem 2, hut the percentage is statistically
smaller than on the pretest (z = 6.67, p < D01). This implies that after instruction
students had a better understanding of the average concept. Interestingly, a few
students correctly solved Problem 2 without also correctly solving Problem I.

Fewer students made mathematical errors on the posttest than on the pretest.
I lowever, error analysis shows that students who did not correctly solve the prob-
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lems tended to make similar types of errors on both tests. For example, a common
error that students made in solving Problem 2 was to incorrectly apply the compu-
tational algorithm. For exam;le, some students added the numbers ofJohn's blocks
(9), Jeff's (3), Joyce's (7), Jane's (5), and the average (8), got a sum of 32, then
divided the sum by 5. Thc students typically gave the whole number part of the
quotient (6) as the answer. These students appeared to know the computational
procedure for calculating an average (i.e., "add-them-all-up-and-divide"), but they
appeared to not know what should be added, what should be divided, or divided
by. Thus, although student performance in solving the average problems improved
significantly from pretest to posttest, a small proportion of the studcnts still showed
a lack of conceptual understanding of the arithmetic average.

Solution Strategy

Three solution strategies were identir;ed, which arc described in Table I. On
the pretest, only 42 and 17 students ..espectively gave a clear indication of using
one of the three identified strategks in solving Problems 1 and 2. On the posttest,
94 and 66 students respectively gave a clear indication of using one of thc three
identified strategics in solving Problems 1 and 2.

Moreover, on the posuest, nearly 50% of the students gave clear indications
of using solution strategies in solving both problems, but only I 1 % of them did so
in the pretest. The difference between use of strategics on the pretest and posttest
is statistically significant (z = 6.26, p < .(X)l). This significant increase in the
number of students who gave clear indications of using identified solution strate-
gies from thc pretest to posttest provides further evidence that instruction had a
positive impact on student understanding of the average concept.

On the pretest, students most frequently used the average formula to solve the
problems. On thc posttest, the number of students who used average formula
increased, but the increase was not as dramatic as that for leveling strategy. In
fact, only a few students used the leveling strategy on the pretest, but over 40
students used the leveling strategy on the posttest. It should be notcd that for thosc
students who gave clear indications of using identified solution strategics in Prob-
lems 1 and 2, the majority of them (77%) tended to use the same solution strategics
on both problems, cithcr on the pretest or on the posttest. For example, if a student
used the leveling strategy to solve Problem 1, he/she would most likely use the
same strategy to solve Problem 2.

Representations
The representations were classi fied into the following categories: verbal (writ-

ten words), symbolic (mathematical expressions), pictorial (drawings), and any
combination of these three. Table 2 shows the number of students who used vari-
ous representations.

From pretest to posttest, the number of students who did not provide explana-
tions of their solutions decreased. In particular, on the pretest 14 and 29 students
respectively did not provide an explanation in solving Problems 1 and 2; while on
the posttest, only 2 and 12 students respectively did not provide explanations for
Problems 1 and 2. Not only did more students provide explanations on the posttest
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Table 1. Descriptions of Solution Strategies and Frequency of Students Using
Each of Them

Strategy Description

Number of Students

Pretesti-test
P1 P2 P1 P2

Strategy 1 (Using Average Formula): The student used
the average formula to solve the problems. For example,
in solving the first problem, students added blocks that
John, Jeff, Joyce, and Jane have, then divided the sum
by four. In solving the second problem, students multiplied
the 5 by 8, got 40, then subtracted the number of blocks that
John, Jeff, Joyce, and Jane had, so the answer was 16
[i.e., 8 X 5 - (9 + 3 + 7 + 5) = 16].

Strategy 2 (Leveling): Students tried to even-off the blocks
to get the average number of blocks for John, Jeff, Joyce,
and Jane in solving the first problem. In the second problem,
students tried to use the average number of blocks as the
leveling base, then found the number of blocks Bob had.

Strategy 3 (Guess-and-Check): The student first chose a
number for Bob, then checked to see if the average was 8.
If the average was not 8, then he/she chose another number
for Bob and checked again, until the average was 8.

Total

39 15 50 24

3 2 44 40

0 0 0 2

42 17 94 ,36

than on the pretest, but also the quality of student explanations improved from
pretest to posuest. For example, more students on the posttest tended to use mul-
tiple representations (i.c., any combination of verbal, pictorial, and symbolic rep-
resentations) to explain their solution processes. In fact, only about 10% of thc
students used multiple representations on the pretest; while about 40% of the stu-
dcnts used multiple representations on the posuest.

The representations students used appear to be related to the stranies they
employed. For example, when students used the average formula to solve the
problems, they tended to usc symbolic-related representations in their explana-
tions. While when students used leveling strategies, they tended to use pictorial-
related representations in their explanations.

Discussion

This study used a problem-solving approach to teaching and assessing middle
school students' understanding of the concept of arithmetic average. Thc results
oi this study suggest that for thc pretest a majority of the students only knew the
"add-them-all-up-and-divide" algorithm of calculating average. On the posttest,
however, the number of students with conceptual understanding increased dra-
matically. The findings of this study provide evidence of positive instructional
impact on students' undersuinding of the average concept. This evidence includes:
(1) the number of students with correct answers increased from pretest to posttest;
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Table 2. Frequency of Students Using Various Representations in Pretest and
Posttest

Number of Students
Pretest Posttest

P1 P2 P1 P2

Verbal 74 60 46 42
Pictorial 3 6 11 10
Symbolic 19 14 11 10
Combination 13 14 53 49
Without Explanation 14 29 2 12

(2) more students on posuest than on pretest gave a clear indication of using ap-
propriate strategics; (3) not only did more students provide explanations on the
posttest than on the pretest, but also more students used multiple representations to
explain their solutions.

The results of this study provide further evidence that learning the concept of
average is cognitively more complex than the computational algorithm suggests,
.as was shown in previous studies (e.g., Cai, 1995; Strauss & Bichicr, 1988). This
study shows that if appropriate instructional approach and materials arc used in
the classroom, students will have an understanding of the average concept, not just
the computational algorithm. This study also shows the appropriateness of using
open-ended problems to teach and assess students' conceptual understanding of
the arithmetic average.
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STUDENTS' RECOGNITION OF STRUCTURAL FEATURES IN
MATHEMATICAL PROBLEM SOLVING INSTRUCTION

Manuel Santos T, Cinvestav-IPN-México

Research in mathematical problem solving has produced significant results in trying to
understand what people do to soln problems. An important part of the solution process is

the presence of both cognitive and metacognitive strategies. This paper documents the

extent to which students are able to recognize the basic structure of a problem given in three
different contexts. In the analysis, it was important to distinguish a set ofdistinctions that
the students coordinate during the process of solution. This set of distinctions involves the

use some kind of representation of the problem, the search for connections with other ideas,
the flexibility in approaching the solutions, and confidence of the results. These ingredients

become essential to evaluate qualities of the students' work.

Problem solving has been identified as an important component of mathemati-
cal instruction (NCTM, 1989; Schoenfeld, 1994). As a consequence, teachers

encourage their students to engage in problem solving activities during the devel-
opment of their courses. However, what types of problems and to what extent
students should discuss these problems during instruction arc issues that teachers
need to discuss on a regular basis. It is common to hear that it is difficult to find or

design good problems for the class discussion, and teachers often continue work-

ing with routine problems that they have bcen using regularly in their classes.
Thus, if we accept that problem solving is a way of thinking that should be present

not only in mathematics instruction, but in the process of interacting with prob-
lems in other contexts, then it becomes important to explore how othcr contexts
could play an important role in the selection of problem solving activities for the
classroom. This paper analyzes the work done by tcnth grade stLdents who were

asked to work on three problems that share similar structure. Thus, it was impor-

tant to document what type of strategies and difficulties were shown by the stu-

dents who noticed connections among the problems. The discussion of the stu-
dents' approaches play an important role not only in understanding the processes
shown while working on the problems but also in evaluating the potential of some

activities associated with problem solving instruction.

Background to the Study

Research in mathematical problem solving has suggested LILA it is important

to provide learning experiences for thc students in which they have opportunity to

get engaged in actual mathematical experiences. Schoenfeld (1992) found that the

process of doing mathematics includes the use of resources or basic mathematical
knowledge (facts, procedures, algorithms), the use of heuristic strategics, the pres-

This paper was written while the author was a visiting scholar at the University of Califor-

ma at Berkeley. The author thanks Alan Schoenfeld and the function group for their hospi-

tality. He also wants to acknowledge the financial support received from CONACyT and

CINVESTAV during his stay.
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ence of metacognitive activities (monitoring and control), and an understanding of
the nature of the mathematical practice (conception of the discipline). As a conse-
quence, it is necessary to investigate to what extent the students' problem solving
behaviors could be improved whcn the instruction they receive takes into account
learning activities related to those dimensions. Santos (1995) pointed out that in
order to develop the students' mathematical disposition to learn mathematics is
important to provide a class environment in which students consistently are asked
to a) work on tasks that offer diverse challenges; b) discuss the importance of
using diverse types of strategies including the metacognitive strategies; c) par-
ticipate in small and whole group discussions; d) reflect on feedback and chal-
lenges that emerge from interactions with the instructor and other students; e)
communicate their ideas in written and oral forms; and f) search for connections
and extensions of the problems. These learning activities play a crucial role in
helping students see mathematics as a dynamic discipline in which they have the
opportunity to engage in mathematical discussions and thus value the practice of
doing mathematics.

The need to document how the students approach different types of tasks is
based on thc great influence that problem solving has shown in the learning of
mathematics. The number of research studies in this area has been significant in
the last 25 years (Schoenfeld, 1994; Charles & Silver, 1988, Lester, 1994). One
important direction in problem solving has becn to categorize the way students
solve problems. Several frames of analysis or theoretical models emerged from
that research direction and have contributed to the understanding of the process
used by the problem solver. The role of qualitative tasks or nonroutine problems
has been important during the process of gathering information of thc students'
work. As a consequence, some research results in problem solving have chal-
lenged or transformed the teaching of mathematics. Here, it becomes important to
study the potential of diverse tasks or problems that involve different contexts as a
means to use them in mathematical problem instruction. Thc analysis of the stu-
dents' approachet, while working on problems with similar structure will help us
understand what aspects of problem solving appear as important when students
actually recognize the structure of the problems during the solution process.

Methods, Procedures, and Frame of Analysis

Thirteen grade nine students, all volunteers, participated in the study. They
worked on the problems for about 45 minutes. Each student worked the problems
individually and was asked to think aloud while solving the problem. It is impor-
tant to mention that the teacher of this group of students has been implementing
problem solving activities during the last three years of his teaching. An inter-
viewer took notes during the whole process and was available to provide clarifica-
tion questions when required by the students. Three problems were used as means
to gather information.
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1. A carpenter makes $800 for the first week of work and thcn $860 for
the next two weeks. What were his total earnings for that period, and
what was his average salary?

2. A tank is filled to a depth of 80 centimeters and two identical tanks
arc filled to a depth of 86 centimeters. What is the average depth of
the water in the tanks?

3. Peter travels 80 km per hour for one hour, then at 86 km per hour for
two hours. How far did Peter travel, and what was his average speed?

The work shown by the students was analyzed by considering the type of
resources and strategies that the students used to solve or make progress while
working on the tasks. It is important to mention that during the analysis aspects of
the mathematical practice which helped students identify similarities among the
problems were explored. During this process, three levels were identified as a
means to characterize the students' work. The high level appears when a student
shows the important mathematical ideas associated with the task in his or her solu-
tion and he or she provides a consistent argument that supports such a solution. A
medium level is identified when a student shows significant progress to the solu-
tion but misses to considcr somc cases. Finally, a low approach involves the stu-
dent showing little understanding of the key issues of the task and addresses only
superficial parts of the problem solution.

Students' Approaches to the Problems

Eighty percent of the students showed significant progress toward solving the
problems. Although the most popular approach was to focus on operations, it was
important to observe that various students used graphical representations. For
example, seven students relied on a table and figure to solve the first problem, and
these students noticed that to solve the second and third problems they were going
to use a similar approach. That is, they were able to identify the common structure
of the problems. It seems that using a representation Felped them maki . the con-
nections. Some students who relied only on calculations did not make explicit
statements about the relationships among thc problems. For example, four stu-
dents were able to solve the first two problems, and thcy wrote that they did not
recall the formula working in the third problem. Only one student graphed the
three problems together by presenting the data in accumulative form and explained
relationships among the representations. A sct of distinctions that students showed
during the solution process helped categorize the quality of the responses. These
distinctions include: (a) The use of representation as a means to work the data
(table, list) and to show the result, (b) Connections in which some students linked
dr common features among the problems, (c) Flexibility in trying to graph and
explain extensions of the problems (accumulative graph), and (d) Confidence shown
by some students when they compared the responses to the problems. To illustrate
differences among the students' responses, an example taken from the students'
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work is used to illustrate the quality of the responses for high, medium and low
levels.

Students who decided to represent the data graphically showed tables and, in
some cases, bar diagrams. For example, some students utilized the following rep-
resentations:

For the problem that involves finding the total earnings, seven students ar-
ranged the data of the problem on a table and showed a bar diagram. It was inter-
esting to observe that these students also represented the second problem similarly
and immediately (while working on the representation) noticed that thc three prob-
lems could be approached in the same way.

lD

603

600

400

203

0

Data from "The Carpenter's Salary"

a Week 1

12 Week 2

Ei Week 3

Weeks

Week 1 2 3 Average
Salary 800 860 860 840

Tank 1 2 3 Average
Depth 80 86 86 84

Hour 1 2 3 Average
Spped 80 86 86 84

It was clear that students who represented the problem graphically were able
to identify similar properties among the problems. For example, two students who
had used bar graphs to represent the first problems, immediately noticed that thc
shapes of the graphs were the same. These students mentioned that all three prob-
lems could be solved in the iame way. They also mentioned that the context of the
problem did not influence the form ol solution. The responses given by these
students were categorized a:. the high level type. When the auderts used only a
table or paid attention only to the numerical results used to determine the relation-
ships among the problems, then the responses were categorized as the medium
level type. For example, three students spotted similarities among the problems
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Data from "Tanks"

Tau*

Depthl

Depth2

Depth3

based on a list of what happened in each situation individually. That is, they fo-
cused on the average number asked in each problem to support their responses.
An interesting contrast with the students who used graphs was that these students
worked on the three problemilgTillteilealiNvbff3wtracalizing that they shared similar

Time
4

structures; while the students who used graphs did not need to complete the three
problems before noticing such similarities.

One student showed the relation between the bar representation and the linear
graphs by showing an accumulative representation. He noticed that the informa-
tion given in the three problems could be easily read from this representation.

The accumulative representation shows exactly how many km had been trav-
eled or how much money had been earned by a given time. Thc studcnts who
failed to solve the problems or make progress toward the solution experienced
difficulties in trying to understand the conditions and what they were asked to do.
For example, one student asked for the speed formula to approach problem threz.

Discussion of Results and Instructional Implications

The results show that it is possible to identify a set of characteristics that
distinguishes various approaciws in the students' work. On one side there were
students who spent significant amount of time anal yi ing the conditions of the prob-
lems and worked on a well structured plan. These students showed the use of
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different representations as a means to approach the problems. The fact that the
students explicitly searched for various representations helped them interpret the
information and observe some connections. On the other side, other students tended
to approach the problems by using numerical representation, and it was difficult
for them to visualize that thc problems sharcd a similar structure. Although the
students were asked only to work on the problems, it is interesting to note that
those who used more than one representation were able to see the problems in a
wider perspective compared with the students who used only one representation.
That is, the use of several representations played an important role in the transfer
of the students' idcas.

It is also evident that the first group of students (who spent more time under-
standing the conditions) showed more of a disposition to work on these tasks, and
they showed some kind of flexibilio, in using more than one approach, including
graphical representation. It seems that being flexible while representing thc infor-
mation given in the problem allowed students to observe features that were not
evident under the numerical representation. An important implication here is that
it is important to encourage students to use morc !han one representation to deal
with the information. In addition, it is important that students consistently arc
asked to identify similarities and differences among methods of solution and struc-
tural properties of problems that involve different contexts.
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AN EXPERIMENT TO EXAMINE THE EFFECTS OF PROBLEM
POSING ACTIVITIES ON STUDENTS'

META COGNITIVE BEHAVIOR

Ted Hodgson, Montana State University

Presumably, students engaged in posing problems develop essential problem-
solving skills. The actual effects of problem-posing on students' problem-solving
behaviors, however, remain largely unknown. The current study pilots one ap-
proach to problem posing, in which students construct and solve problems that are
similar to designated problems, and offers conjectures regarding the effects of the
approach on students' metacognitive behavior. In light of these conjectures, the
study reviews students' responses to problem-posing tasks. Moreover, the study
offers suggestions for amending the experiment and identifies additional research
questions elicited by students' responses.

Subjects participating in the pilot study were eight undergraduate mathemat-
ics majors enrolled in a problem-based, history of mathematics course. To isolate
the effect of problem posing on students' mctacognition, participants were ran-
domly divided into two groups. The members of Group I were assigned one addi-
tional problem per assignment, whereas Group 2 members posed problems that
were similar to a designated problem on thc problem set, solved the similar prob-
lems, and identified thc similarities between the original and the newly constructed
problem. By looking back at previously solved problems and re-examining their
own problem-solving efforts, it is conjectured that students in the problem-posing
group will develop reflective patterns of behavior and become more reflective in
all problem situations.

Both in terms of the similar problem and problem-solving reflections, stu-
dents' initial responses lackO the depth and richness of their later efforts. In
general, subjects (all of whom Nem mathematics majors) focused on process as-
pects of the designated problems, a fact that leads to questions concerning less
able students' conceptions of "similar" and the effects of these conceptions on
student.s' problem-posing efforts.
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PROOF IN THE PROBLEM SOLVING CONTEXT: HOW STUDENTS
USE THE RESOURCES AT THEIR DISPOSAL

Barbara R. Smith Reed, University of California, Santa Barbara

This study explores aspects of the uses of various cognitive resources avail-
able to pairs of students engaged in joint problem solving. Five pairs of students
from a high school geometry class were videotaped while solving a geometry proof
problem. The students had been in a geometry course that was organized around
cezperative groups, and were using a mathematics reform curriculum developed
primarily at U. C. Davis (College Preparatory Mathematics, Kysh et al., 1990).
The students in the study were taught to rely more heavily on their own abilities to
solve the problems, and to use their peers as a resource, rather than always asking
the teacher or referring to the textbook for help. According to Schoenfeld (1985),
there are four fundamental aspects of mathematical thinking that arc necessary for
successful problem-solving: cognitive resources, heuristics, control, and belief
systems. Schoenfeld revises this framework (1992) to include the additional cat-
egory of practices. In this study, the definition of resources has been expanded to
include those that were readily available to the students in the CPM class, and
places the social construction of knowledge within the resource category, instead
of in a separate category (practices) as in Schoenfeld's theories. The expanded
resource list includes: Prior Knowledge (spontaneously recalled facts), Each Other
(pecr interaction), Tool Kit (an artifact of CPM, including theorems, etc.), Dia-
gram (one representation within the problem statement), and Logical Statements
(another representation in the problem statement, enclosed in ovals). These re-
sources for solving problems in this class were different from those available to
students in a more traditional curriculum, where the teacher and thc text arc the
sourccs of knowledge. The goal of the study was to explain and describe the ways
in which the students used these resources at their disposal, and to discover how
the resources helped or hindered their problem-solving ability. In other research
of students' problem-solving ability, the problem prcserted to the students has not
been directly ued to a particular curriculum. This study was done to analyz.e prob-
lem solving that was most common within a reform-type class, and therefore the
problem presented was directly related to those that the students had previous ex-
perience in solving.
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WHY IS PIZZA ROUND? STUDENT RESPONSES TO
A NEW PRE-ALGEBRA UNIT

Mary E. Brenner, Theresa Brar, Richard Duran, Richard Mayer,
Bryan Moseley, Barbara R. Smith and David Webb

University of California, Santa Barbara

Classroom instruction which follows the guidelines of the NCTM National
Standards for Curriculum and Instruction places many new demands upon stu-
dents. Students must learn to work within a constructivist framework in which
they function more as creators of knowledge rather th,.n recipients of knowledge
as in traditional classrooms. Although it will take time for students and teachers to
become fully comfortable with constructivist approaches, we feel that students
will gain more understanding of mathematical principles and more appreciation
for the utility of mathematics in the long run. We have developed a unit to intro-
duce basic algebra to junior high school students using many of the principles of
the mathematics reform movement: (a) Instead of emphasizing symbol manipula-
tion, we emphasize problem representation skills. (b) Instead of teaching problem-
solving skills in isolation we anchor thcm within a meaningful thematic situation.
(c) Instead of focusing solely on the product of problem solving, we emphasize the
process of problem solving, in cooperative groups and through modeing by teach-
erS.

In another report included in these proceedings, we present statistical data
that show the effectiveness of our approach (Brenner, Brar, Duran, Mayer, Moseley,
Smith & Webb, 1995). This poster is intended to present more information about
the activities included in the unit and what kind of work students produced in
class. Thc 20 lesson unit asked students to help make a decision about which of
three pizza companies should be contracted to provide pizza in the school cafete-
ria. Day 1 involves a taste test in which students sample several pizzas, collect
data to characterize student preferences, and construct graphs. Days 2 through 5
involve a computer malfunction in which the students look for and describe pat-
terns of errors in order forms and invoice sheets, using tables, graphs, variable
expressions and words. Day 6 involves a pizza delivery game in which students
must use variable expressions to determine the correct destination. In Days 7
through 10 students learn about formulas for area within thc context of an adver-
tising problem. Days 11 through 14 focus on nutrition as students generate equa-
tions expressing the fat content of various pizzas. In Days 15 through 18 students
use tables and graphs to solve problems about pizza businesses. In the last two
days, stur ants wnte a final report advocating which pizza company should be
selected.
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FACILITATING CHILDREN'S DEVELOPMENT OF RATIONAL
NUMBER KNOWLEDGE

Kathleen Cramer, University of Wisconsin-River Falls
Thomas Post, University of Minnesota

At issue in this study was the extent to which large numbers of classroom teachers were
able to implement research-based materials with a minimum of inservice education and
whether students of these teachers were able to develop the rich mental images for fractions
similar to the ones students from previous Rational Number Project (RNP) studies devel-
oped in smaller experimental settings. An analysis of student interviews demonstrated that
RNP students did in fact develop rich mental images for fractions similar to students in
previous studies. As expected the nature of RNP students' thinking about rational number
was far richer than students who used textbook curriculum and indicated a more conceptu-
ally oriented framework.

Since 1980, the RNP has reported on many investigations into the teaching
and learning of fractions among fourth and fifth graders ( Bezuk & Cramer, 1989;
Post, Wadtsmuth, Lcsh & Behr, 1985). The curriculum used in thc study reported
here emanated from this earlier research. The RNP curriculum uscd in earlier stud-
ies reflected the following beliefs: (a) Children learn best through active involve-
ment with multiple concrete models, (b) physical aids are just one component in
the acquisition of concepts-verbal, pictorial, symbolic and realistic representations
also are important, (c) children should have opportunities to talk together and with
their teacher about mathematical ideas, and (d) curriculum must focus on the de-
velopment of conceptual knowledge prior to formal work with symbols and algo-
rithms.

The curriculum developed the following topics: (a) part-whole model for frac-
tions, (b) concept of unit, (c) order ideas, (d) equivalence concepts and (c) addition
and subtraction of fractions at the connect level. It de-emphasized standard paper-
pencil procedures for ordering fractions, finding fraction equivalencies and sym-
bolic procedures for operating on fractions. Instead it emphasized the develop-
ment of a quantitative sense of fraction. To think quantitatively about fractions,
students should know something about the relative size of fractions and be able to
estimate reasonable answers when fractions arc operated on.

The fraction curriculum used in earlier investigations was revised and ex-
tended. The goal for this revision was to reorganize lessons from the 30-week
teaching experiment into two levels of teaching materials that could be used easily
by classroom teachers with fourth and fifth grade students. This study used Level
1 materials (23 lessons) with all students regardless of grade level. Somc lessons
lasted more th:ni one day.
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Treatments

RNP Curriculum

The curriculum was written to reflect cognitive psychological principles as
suggested by Piaget (1960), Bruner (1966), and Dienes, (1967). Lesh (1979) elabo-
rated on their ideas and produced a model which suggests that learning is en-
hanced when children have opportunities to explore mathematical ideas from mul-
tiple perspectives - manipulativcs, pictures, written symbols, verbal symbols and
real life contexts. The model also suggests that it is the translations within and
between modes of representation that make ideas meaningful for children. The
RNP curriculum reflects this theoretical model. The manipulatives used in the
lessons included fraction circles, chips, and paper folding.

An important part of each lesson is the "Notes to the Teacher" section. Here
insights into student thinking captured from the initial RNP teaching experiments
are communicated to teachers. The notes share examples of student misunder-
standings and anecdotes of student thinking from earlier RNP projects. These notes
to the teachers also clarify methods for using manipulative materials to model
fraction ideas.

Textbook Curriculum

The majority of 33 textbook classrooms used the 1989 edition of Addison-
Wesley Mathematics (AW). Six of the textbook classrooms piloted the Harcourt
Brace Jovanovich (HBJ) 1992 series, Mathematics Plus.

The textbook teachers were encouraged to usc thc resources suggested in the
teacher's guides. Fraction bars and pictures of fraction bars were the models sug-
gested by Addison-Wesley textbook series. The HBJ series suggested a larger
variety of manipulative materials. These included counters, paper folding, frac-
tion circles and fraction bars made from paper strips. In each case, though, con-
crete models played only a cursory role in the development of fraction ideas; thc
primary goal was to develop student competence at the symbolic level. In the
RNP lessons translations including extensive use of manipulative materials were
the central focus. Symbols were used to record students' observations, discussions
and actions with manipulatives.

Procedures

1Yeatment Assignments

In a suburban school district south of the Twin Cities all 200 fourth and fifth
grade teachers wcrc contacted in the fall of 1993 to assess their interest in partici-
pating in this study. Sixty-six teachers from 17 schools chose to participate. Teach-
ers were assigned to treatment conditions ( RNP or Textbook) by grade level. There
were 38 fourth grade classrooms; 19 RNP and 19 Textbook classrooms. There
were 28 fifth grade classrooms; 14 RNP and14 "l'extbook classrooms.

378
Y.)



Timeline

The study began with the first of two, two-hour teacher inservices. This
inservice was divided into two parts. For the first hour, all teachers heard a presen-
tation that dealt with the following topics: (a) history of the RNP, (b) structure of
the study, and (c) research on student learning of fractions. The second hour,
teachers broke up into two groups by treatment and reviewed the goals and objec-
tives of their respective treatments conditions.

Instruction was to last a minimum of 28 days and a maximum of 30 days;
each class period was for 50 minutes. A second, two-hour inservice session was
held half way through instruction. In the first hour all teachers participated in a
discussion on assessing fraction learning. During the second hour the RNP teach-
ers worked through activities with manipulatives modeling fraction addition and
subtraction. The textbook group considered several fraction enrichment activities.

Interviews

Twenty 4th graders, each from a different classroom, were interviewed by
project staff. Ten were selected from the RNP group and 10 from the textbook
group. E:e.h student was interviewed three times. Interview topics included con-
cepts, order, equivalence, concept of unit and fraction operations. Each classroom
teacher also randomly selected three students from his/her class and interviewed
them once at the end of the study. This interview included eight oestions in those
same five areas.

Questions:

The following questions were of interest:

1. Is the RNP curriculum written and organized so teachers can use it
effectively with limited inservice opportunities?

2. Do students taught by classroom teachers using the RNP curriculum
develop similar understandings for fractions as compared to students
in original RNP teaching experiment:, taught by project investiga-
tors?

3. What differences occur in student achievement and student thinking
between students using a conceptually-oriented RNP curriculum and
students using district-adopted textbooks?

To investigate these three questions, thc RNP personnel relied on several dif-
ferent data sources. Post and retention written test data from some 1600 fourth
and fifth grade students provided the foundation from which answers to each of
thc above questions were generated. Interviews with RNP students were to deter-
mine whether student thinking documented during the teaching experiments could
bc replicated on a large scale with students taught by classroom teachers using
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RNP curriculum and to provide anecdotal data depicting treatment differences in
student thinking.

The remainder of this paper addresses interview results related to differences
in student thinking between RNP and Textbook students. Table 1 reflects data
from the final interview given to 17 fourth graders by project staff. [Note: Of the
10 RNP students originally selected to be interviewed, two were tracked into a low
math group and did not finish the lessons. These two students were not given the
final interview. One Text student did not take thc final interview. Data reflecting
numbers less than eight RNP students and nine Text students interviewed repre-
sent missing datal. Table 2 reflects data from interviews with fourth graders given
by classroom teachers. Each table reports student responses to an estimation ques-
uon. A student response which relied on mental images for the fractions to deter-
mine their relative size was categorized as a conceptual response. Ibis was in
contrast to a student response that solely relied on symbolic procedures to esti-.
mate. Here little thought as to the relative sizes of the fractions was considered.
Students determined the exact answer and then estimated from that exact answer.
Student responses to the problem in Table 1 are organized below that table to
exemplify their correct and incorrect answers. Student responses similar to those
reported here also were found in interviews given by classroom teachers. Limited
space prohibits a detailed list of examples.

Table 1. Final interview given by project staff

Marty was making two types of cookies. He used 3/12 cup of flour for one recipe
and 2/3 cup for the other. How much flour did he use altogether? Without working
out the exact answer, give me an estimate that is reasonable. ( If needed ask: Is it
>1/2 or <1/2? >1 or <1?)

RNP (8 students) TEXT (9 students)
correct correct correct incorrect missing correct correct correct incorrect missing
concept procedure no explan data concept procedure no explan data

6 1 1 2 2 4 1

RNP Correct Responses:

KE: It would be more than 1/2. It would be less than a whole. If you had 2-
thirds, that's more than half and then you put 3-twelfths to add to it, it
would not he a who),

When asked how she knew it wasn't going to be a whole she said: 3-
twelfths isn't very big so you'd add a little more.

JS: About 1 whole. The 3-twelfths - I think 3 of these could fit in the
missing spot.

MG: Greater than 112, less than one. 2/3 is almost a whole. 4-twelfths plus
2-thirds equals one: so 3/12 plus 2-thirds is not quite one. I All done
mentally].

RS: About one. 1/3 is bigger than 1/12. Then 3/12 wouldn't equal 1/3.
And you need 2 more thirds to equal a wInde.

""
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AR: Greater than 112. It takes 3 reds to cover one blue [fourths] so it prob-
ably takes 4 reds to cover a brown [thirds]. So there's only 2 of 3
[browns]. There's a gap when you fill with 3 reds.

KB: I know it's greater than 1/2 because 2/3 is greater than 112. Close to
one, a little less. Because I just think that.

RNP Incorrect Responses

LC: About one. 3-twelfths equals 1-third; 2-thirds plus 1-third equals one.

TEXT Correct Responses

AB: Greater than 1/2 and less than one. I know how many times this could
go into 12 is four and you go four to get the denominator. And it was
four times three, you take three times four equal twelve and then two
times four equals eight and then you get 8-twelfths. Then you go 8-
twelfths plus 3-twelfths equals 11-twelfths and then its more than 1/2
and less than one.

LB: Greater than 1/2; less than one. Couldn't explain why.

ES: Greater than 1/2; less than one. I am just guessing.

MC: About 1 and a little over. You round this off to twelfths (points to 2/31.
Quadruple that121 to 8 , (add to 3/12), that's approximately one whole.
[He estimates after mentally arriving at exact answerl

TEXT incorrect Responses

KH: Less than 112. Unable to explain reasoning

ND: I don't know. Can't guess. (Wanted to use paper and pencil]

KA: More than one. I don't know. It just seems high.

BA: He ate about la I subtract it. I can't do it in my head.

Table 2. Interviews given by classroom teachers

Tell me about where 11/12 - 4/6
1

would be on this number line: 11
1 1

1

-2-

1-2 2

RNP GrOUD (53 students)
correct correct correct correct correct inc or incor incor incor miss

concept proced expl no expl petimanip concept proced expl no expl data

unclear used unclear

20(41%)' 5(10%) 2(4%) 2(4%) 8(16%) 7(14%) 2(4%) 3(6%) 4"
Text Group (57 students)

2(6%) 14(41%) 3(5%) 6(18%) 3(9%! 6(18%) 23"

*Percentages based on available data: RNP 49 students; Text 34 students.
** Missing data for the RNP group represents students who did not complete the 23
lessons. Teachers chosenot to ask students this question. Missing data for the textlx:ok
group represents teacher error. Severalteachers asked the wrong question. They asked
students to place the two fractions on the number line instead of the difference between
the two numbers.
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Discussion
Almost all the RNP students were able to provide a reasonable estimate to the

addition problem given and a large percentage could estimate a subtraction prob-
lem. It should be noted that of the 23 lessons only five dealt with the arithmetic
operations. These lessons developed addition and subtraction concretely and within
context. Paper and pencil procedures for finding fraction equivalencies and com-
mon denominators were not taught.

Differences in students' thinking about fractions arc evident. RNP v.udents'
responses relied on their mental images for fractions considered. Images de;,cribed
relate directly to fraction circles, the manipulative used most frequently in the
lessons. Students used images to determine a fraction's relative size (2/3 > 1/2: 2/
3 is almost a whole) as well as to determine simple equivalencies (3/12 = 1/4; 3
reds equals 1 blue). Textbook students' responses show most students did not use
mental imagery to reason through an addition or subtraction problem. Textbook
students most often relied on symbolic procedures (find exact answer and then
estimate) or were unable to verbalize reasons for their estimate.

Differences in students' ability to verbalize was evident. RNP lessons em-
phasized student discussion of ideas and translations to and from the verbal mode
of representation. The manipulatives themselves became a focal point for student
discussion - students talked about their actions with manipulatives.

The initial studies conducted by the RNP have provided much information
and insight into issues involving the teaching and learning of fractions. Our goal
for this study was to organize a large scale implementation of a curriculum based
on this previous research. Results here provide evidence that large numbers of
classroom teachers can effectively implement well structured, conceptual-based
curriculum which in this study resulted in student learning that was rich in concep-
tual understandings as contrasted to the procedural-based learning characterized
by students using the textbook curriculum.
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A FIFTH GRADER'S ATTEMPT TO EXPAND HER RATIO
AND PROPORTION CONCEPTS

Jane-Jane Lo, Cornell University
Tad Watanabe, .Towson State University

One fifth grade student, Martha, was encouraged to develop her informal ratio and propor-
tion strategies during a six-month teaching experiment. In this paper, we describe the chal-
lenges Martha faced during the teaching experiment. The current study supports the claim
made by Kaput and West (1994) that initial instruction on ratio and proportion which is
based on children's informal strategies should be introduced as early as the third grade.

Ratio and proportion are important concepts in current mathematics curricula.
Very often multiplication and division tasks in lower grades are presented in unit-
rate form, which is a special form of ratio and proportion. In the middle grades,
word problems involving equivalent fractions and fraction comparison can also be
thought of as ratio and proportion situations. For example, to solve the task "Group
A has 4 pizzas and 6 girls. Group B has 6 pizzas and 8 boys. Who gets more pizza,
the boys or the girls?" (Adapted from Lamon, 1993), some students may draw
pictures to figure out that in group A, each member gets 2/3 of a pizza, while in
group B, each member gets 3/4 of a pizza. They can then compare these two
fractions with the pictures. Other students may use ratio and proportion reason-
ing: "If I add 2 pizzas to group A, I would need to add 3 more people. So group A
is like having 6 pizzas and 9 members. So, each member in Group B gets more
pizza." The ability to recognize structural similarity, and the sense of co-variation
and multiplicative comparisons illustrated in such a reasoning process are at the
core of algebra and more advanced mathematics (Confrey & Smith, 1995).

Because of the importance of this topic in school mathematics, children's con-
cepts of ratio and proportion have long been a focus of mathematics education
research, and much has been learned about students' errors and difficulties in solv-
ing ratio and proportion tasks (Hart, 1984; Karpl us, Pulos, & Stage, 1983), as well
as different task variables which affect students' choices of strategies and perfor-
mance (Harcl, Behr, Post, & Lesh; 1991; Kaput & West, 1994).

But what are thc roots of these difficulties? What arithmetic knowledge may
be useful in developing the concepts of ratio and proportion? Vergnaud (1988)
used the term "multiplicative conceptual field" to refer to "all situations that can
be analyzed as simple or multiple proportion problems" (p.141). Mathematical
concepts that are tied to thoise situations nclude, as pointed out by Vergnaud, mul-
tiplication, division, fraction, ratio, proportion, and linear functions. He suggested
that studenb Aevelop these concepts not in isolation, but in concert with each other
over long periods of tirrv. through experience with a large number of situations.
Therefore, research studies on children's ratio and proportion concepts need to
consider also the other concepts that are a part of children's developing multiplica-
tive conceptual field.
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In this article, we report the findings from such an attempt. The analysis is
based on data gathered from fifteen 70-minutc teaching sessions with one fifth
grade student, Martha, over a period of six months. The goals of this teaching
experiment included a) encouraging Martha to develop her informal ratio and pro-
portion strategies, b) documenting the nature of this developmental process, and c)
analyzing how the development of her ratio and proportion knowledge might in-
fluence or be influenced by other constructs of the multiplicative conceptual field.
Specifically, what challenges would Martha face and how would she overcome
those challenges?

We were aware that a longitudinal teaching experiment was needed to fully
study these questions. We hoped this case study of Martha would provide infor-
mation that could be used in a much larger research program. Because of the
space limitation, we will focus our discasion on one particular type of taskthe
missing-value proportion task.

Martha and Hel7 Informal Strategy

Martha was a bright and confident fifth grader. Shc had quite sophisticated
methods for ;:olving missing value proportion tasks at the beginning of the teach-
ing experiment The following are two examples:

Episode 1: 6 quarters can buy 9 candies, how many candies can you buy with 14
quarters?

Martha's strategy and reasoning:

Through doubling, Martha recogniied that 12 quarters could buy
18 candies. Then she figured out that 2 more quarters would get
her three more candies, because 6 quarters was like "3 sections
of 2" and 9 was like "3 sections of 3." Then she added 3 to 18
and got 21.

Episode 2: 15 quarters can buy 40 candies, how many candies can you buy with
21 quarters.

Martha's strategy and reasoning:

When the relationship between 15 quarters and the 6 more quar-
ters was not apparent, Martha attempted to find the unit price -
"how many candies can One quarter get'?" for this particular prob-
lem. She first arranged these 15 quarters into five rows of three
quarters. Through one-to-one distributing, she then assigned
two candies to each quarter. With 10 candies left to be distrib-
uted among 15 quarters, she calculated 15 divided by 10 with
paper and pencil and did not find the result 1 r S useful. Then
she started to point in the air with her two right fingers. She
pointed 8 times first and did not like the result (Wc interpreted
that she was trying to put one candy by each two quarters). She
started over and this time she pointed five times (She was trying
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to put one candy by each three quarters) and was pleased with
the result. Then she started to place 5 cubes one at a time. She
counted what she had left, thought a while, then repeated the
same action with the remaining five candies. By identifying the
relationship, "3 quarters for 8 candies," she added 16 to 40 and
got 56 as her answer.

These strategies showed that Martha had a concept most researchers consider
an important element of proportion conceixs, "homogeneity." There was an im-
plicit notion that a relationship existed between the number of quarters and the
number of candies in the given condition and this relationship needed to be pre-
served between certain subsets of the quarters and certain subsets of the candies,
thus 2 more quarters required 3 morc candies. This approach was different from
the one used by another fifth grader, Bruce, we worked with. To find the correct
unit-price, he would try different unit price like "onc quarter for one and one-half
candy," or "one quarter for two and one-third candy" and iterate the amount over
the number of quarters they matched the given condition.

One major objective of the teaching experiment with Martha was to help her
extend her informal strategies to a variety of problem settings, larger numbers and
difficult ratios. In order to achieve these goals, Martha needed to become more
reflective to the mathematical naturc of her informal strategies. That is, Martha
needed to (a) articulate mathematically the goal of her trial-and-error based ac-
tions, (b) to give mathematical meaning of these actions, thus making the whole
process more systematic, (c) to interiorize her physical actions so that they could
be executed mentally without the sensory-motor actions, and (d) to generalize her
actions across similar ratio and proportion situations. The following is a brief
summary of the major challenges Martha faced when attempting to accomplish
these tasks.

Articulating the Mathematical Meaning Behind the Operations

When the numbers involved in a problem were small, andJor a useful com-
mon factor between numbers could be identified, Martha used strategies similar to
those described above to solve a wide range of ratio and proportion tasks. Neither
the problem setting nor the semantic structure seemed to have much influence on
her (The only exception was the tasks with enlarging or shrinking objects, which
will bc discussed later). However, when the numbers became large and/or the
common factor could not be identified easily, paper-and-pencil computation be-
came necessary. Martha was efficient with the procedural aspect of the computa-
tion, but frequently lost the direction of her solution method in the process of
carrying out the computation procedure.

One source of difficulty came from her inability to articulate the mathemati-
cal meaning behind the operations within a problem context. For example, to
solve the problem "12 quarters can buy 220 candies, how many candies can 3
quarters buy?" Martha quickly carried out the procedure of 220 divided by 12 and
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got 18 remainder 4. But was not sure what to do next. The interviewer asked
Martha to give a meaning to her operation. The following conversation occurred:

M: You can get 18 candles with 4 remainder for 12 quarters.

1: No, you can get 220 candies with 12 quarters.

M: Oh, Yeah, you can get this many for... that's how many tunes 12 goes
into 220. So, do 1 need that?

1. Yes, you do. But you also need to know what that means.

Okay, that is, that is how many tunes that goes into this, um, um, so, ...

if 18 is how many, wait, there is 18 candies for one quarter.

It took some more probing before Martha identified that the remainder 4 meant
there were four more candies needed to be distributed among the 12 quarters. She
then had no difficulty in reasoning this situation with smaller numbers: Since 3
quarters was one fourth of 12 quarters. So. 3 quarters would get one extra candy in
addition to the 54 candies (18 candies x 3) they got first. Martha's explanation
showed that she had started making connection between the numerical operation
and the physically activity of her strategies as described in Episode 2.

Even though we strongly believe the im,iortance of explaining one's math-
ematics actions verbally, we recognize certain "problematic situations" which may
occur in this process. For example. phrases like "2 quarters for 3 candies" or "2
candies per quarter" are commonly used in daily life which, we believed. facili-
tated the connection described above. Other ratio and proportion situations were
harder to describe. For example, Martha was quick to identify the "7 for 2" infor-
mation from the initial statement, "Fish A is 56 cm long and needs 16 pieces of
food each day." But she needed assistance to verbalize the meaning, "7 cm long
got 2 pieces of food." Furthermore, it was less natural to say "3 minute per mile"
or "3 minute for each mile" than to say "3 miles per minute" which might have an
effect on the choice of operation. The operation which involves norming "There
are 3 sets of 2 pairs of socks" (Lamon, 1994) was the hardest to describe. But we
also found that Martha learned quickly from her experience to verbaii,.e a variety
of ratio and proportion situations. Also with the verbalization. she was Icss likely
to confuse the measure spaces in her computation.

Tasks Involving Similar Figures

Similar to the existing literature. Martha found the tasks involving enlarging
and shrinking to be the most difficult ones. "Words" alone simply was not enough
to communicate the ideas of shrinking/enlarging or simila; figures. With the help
of Anno's beautiful illustrations of "Magic Liqukls" in Anno's Math Game III Anno,
1991), as well as drawing and cutting of different geometric shapes, Martha was
able to solve the following task in her unique way:

Episode 3: An object was 45 cai long and 15 cm wide. It becomes 105 cm long
after applying the magic liquid. How wide will it become?
Summary of Martha's strategy and reasoning:
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Martha first drew 9 sets of 5 dots, and explained that 45 cm was
like 9 segments of 5 cm. With the 60 cm difference in mind, she
then tried to distribute the 60 cm differences among these 9 groups
of 5 cm. She knew it would be at least 6 cm for each 5 cm
"cause 9 times 6 is 54." Then she attempted to distribute the
remaining 6 among 9 (groups ot 5 cm). With strategy similar to
that described in Episode 2, she figured out each group would
get another 213 cm. So the growth for each 5 cm was 6 2/3 cm.
"That's how much each 5 cm will grow," Martha explained. Since
15 cm equaled to 3 segments of 5 cm, there would be a total
growth of 20 cm. So she knew the object would become 35 cm
wide.

Even though Martha's strategy helped her identify the correct answer, it was
hard to tell whether she had an image of stretching (Figure la) where the growth
occurred uniformly at "each of the infinitely subdivisible parts of the smaller fig-
ure" (Kaput and West, 1994, p. 284), or her conccpt of change was more additive
in nature as her language suggested (Figure lb). We were also amazed by the
observation that Martha treated this so called "continuous" situation as a "dis-
crete" one. To help clarify the nature of stretching activity, the interviewer intro-
duced the phrase, "each of the 5 cm grew into 11 213 cm" and used the rubber band
to simulate the stretching. Both of these seemed to have some effects on Martha's
thinking. Later on, Martha would figure out the amount of change by dividing the
new length by the old length. and multiplying the result by the old width to solve
similar types of tasks.

(a) (b)

Figure 1

Larger Numbers or Difficult Ratios

The most difficult tasks for Martha were the ones with the second and/or the
third quantity smaller than thc first quantity, and thc numbers involved were less
familiar. Furthermore, this difficulty was apparent across a wide range of ratio
and proportion situations. Because this phenomenon was identified toward the
cnd of the teaching experiment, we were not able to study it as fully as we would
like to. Nevertheless, wc would like to offer our tentative findings for further
discussion.

First of all, Martha was not comfortable working with three-digit (or larger)
numbers. She had no difficulty carrying out the written algorithm quickly and
correctly but was unable to verbalize the meaning of the operation even whcn thc
problem setting involved buying and selling. Second, Martha did not have enough
experience dealing with non-unit fractions directly. Her favorite distributing strat-
egy (as seen in Episode 2) only created unit-fractions and this strategy was less
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effective whcn the numbers involved were large. Even though sharing, dividing,
and folding are common daily experiences which may help interpret the fractional
situations, more carefully developed activities arc needed to provide experience
with non-unit fractions. One potential activity we used in the study was the weighed
sharing, for example, "We bought 150 little toys with 60 dollars. I paid 24 dollars,
you paid 36 dollars. How many toys should I get and how many toys should you
get?"

Discussion

Our interaction with Martha and the other fifth grader, Bruce, (Lo and
Watanabe, 1993,1994) helped us see the conceptual bases of the formal or infor-
mal ratio and proportion strategies. For example, in order to use the unit-price
approach meaningfully, a student has to have a solid understanding for division,
rational numbers, homogeneity relationship, etc.

However, this does not mean that the instruction on ratio and proportion should
wait until children have mastered the four basic operations with both the whole
numbers and fractions as it is currently done in school. Our study indicates that
children can develop sophisticated ratio and proportion strategy as long as they
have a good understanding of numbers and operations which are frequently used
in their daily lives. The attempt to generalize such strategies to larger or fractional
numbers gives rise to the need to develop a more sophisticated understanding of
numbers and operations. Thc current study supports the claim made hy Kaput and
West (1994) that initial instruction on ratio and proportion based on children's
informal strategies should be introduced as early as the third grade.

Furthermore, our analysis indicates that the process of extending the mean-
ings of four operations from single-digit to multiple-digit numbers should not be
taken lightly as "applying analogy." Frequently, students lose their number sense
while focusing all their attention on carrying out the computational procedures.
Martha's difficulty with the meaning of whole number operations may help to
explain why many students do not conserve operations when rational numbersare
involved. The problem is really much deeper rooted.
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INCONGRUITY AND COMPLEXITY OF YOUNG CHILDREN'S
UNDERSTANDING OF SIMPLE FRACTIONS

Tad Watanabe, Towson State University

Fifth grade children's understandings of simple fractions such as 112, 113 and 1/4 were
investigated. The study identified three alternative conceptions of fractions: 1/N is one of
N equal parts, 1/N is one of N equal parts, and parts must fit together to form the whole. In
addition, many participants believed that the perimeter measured the area. This conception
of area measurement also influenced the participants' problems solving activities signifi-
cantly.

In an earlier work (Watanabe, in press, 1991), it was reported that second
grade children held and used different, and often inconsistent, meanings of the
fraction one-half in different contexts. The findings from the reseatch raised a
number of questions concerning children's understanding of fractions. Do older
children hold inconsistent meanings for simple fractions such as 112,1/3, and 1/4?
If so, what arc some of the meanings that arc commonly held by the older stu-
dents? How do they develop these meanings? What arc the factors that influence
children's construction of a variety of fraction meanings? Why is it possible for
some children to hold inconsistent meanings of simple fractions without perturba-
tion? And, finally, what arc the influences of formal instruction and how can
teachers cause perturbation in children so that thcy may construct morc consistent
meanings of fractions? To answer these and other questions, a series of investiga-
tions has been conducted. In this report, I will report findings from a study with
fifth grade students on their understanding of simple fractions. The primary focus
of this report is to identify and describe the alternative conceptions of these par-
ticipants.

Theoretical Framework

Dykstra, Boyle & Monarch (1992) pointed out that the phrase, "alternative
conception" has been used to describe a variety of meanings. I will use the phra.se
to mean, "the fundamental beliefs studnts have about how the world works, which
they apply to a variety of different situations" (Dykstra ct al., 1992, p.621). In this
case, the "world" really refers to the participants' mathematical world. I agree
with Dykstra et al. that calling students' alternative conceptions as "misconcep-
tions" is inappropriate. Children's conceptions arc not at random, but they are
results of rational processes. We must understand how children formulate these
conceptions so that wc can provide appropriate learning opportunities for the stu-
dents.

This iesearch was conducted within a framework consistent with the
constructivist epistemology. The aim of investigation was, therefore, not to evalu-
ate children's fraction understanding measured against some pre-set standards.
Rather, the goal of the study was to understand how children were making scase of
mathematical ideas - in this case, simple fractions. Furthermore, this study was
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conducted with the belief that, if we do take constructivism seriously, the first step
in teaching children mathematics must bc understanding children's understanding,
i.e., we must pay close auention to children's prior concepts (Steffe, 1988). In
addition, it was also assumed that children's imagery (Wheatley & Reynolds, 1993)
and their metaphors (Lakoff & Johnson, 1980) play central roles in their construc-
tion of mathematical meanings. Therefore, the analysis of children's concepts will
include their imagery and metaphors.

Methodology

Sixteen fifth graders, 7 boys and 9 girls, from a single classroom participated
in the research. These children were interviewed individually. The interviews
were semi-structured in that a set of common tasks was prepared in advance, and
each interview started with the same question. However, the interviewer made
changcs based on his on-the-spot analysis.

A variety of tasks were used during the interviews; however, the analysis
reported in this parer is based on the following four tasks:

One-Half Task: In this task, students were shown 16 partially shaded figures
(see Figure 1), and they were asked to identify those that were half-shaded. After
the participant had selected those figures sThe believed were half-shaded, the. inter-
viewer asked her/him to justify how s/he knew those figures were half-shaded.

Cookie Question: For this question, throe figures shown in Figure 2 were
used. These figures were obtained from congruent squares by partitioning them
into two congruent parts in dilThrent ways. The interviewer first showed two cop-
ies of cach shape and demonstrated that they wcrc identical by placing one on top
of the other. He then arranged the two into the square and placed it in front of the
participant. This was done with all three figures. After this demonstration, one
copy of each shape was given to the participant, and s/he was asked to pretend they
were their favorite kind of cookies. Then, thc question was posed: You are really
hungry, but you can have only one piece. Which one would you choose? After thc
participant selected one, s/he was asked to justify their selection. If the participant
picked one shape as thc largest, s/he was reminded of the initial demonstration and
asked if that would help them make her/his decision.

Tangram Task: The seven tangram pieces were placed in front of the partici-
pant, arranged into a square. An identical square with outlines of each piece drawn
inside was also presented on a separate sheet of paper. The participant was then
asked to identify what part of the square each tangram piece was.

Identification: Different partially shaded figures were presented on grid pa-
pers. The participants were asked if the shape was 1/2 (or 1/3, or 1/4) shaded.

Findings

One of the alternative conceptions identified may he summarized in the phrase,
"1/N is one of N equal parts." It is true that onc of N equal parts is 1/N of thc
whole, and this is probably the most common way we approach fractions in lower
grades. I lowever, for many of the participants, this conception of fractions limited
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their ability to deal with a number of tasks. There were two versions of this alter-
native conception.

1IN is one of N equal parts: SW selected all figures divided into two parts
with one part shaded as one-nalf shaded, including figures (I) (o) in Figure I that
w:le not half-shaded. He had also constructed some form of understanding that 2
out of 4, 3 out of 6, etc., were equivalent to one-half. Therefore. the only shape he
did not select as half-shaded was figure (f). Obviously he paid no attention to the
size relationship among the parts, nor the relationship between the shaded part and
the whole. Rather, for him, the important factor is the number of the parts and the
relationship between the number of shaded parts and the number of unshaded parts.
Because this alternative conception does not consider size relationship among parts
of the whole or between the part and the whole, the resulting "fractions" have no
quantitative significance. Therefore. SW decided that the triangular shape in the
Cookie Question was the largest of the three even though, according to his concep-
tion, all three figures are one-half of the same square.

1/N is one of N equal parts: With this alternative conception. besides having
to have N parts, all parts must be equal in size. For example, in response to an
Identification question both KR and LD decided that the following figure shown
was not 1/3 shaded because the three parts were not equal in size. With this alter-
native conception, the children were paying attention to the size relationship. but it
was the size relationship among the parts, not between the part and the whole, that
occupied their attention.

Another alternative conception identified
was: parts must fit together to make the whole.
This conception caused problems for three of the
participants as they tried to decide what part of
the large square the parallelogram tangram piece
was. Many of them tried to cover the square us-
ing the parallelogram piece, and one even used
two small triangles to make the parallelogram to
assist her effort. For most of them, the fact that
the parallelogram will not cover the square evenly was the major problem. KR
explained why she could not find the answer by saying. "not all the sides are straight,
so it won't fit evenly in the box."

Another major alternative conception influenced these participants' problem
solving processes involving fractions, although it was not exactly a conception of
fractions. This alternative conception was. "perimeter measures the area." In the
Cookie Question, eight of thc 16 participants selected one of the three figures as
the largest even after they were reminded of the initial demonstration. Only two
participants were able to decide that thc three shapes were the same size when the
problem was posed initially. The most common strategy used by the participants
to justify their selections, usually the triangular piece, was to compare shapes by
placing them next to each other and con ipare the lengths of thc sides. Even when
one shape was placed on top of another, many participants simply compared thc
lengths of "corresponding" sides, not th,:t area. For them, comparing the lengths of

Figure 3. KR and ID said this
figure was not I/3-shaded
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sides was a legitimate way of comparing the "largeness" of the pieces. Although
this alternative conception may not bc directly related to children's conception of
fractions, it may bc the case that their work with fractions may have facilitated this
conception. For example, during the Identification task, KR often counted the
number of squares along each side of the both shaded and unshaded figures. This
was a valid way for him to tcst that the parts were equal, and it works fine with
most typical fraction exercises where the parts are congruent. If the measures of
corresponding sides are equal, thcn, the parts are equal in size. Such an experience
may have encouraged the formation of this alternative conception.

Discussion

Even among fifth grade students who participated in this study, the under-
standing of fractions was very much context txmind. Thus, they were very capable
of responding correctly to the One-Half tasks, yet half of the participants were
unable to reason that the three pieces of the Cookie Question were the same size, a
half of the square, even after they were reminded of the initial demonstration.
These participants had received at least three years of formal instruction on frac-
tions. They had studied fraction arithmetic in fourth grade and they were study. ng
decimals. Yet, many participants have little number quantita;ive sense with frac-
tions.

Furthermore, many of the participants' alternative conceptions identified in
this study appeared to have grown out of the formal instruction, unlike many a'iter-
native conceptions in science such as, "motion implies force." This is both dis-
couraging and hopeful. It is discouraging to learn that the formal instrucuon is
contributing to the formation of these alternative conceptions. But, it is nopeful
that if mathematics educators become aware of the possible problems with some
of common ideas about fractions, they would be able to make appropriate adjust-
ments so that they can keep these conceptions from being developed. It appears
that the common part-of-a-whole approach to fractions must be complemented
with much more emphasis on size relationships, especially thc relationship be-
tween the part and the whole.
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INTRODUCING FIFTH GRADERS TO DECIMAL NOTATION
THROUGH RATIO AND PROPORTION

Andrea Lachance, Cornell University
Jere Confrey, Cornell University

This paper reports on a teaching experiment involving decimal instruction. After doing
extensive work with multiplication, division, ratio and fractions through an innovative math-
ematics curriculum, fifth grade students were introduced to decimal numbers. To develop
their understanding of decimal notation, students worked through three open-ended, con-
textual problems which encouraged thcm to make connections between decimals and previ-
ously encountered mathematical constructs such as ratio and fraction. After instruction,
students' performance on decimal tasks indicate that students developed a robust under-
standing of decimal concepts. Based on these positive results, the authors assert that build-
ing decimal instruction upon students' ratio reasoning and fraction sense is a key compo-
nent to helping students develop meaningful strategies for understanding and working with
decimal numbers.

The various difficulties elementary school students have as they begin to work
with decimal fractions have been well documented by mathematics education re-
searchers (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Resnick, Nesher,
Leonard, Magone, Omanson, & Med, 1989; Wcarne & Hiebert, 1988, 1989).
Hiebert and Wcarne (1985) have hypothesized that children's struggles with deci-
mals stem from the fact that what students learn about decimals is largely syntac-
tic. In many schools in the United States, students are taught the rules governing
decimal operations but arc not given sufficient timc or opportunity to develop a
deep understanding of the notation itself. Without developing a meaning for the
symbols from which decimals are constructed, students struggle to conceptually
understand and successfully compute with decimals.

In the past, several teaching experiments involving decimal instruction have
been conducted in an attempt to understand what typcs of classroom activities
might help students construct a meaningful understanding of decimal numbers
(Hicbcrt, Wcarne, & Taber, 1991; Wearne & Hiebert, 1988, 1989). However, these
teaching experiments have typically treated the teaching of decimals as a distinct
and separate instructional unit (Ibid.). Little attention is given to the elementary
school mathematics curriculum in which the decimal instruction is embedded and
where in that curriculum such instruction belongs. Consequently, minimal effort
in thc research of decimal instruction has been given to how the understanding of
decimals is connecteu to the understanding of other mathematical constructs pre-
sented earlier in the elementary school mathematics curriculum.

In this paper, wc will report on the results from a teaching experiment involv-
ing instruction of decimal fractions embedded in a unique curriculum. Students
who participated in this curriculum appeared to usc their prior mathematical expe-
riences with ratio and fractions to develop a strong conceptual understanding of
decimal notation.
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Research Context

The novel curriculum in which this decimal instruction took place is built
around the construct of splitting (Confre.y, 1994). Splitting actions, which include
sharing, folding, and magnifying, arc believed to stem from primitive notions which
occur intuitively in children. Since these notions can lead directly to multiplica-
tion, and concurrently division and ratio, Confrey (1994) has argued that in order
to support the intuitive splitting actions of children, students should be introduced
to the constructs of multiplication, division, and ratio as a trio, early in their school-
ing. Consequently, Confrey developed a curriculum in which students are first
introduced to all these multiplicative constructs simultaneously in the third grade.

Over the past three years, Confrey has piloted her curriculum with a class of
elementary school students (n = 20) in a public school of a small city. When these
students were in third grade, they were introduced to multiplication, division, and
ratio as a trio of mathematical ideas. When this same class was in fourth grade,
instruction focused on strengthening the construct of ratio and introducing frac-
tions as a subset of ratio (Confrey & Scarano, 1995). As fifth graders, having
developed a rich network of mathematical ideas, students were then introduced to
decimal fractions. This paper focuses only on thc aspects of this curriculum re-
lated to decimal instruction.

Decimal Instruction

Students' introduction to decimals was done over a six-week period and was
built around three open-ended, contextual problems which students worked on in
small groups. The first of these problems gave students the opportunity to review
and further develop the ratio concepts they encountered earlier in the curriculum
and to begin to connect these concepts to decimal notation. In the second and third
contextual problems, students work.' directly with decimal notation and compu-
tation involving decimals.

In addition to the contextual problems, numerous whole class discussions were
held. The whole class discussions were used to help students with decimal con-
cepts and operations which they would need to work on the contextual problems
and on the homework. Students were typically assigned homework four nights
per week and worked on these assignments individually. The homework gave
students thc opportunity to further practice and develop problem-solving and com-
putational skills with decimals.

Assessment Tools

Students' understanding of doe imal concepts was assessed through a series of
written and interview tasks. All twenty students were tested prior to the start of
decimal instruction and were given a similar test at the end of decimal instruction.
Thc items on the prc and posttests were taken largely from previous research stud-
ies on decimal instruction (Hiehert & Wearne, 1985; Hiebert, Wearne, & Taber,
1991; Wcarne & }lichen, 1988, 1989; Resnick et al., 1989) and included a diver-
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sity of decimal tasks. In addition to the written test, four students worked on
decimal tasks in an interview setting two weeks after decimal instruction ended.
Tasks given in interviews werz similar to the tasks on the written tests.

Results

In general, the students in this study performed exceptionally well on all writ-
ten and interview tasks. Individually, only.three students out of twenty did not
show significant improvement (p-value < .05) between pre and posttests. As a
group, the pretest average of 15.5% correct responses rose to 80.8% correct re-
sponses on the posttest (Table 1). A paired t-test conducted on this data revealed
the group's improvement was highly significant (p < .001).

The items on the written tests were grouped into four different content scales:
tasks relating to the meaning of decimal notation, ordering tasks, fraction to deci-
mal tasks, and computation with decimal tasks. Group performance on each scale
was computed to get pre and posttest averages (sec Table 1 for scale averages). On
all four scales, student improvement from pre to posttest was highly significant (p
< .001).

Table 1
Class pre and posuest averages on the items in each content scale and on
overall written test.

Scale Pretest Postest:
Meaning of Decimal Notation 41.7 80.6
Ordering Tasks 43.5 84.0
Fraction to Decimal Tasks 38.8 88.8
Computation with Decimals 18.3 67.8

Overall 15.5 80.8

Because many of the items on thc written tests were taken from other studies
done on decimal instruction, it was possible to compare the performance of stu-
dents in this study to the performance of student.s in other studies. In thcir investi-
gation of the invented rules students usc to order decimals, both Resnick ct al.(1989)
and Sackur-Grisvard and Leonard (1989) classify students according to the type of
rule they used to complete an ordering task. They also report on what percentage
of their sample consistently ordered decimal numbers correctly, and thus could be
classified as experts.

For the purposes of comparison, we reviewed the individual student's perfor-
mances on decimal ordering tasks in our study. Fourteen students out of twenty
got all ten of the ordering tasks on the written tasks correct and could thus be
classified as experts. As the data in Table 2 illustrates, the percentage of students
in our study who could be classil led as experts is substantially higher than the
percentage of experts found in other groups of students reported in other studies.

In another study, Hiebert & Wearne (1985) collected data on students' perfor-
mances on different computation tasks. Table 3 presents both the addition and
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Table 2
Percent of students classified as experts in completing decimal ordering tasks
across three studies

Study Group #students %experts
THIS STUDY (1995)

U.S. Fifth Graders 20 70.0
Resnick et. al. (1989)

U.S. Fifth Graders 17 18.0
Israeli Sixth Graders 21 19.0
French Fifth Graders 38 53.0

Sackur-Grisyard & Leonard (1985)
French Fifth Graders 49 53.1
French Sixth Graders 57 52.6

Table 3
Percent of correct student responses on decimal computation items found in the
!Hebert & Wearne (1985) study and in this study.

H&W Grade 5 Grade 6 Grade 7 Grade 9 This Studys Grade 5

Items: n=99 n=55 n=272 n=196 Items: n=20
5.1+,46 20 62 70 79 4.5+8.6 80

6+.32 6 25 39 77 6.24+8+.873 70

.86-.3 12 35 51 81 5.42-.3 75
4.7-.24 5 42 53 69 7.6-.34 85

subtraction items and the student performance data on these items from Hicbcrt &
Wearne's study along with similar information from Our study. In comparison to
students tested in Hiebert & Wearne's study, the students in our study performed
substantially better than their peers in the same grade, and at least as well or better
than older students.

Discussion
From the results presented above, it seems evident that students in our study

developed a strong and robust conceptual understanding of dec imal nouition which
allowed them to successfully complete a variety of decimal tasks. From our test
data and our observations and interviews with these students, we believe that stu-
dents' prior work with ratio and fraction was crucial to students' ability to develop
a deep, conceptual understanding of decimals numbers.

For instance, because of their work with ratio and fractions, students viewed
decimals as simply another form of fractions. In response to the question, "What
are decimals?", three students (of the four who responded) said:
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Carrie: A way to write fractions in base 10.

Max: Well, I just think it's sort of like a fancy way of writing fractions. Like
if you can't use fractions in everything like the computer or calculator,
you need to adapt it.

Kai: I think it's just a shorter way of writing fractions. Instead of writing 97/
100, you just do point 97.

Such a vision of decimals gave students great flexibility in dealing with these
numbers. When they had difficulties, they simply converted the decimal numbers
to fractional form. In fact, whenever students were initially introduced to an op-
eration (addition, subtraction, multiplication, or division) with decimals, their first
reaction was usually to use fractions to complete the given computation.

In completing ordering tasks, students often used ratio reasoning. For ex-
ample, in comparing .8 to .34, one student said, ".8 goes to 10 and .34 goes to 100.

8 is a lot closer to 10 than 34 is to 100, so .8 is bigger." In addition, students who

used the "add a zero to the end trick" to compare two decimals of different lengths

(e.g..8 and .08) usually understood why the "trick" worked. "Since .8 is 8/10 and
8/10 is equal to 80/100, I can just write .8 as .80. It's the same thing," explained

one student.

Conclusion

As the above examples illustrate, students frequently and easily connected
and applied their knowledge of ratio and fraction to their work with decimals. It is

our contention that the ratio curriculum and its approach to decimals supported

and encouraged these connections and applications. Thus, given the meaningful,
conceptual understanding of decimals that the students in this study developed, we
recommend that ratio and fraction concepts be developed earlier and more broadly
in the elementary school mathematics curriculum. Effective decimal instruction

can then be grounded in students' understanding of these multiplicative constructs.
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LINKING INFORMAL KNOWLEDGE AND FORMAL SKILLS:
THE CASE OF PERCENTS

Lynda Ginsburg, University of Pennsylvania
Iddo Gal, University of Pennsylvania

This study examined adult students' informal knowledge of percent and its relationship to
their computational skills. Sixty adults studying in adult education programs were inter-
viewed to ascertain their ideas of the meanings of benchmark percents, 100%, 50%, and
25%, as they appear in advertising and media contexts; ability to use these percents in
everyday mental math tasks; and visual representations of these percents. Students also
completed written computational percent exercises. Students' responses were examined to
determine the nature of their informal knowledge and skills and number of patterns were
identified. The range and fragility of student responses and the diversity of knowledge gaps
suggest the acquisition of isolated ideas, but the absence of elalx,rated frameworks.

Many studies have been published in the last few decades exploring the infor-
mal knowledge of mathematics that students develop. Much of the research has
examined the mathematical knowledge young children bring with them to their
early schooling experiences (e.g., Carpenter, Moscr, and Romberg, 1982). Other
studies have focused on the mathematical knowledge older children or adults, usu-
ally with little or no prior schooling, develop in out-of-school, functional contexts
(e.g., Nunes, Schliemann, and Carraher, 1993). This research demonstrated that
individuals can and do acquire informal mathematical knowledge as it is needed
without the benefit of school learning and that this knowledge has important simi-
larities to and differences from school-based knowledge.

Daily functioning in numerous real-world situations (e.g., dealing with work-
related tasks, shopping, and understanding messages in the media) necessitates
frequent encounters with percents. Therefore, it was postulated that almost all adults,
even those with limited school-based knowledge, will have formed some ideas
about the meaning of the percents they encounter and developed strategies to sup-
port percent related activities. Many everyday tasks do not require extensive com-
putations but rather interpretive skills based on an understanding of the ideas un-
derlying the percent system, "number sense," and mental math skills relating to
percents.

The goals of the study were to examine some aspects of the informal knowl-
edge of percent displayed by adult literacy students, identify its limitations and
gaps, and examine the relationship between this knowledge and computational

skills.

Design of the Study

Semi-structured interviews were conducted with sixty adults studying in 7
urban and suburban adult education programs. Thc 57 women and 3 men ranged in
age from 18 to 53 years (rnean=27.5) and had completed a mean of 10,6 years of
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schooling. While all interviewees were studying mathemaucs, nonc had begun
working with percents in their present programs.

The adults were presented with explanatory, shopping, visual, and computa-
tion tasks involving the benchmark percents 100%, 50%, and 25%. They were
shown everyday percent-laden stimuli such as newspaper articles and advertising
flyers to elicit their ideas about five separate but related facets of the role of 100%
as the basis of the percent systcm. Questioning about 50% and 25% centered around
the adults' interpretations of the meaning and use of the percents in shopping con-
texts and the mental math strategies they use in those situations and in visualiza-
tion tasks. For the computation task, the students completed a series of
decontextualized percent exercises.

Findings And Discussion

Knowledge about 100% as the basis of the percent system

The 5 facets of the meaning of 100% explored in the study and the percent-
ages of students' appropriate responses arc shown in Table I. Most of the crrors in
the visual task involved confusion between 15% and one-fifteenth, with students
dividing the circle into 15 parts and identifying onc part as "15%."

The question that caused thc most difficulty required students to justify their
use of 100% and clarify its meaning. Of those whose responses were considered
appropriate, some at first seemed to be unsure or tentative about their ideas, but
then appeared to be crystallizing and thinking through their ideas during the re-
sponse process, suggesting that their ideas about 100% as the basis for percent
may be fragile and still evolving.

Interviewer: Why did you use 1(X)%?

Dorothy: It all depends on how you're breaking it down. You can usc any
number for a whole: fifty fiftieths, four fourths.

Interviewer: And when you are dealing with percent'?

Dorothy: It would have to be over 100, 200% could be a whole, 250%
couldn't be a whole because that breaks the rhythm.

Interviewer: So which numbers can be a whole?

Dorothy: Zeros: 100, 200, 300.

Interviewer: As high as you want?

Dorothy: All depends on what type of mime) you're dealing with. Got 10
million dollars (pause). No keep it at 1006., forget ihe 2(X)%, etc.
100% is a whole.

In their justifications, 48% of the adult students seemed to be unsure that 1(X)%
represents a whole and is the reference point for other wrcents. Some students
were unable to separate percent ideas from the contexts in which thcy were en-
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Table 1
Percentages of Appropriate Responses for Each Facet of 100% as the Bans of
the Percent System

Grade level
Total
n=60

6th and below 7th-8th 9th and above
Facet n=15 n=24 n=15

Unclass.
n=6

Percents lie on a
0-100 scale.

Percentages of the
of a whole sum
to 100%

Visual representation
of % as proportional
part of whole.

100% mean whole
of all.

Justify use of 100%
as the reference
point for percents.

87%

80%

67%

80%

40%

96%

79%

71%

83%

38%

93%

100%

67%

87%

80%

100%

67%

100%

83%

67%

93%

83%

72%

83%

52%

countered while others ignored the proportional nature of percent and treated per-
cents as absolute numbers.

Interviewer: Would you always use 100% [to evaluate 90% in 'This new test
detects cancer correctly in 90% of the casesT

Theresa: Yes. In a way, you don't know. It all depends on how many cases
they used. 90% is good out of 1(X)% of the people. If you have
250. 90% is not good. It's not half of 250 people. ;25 would be

half.

The number of appropriate responses by students for all 5 tasks involving
100% are shown in Table 2. A majority of the students, including a sinble group
from the most advanced cohort, appeared to grasp some facets of thc meaning of
100% but were unable to grasp others, demonstrating gaps, limitations, or incon-
sistencies in knowledge. There were no patterns of errors: knowledge gaps varied
across students within all grade level groups.

Response patterns across tasks involving 50%

When asked about thc meaning of 50% as it appeared in department store
sales flyers, all students responded that 50% means one-half. . However, when
asked to explain their statement that 50% is thc same. as one half, 40% of the
students did not relate 50% to 100% but rather explained the meaning of 50% as
an artifact of our monetary system: "because 50 cents is one half of a dollar" or
"$50 is one half of $100."
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Table 2
Percentage* of Students Within Grade Levels by Number of Appropriate
Responses to Questions Abcut 100% as the Basis of the Percent System

Grade level

Number of 6th and below 7th-81h 9th and above Unclass. Total
Appropriate responses n=15 n=24 n=15 n=6 n=60

0 7% 0% 0% 0% 2%
1 0% 4% 0% 0% 2%
2 20% 4% 7% 0% 8%
3 13% 29% 13% 17% 20%
4 27% 46% 27% 50% 37%
5 33% 17% 53% 33% 32%

Percentages arc calculated within wch grade level. Columns may not sum to
100% due to rounding.

One third of thc students were able to solve all tasks involving 50%. Thirty
students (50%) were able to solve tasks in shopping and visualization contexts, yct
failed to solve at least One of the two mathematically equivalent written computa-
tional problems. Perhaps thc test-like environment requiring written responses cre-
ated an expectation that problems had to be solved using school-based computa-
tional algorithms and prevented students with limited knowledge of percent algo-
rithms from assuming that they could create mental (or visual) models of test items
to support meaning. The remaining student.s (17%) displayed various patterns of
responses to questions involving 50%. Included in this group were two students
who were able to solve one written computational task (50c, x 10=?) but were
unable to solve either an arithmetically equivalent shopping task or the visual task.

Response patterns across tasks involving 25%

Reliance on the monetary system was also found in student.s' explanations of
thc meaning of 25%. The responses Of 77% of thc students referred to fractions
(one-fourth or one-quarter), money (25 cents off a dollar), or a combination of
fractions and money. ("One quarter" was a difficult response to classify since the
students could not always decide if they meant a fractional part, the namc of a
coin, or both.) The remaining 23% of the students were unable to explain the mean-
ing of 25% (in the context of "25% off sale") although they did know that 50%
was one half.

Of the 60 interviewees, 12 students (2004 ) responded appropriately to all tasks
involving 25% and seven (12%) were unable to respond correctly to any task. The
remaining students exhibited a variety of patterns of responses with the two most
common patterns being success with only the visual task (23% of all students),
and success with only the written computational task (15% of all students).
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General trends across tasks involving 100%, 50%, and 25% and
implications

Using a criterion of a maximum of one incorrect response to the tasks within
a category (i.e., 4 correct out of the 5 tasks involving 100%, 4 out of 5 tasks involv-
ing 50%, or 3 out of 4 tasks involving 25%), success rates in the categories of
"I00%" and "50% were quite similar. Of the 60 students, 41 (68%) were suc-
cessful with "100% tasks" and 43 students (72%) were successful with "50% tasks."
When individual performance across these two categories of tasks was consid-
ered, 55% of all students wcrc successful in both catcgories and 15% were unsuc-
cessful in both categories. The remaining student.s (30%) were successful in only
one of the categories, with about half successful in each category.

The finding that 30% of thc students were successful in one category but not
the other suggests that the ideas targeted by the two categories of questions may
not inform each other. A demonstrated knowledge of onc set of ideas or skills does
not necessarily lead to knowledge of the other; each body of information or skills
is attainable in isolation for these students. Apparently, some students have some
knowledge of the different facets of 1(10%, yet this knowledge does not help them
sufficiently to make sense of situations in which 50% appears. Other students real-
ize that 50% is equivalent to one half and arc able to apply that knowledge in a
useful way, yet do not have an elaborated conceptualization of a system based on
100% within which 50% has meaning. Perhaps the knowledge of the meaning and
application of 50% is not mathematically based but was developed through per-
sonal experiences and encountering percent words in everyday usage in which the
term "50%" is treated as a word synonymous with "half" rathcr than as part of a
mathematical system.

Thc tasks using 25% were more difficult for students in all grade level groups
than were the 50% tasks. Yet, 24 students (40%) were successful with at least three
of the four 25% tasks, including 2 students from the group with the lowest scores
on the standardized tests. The successful students were found to be those who also
demonstrated proficicncy on thc "knowledge of 100%" questions (only I of the 24
students responded appropriately to less than four of the five questions) and on the
tasks using 50% (only 2 of thc 24 studnts were not successful here and all of their
missed questions were written computations). These data suggest that those who
were competent in comprehending and using 25% also demonstrated both a knowl-
edge of the rolc of 1()0% within the percent system and the ability to use at least
one other percent (50%) in a meaningful way.

On the other hand, demonstrated knowledge of the facets of 100% did not
necessarily imply an ability to activate that knowledge across a variety of tasks
using 25% (for 18 students), nor did an ability to work with 50% necessarily trans-
fer to an ability to work with 25% (for 21 students). Knowledge of 100% and the
ability to use 50% appropriately, to the extent these constructs were measured, was
apparently not always sufficient for students to be in a position to generalize their
knowledge to apply to 25%

405 4 3



As expected, the highest grade-level group was the most successful with the
various percent tasks. However, even within this group, there was evidence of
gaps in understanding as well as some limitations on how and when knowledge
was applied. Less expected was the ability of many in the lowest grade-level group
to respond successfully to many of the questions. Apparently, many of the adult
students who are classified as needing much remedial mathematics education (based
on existing testing practices), do have some knowledge of the percent system and/
or some familiarity with 50%; this knowledge, however, often seems to be limited
to isolated informal ideas that do not inform activities involving 25%.

ivlany of the adult students in this study have acquired bodies of informal
knowledge of percent and arc able to apply that knowledge in some contexts but
net others. Often this knowledge includes misinformation or gaps, but this does
not sccm apparent to the individual. Much of the students' knowledge of percent
consists of isolated pieces of information tied to those contexts in which it was
developed, either everyday contexts or school contexts, but is not integrated into
an elaboratod mathematical structure.
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PRESERVATION OF THE COMMON REFERENT IN THE ADDITION
OF FRACTIONS: A CASE STUDY

Marta Elena Valdemoros, Research and Advanced Studies of the IPN, Mexico

This case study was carried out with a student who was 9 years old and in the fourth grade
when the the study began. Shc was sele6ted after the application of an exploratory question-
naire to 66 pupils in primary school. The main features of the case were the absence of a
common referent and a corresponding unit to the free generation of references related to the
addition of fractions. The girl was interviewed twice with the same instrument. The inter-
views consisted of 10 tasks. We confirmed that the link generated by this student between
different classes of objects (referents) through a sum affected only fraction references (not
natural number references). Likewise, the child was unable to establish a unit when facing
the requirement to construct the additive situation by her own means while she could assign
sense, recognize and select an adequate unit in simple tasks, and reconstruction of whole
processes.

The problem considered herein centers on the difficulties experienced by the
child in the elementary school, when he or shc must assign a common referent to
the addition a fractions. Arc such difficulties of a general nature and do they arise
in the context of addition of natural numbers? Or, rather, do they come out in the
field of fractional numbers, connected with cognitive processes of greater com-
plexity?

Evidence thtained in some previous studies (Valdemoros, 1993a, 1994a) of-
fers direct support to the outline of this problem, since thcy allow one to recognize
that most of the students included in that research (attending third and fourth grades
of primary school, whose teaching of such numbers is undertaken in these grades
in Mexico) relate different concrete referents with certain sums of fractions; that
is, they refer a specific additive situation to various kinds of objects. Likewise, the
aforesaid study established that the difficulty to construct compatible references
with the addition of fractions has always been accompanied by the absence of a
unit of measure to which each fraction involved in the sum is referred, in the field
of "problem invention" by those students.

Supported by the weight that linguists and semiologists (Ducrot & Todorov,
1981; Eco, 1991, among others) assign to references, at the level of meaning :or-
mation, we grant here great attention to those, in the concrete framework of addi-
tion of fractions. The correlative concept of elaborations built around such refer-
ences is constituted by the unit, which has been widely recognized as a fundamen-
tal cognitive component, both for the construction of fractional number idcas (Piaget
et al., 1966; Kieren, 1983, 1984, 1988; Bergeron & Herscovics, 1987; Hicbert &
Behr, 1988) as well as for the resultant integration of their relations and opera-
tions.
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Method

In order to makc an in-depth inquiry, we designed a case study for third and
fourth grades of primary school. The institution chosen was a public school with a
good performance within the local educational system.

So as to select the subjects that would be interviewed, we administered to 66
students a questionnaire comprised of 13 adaptations of tasks previously pilot-
tested and submitted to the analysis of several specialists in thc arca. We assigned
the questionnaire an eminently selective character, since it was the starting point
for the casc studies. The questionnaire included 5 problems involving the identifi-
cation of fractions (with the meanings of the part-whole relation, mcasure, indi-
cated quotient, and ratio); 4 tasks centered on the equivalence relation between
fractions, 2 problems referred to the pictorial resolution of a sum (in the presence
of a given figure), and 2 tasks requiring the "invention of a problem" by the pupils
(each one related to a sum and a subtraction of fractions and without any given
figure).

Seven children were chosen to carry out individual, videotaped interviews.
The design thereof was specific for each case taking into account its particular
profile (in spite that they all showed difficulties with the construction of refer-
ences, the intrinsic details thereof differed). All cases were controlled by mcans of
a triangulation scheme consisting of the comparison of results obtained during the
interviews with responses to the questionnaire and with thc notes of an observer.
The results were submitted to a qualitative analysis (Valdemoros, 1993b,
Valdemoros & Orendain, 1994, Valdemoros & Camp, 1994).

The case presented herein is that of Belen (a 9-year-old fourth-grade student)
who exhibited good performance on the questionnaire, where (at the "problem
inventing level") the corresponding task required hcr to "Invent a problem which
contains 1/5 + 1/10," and she wrote:

Two ladies arc going to make a cake and they need 1/5 of mix-
ture and 1/10 of lard. How much did the two of them get to-
gether? 1/5 + 1/10 = 15/50 (a text without a common referent
for addition and lacking of a unit of measure--a common occur-
rence among these children ).

This obstacle was observed for 23 children of the described group (that is, 23/66).
Beim was interviewed twice. The first interview took place some weeks aftcr

the application of the questionnaire. The second interview was developed eleven
months later.

Helen's Interviews

For Belen's case study we designed ten different tasks (Valdemoros & Campa,
1994):

The "re-invention" of an additive problem with fractions from the
questionnaire (see Fig. 1).
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TASK 1

Invent a problem which contains 1/5 + 1/10

Figure 1

Two tasks referred to the "invention of problems" with natural num-
ber addition and subtraction (see Fig. 2).

TASK 2 TASK 3
Invent a problem which contains: 12+6 Invent a problem which contains: 19-9

Figure 2

Three identification tasks of certain fractions with the aid of con-
crete materials and in the presence of two continuous wholes and a
discrete whole (see Fig. 3).

TASK 4 TASK 5 TASK 10

Use the blocks to represent
3/4 of this figure

Usc thc blocks to represent
2/5 of this figure

identify 1/5 in the following
set:

d t=7 C=7 0 t=r

Figure 3

Two tasks for the reconstruction of the continuous whole from the
part (see Fig. 4).

Figure 4

TASK 6 TASK 7

f is 113, drav. 1 ll i% 1/4, draw I
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Finally, two addition and subtraction tasks with fractions, in the pres-
ence of a certain figure and by means of the manipulation of con-
crete materials (Zullie's geometrical blocks, 1975). Sec Fig. 5.

TASK 4 TASK 5

In this figure use the blocks
to represent: 2/4 + 1/4

In this figure usc thc blocks
to represent: 1 - 216

Figure 5. This was the common design for tx)th interviews maintained with Be len.

The Main Results and Their Interpretation

During the first interview, when faced again with the task of fraction addition
from the questionnaire, Be len "invented" a text of similar in nature to the above,
with identical difficulties and semantic distortions (that is, she generated a text
without a common referent for the sum and lacking of a unit of measure). She
"invented" and adequately solved the natural number addition and subtraction prob-
lems. Be len expressed correct solutions with respect to the elementary activities of
fraction recognition and reconstruction of the whole from the part. The girl, with
more caution and effort, did also adequately solve the fraction addition and sub-
traction tasks, in the presence of an already identified figure and using concrete
materials (geometrical blocks of different shape and size).

In the second interview, Be len exhibited results similar to those on the previ-
ous instrument. When we asked her what part of Task 1 could be changed, Belen
wrote that thc text was adequate and she wouldn't change anything in it. The girl
easily solved the other tasks included in the second interview (specifically, the
elementary activities of fraction recognition, the reconstruction of the whole from
thc part, and the natural number addition and subtraction problems). With more
difficulty, she also corwly solved the fraction addition and subtraction tasks in
the presence of an already identified figure and using concrete materials (Zullie's
blocks).

Confronting both interviews, we confirmed that the main progress evidenced
by Belen was the final development of a more efficient algorithm (during the sec-
ond interview she wrote: 1/5 + 1/10 . 3/10). However, thc cTniral feature of this
casethe generation of a text without a common referent for the sum and lacking
of a unit of measuredidn't change.

In general, Belen did not exhibit difficulties in recognizing the unit in simple
fractional contexts (identification of the fraction tasks). The girl could also config-
ure the unit from the part. She also did not produce errors when she added and
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subtracted fractions in more complex situations and using concrete material (Tasks
8 and 9), because the respective unit of each task was already established. But, the
most complex requirementthe selection of a unit for the sum of Task 1couldn't
be adequately solved by Bclen when she produced the corresponding text. Due to
this outcome, we infer that the unit couldn't be "re-signified" by the girl (that is,
endowed with new meanings) at the last elaboration level where there were some
evidences of incomplete semantic processes.

With regard to the loss of the common referent for addition and the construc-
tion of unsuitable additive referents whcn Bclen chose a referent without taking
into consideration the need of its preservation in the frame of addition, we con-
firmed that it had its origin in the terrain of fractions, The second interview showed
us that the problem we detected during the first interview didn't disappear with
posterior teaching. Maybe it was not considered an important cognitive obstacle
for the student.

Conclusions

We confirmed that the link generated by Beim between different classes of
objects (referents) through a sum only affected fraction references (not natural
number references). She was able to assign sense, recognize and select an ad-
equate unit in simple tasks, and complete reconstruction of whole processes.

The "re-signification" of unit in additive contexts (that is, the production of
new meanings for unit in more complex frames) was possible when we presented
her a certain figure related to the respective task. Facing the requirement to con-
struct the additive situation by her own means, Belen was unable to establish an
unit.

Perspective of this Case

We arc now carrying out other studies of the difficulties related to the preser-
vation of a common referent for addition of fractions among students in diverse
public schools. The conclusions stated in the Belen's case allow us to establish the
hypotheses of the ncw studies. The design and results will be communicated in
future reports.
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A PROPOSED CONSTRUCTIVE ITINERARY FROM ITERATING
COMPOSITE UNITS TO RATIO AND PROPORTION CONCEPTS

Michael T. Battista, Kent State University
Caroline Van Auken Borrow, Kent State University

In this article, we attempt to describe the meanings students construct and the conceptual
advances they make as they deal with ratio and proportion problems. We argue that a
critical factor in students' comprehension of and solution to these problems is their explicit
recognition of the action that links composite units. We highlight critical transitions in
students' constmctive itineraries, arguing that an essential component of these transitions is
students' development of related concepts and their integration of that conceptual knowl-
edge with ratio and proportion reasoning.

Conceptual Milestones

Iterating Composite Units

Multiplicative thinking is the foundation on which students construct notions
of ratio and proportion. Steffe (1988) has argued that the key to students' mean-
ingful dealings with multiplication is the ability to iterate abstract composite units.
This involves taking a sct as a countable unit while maintaining the unit nature of
its elements. For example, suppose a student is asked "If there arc 9 groups of 3
blocks, how many blocks are there?" If the student can solve this problem by
coordinating two numbcr sequences, he or she has established an iterable compos-
ite unit. That is, the student counts: I group is 3, 2 groups is 6, 3 is 9,4 is 12, 5 is
15, ..., 9 is 27.

Extending the Thinking

Once students arc able to iterate composite units, they can extend their multi-
plicative thinking to ratio situations. Episode 1 describes how a second grader
who regularly iterated composite units in solving multiplication problems extended
his multiplicative schemes to ratio situations.

Episode 1. The interviewer made a bundle of 5 white and 3 red sticks and asked
how many of the same kind of bundles would be behind his back if he had 10
white sticks. JB recited "5, 10," thcn answered 2. With the same bundle, thc
interviewer asked how many whites there would be if there were 12 reds. JB
figured "You need four bundles to get 12 reds. Then 5, 10, 15, 20." Hence, JB
coordinated the iteration of composite units of 5 and 3.

Iterating "Linked Composites"

In Episode 1, JB extended his coordination of a counting-by-1 scheme with
another counting scheme to coordinating counting-by-1 with two other counting
schemes. That is, before these examples, JB had constructed counting sequences
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in which he coordinated a counting-by-1 scheme with, for example, a counting-
by-3 scheme.

1 group
3 objects

2 groups
6 objects

3 groups
9 objecets

4 groups
12 objects

But in Episode 1, he extended this counting scheme to construct a "linked compos-
ite" counting secienee:

1 group
3 of object A
5 of object B

2 groups
6 of object A
10 of object B

3 groups
9 of object A
15 of object B

4 groups
12 of object A
20 of object B

JB was able to iterate a composite consisting of a composite of 3 linked together
with a composite of 5. He solved the ratio problem by analyzing the iteration of
linked composites. In Episode 1, hc first iterated thc 3 until he got 12 to determine
how many of thc 3-to-5 composites there were. He then iterated 5 that same num-
ber of times.

It is our contention that the type of thinking that JB exhibited in Epigode 1 can
serve as a foundation for future meaningful dealings with ratio and proportion. In
fact, the strategy of iterating linked composites used by JB (often called a build-up
strategy) is used widely and successfully by older students (Hart, 1984; Kaput 8c
West, 1994; Lamon, 1994). In Episode 2, we see a seventh grader making this
iterated linked-composites thinking more sophisticated. JR used the same reason-
ing as JB in Episode 1, except that JR uscd division to find the number of linked
composites, and multiplication rather than skip-counting to find the answer. Kaput
and West (1994) call this an abbreviated build-up strategy.

Episode 2. At a dining room table, there are 3 serving utensils for every 2 plates.
If there are 10 plates, how many serving utensils are there?

JR: I got 15.

Int: What were you thinking?

JR: Well, I used the 2 and 10. I divided the 10 by 2 and got 5.

Int: Why?

JR: Well for every 10 plates, I got 15 utensils. There are two plates in a set
and there arc 5 sets. For every set, there are 3 utensils. So for 5 sets, 2
plates and 3 utensils, so 3 times 5 is the number of utensils in the num-
ber of sets.

The Transition from Iteration to Multiplication and Division

It is essential to determine what enables students to make the transition from
solving ratio problems by iterating linked composites to using multiplication and
division. The work of the two students below, who just completed fifth grade,
suggests some elements of this transition.
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EB dealt with linked composites in ratio problems by iterating, making draw-
ings, and using the operations of multiplication and division. When she used the
former two methods, the interviewer often asked her if there were other ways she
could solve the problems, hoping EB would see how thc use of operations could
shorten the iteration process. But EB often struggled with her usc of the arithmetic
operations.

Episode 3. Mitch paid $4.50 for 5 computer disks. How much did he pay for a
dozen?

EB iterated linked composites, reasoning that 10 disks cost $4.50
+ $4.50 = $9.00. But to find the cost of the additional 2 disks,
she simply divided $4.50 by 2. (We saw this same mistake by a
ninth grader.) However, EB noticed that she made a mistake, so
she divided $4.50 by 5 to gct 5.90: "One disk would be 90 cents.
Then another onc, plus them together and it would be $1.80. So
it would be $10.80." Significantly, even though EB found the
price per disk, she used it only to find the cost of the left over 2
disks; she was still iterating finked composites. When asked if
thcre was another way to solve the problem, "now that you've
done this division," EB did not know until the interviewer asked
how much each computer disk cost. EB: "Do $4.50 5, you'd
get $.90; then do $.90 V 12."

As the next episode illustrates, EB also needed to explicitly conceptualize
linking the two composites to make sense of ratio problems. In particular, she had
difficulty conceptualizing the linking action in unfamiliar contexts.

Episode 4. If you can exchange S3 for 2 pounds, how many pounds can you
exchange for $21?

EB initially said that you'd get 5 pounds for $6: "You always
get I less." The interviewer thcn asked questions to make ex-
plicit the pairing of $3 for every 2 pounds: How many pounds
for the first $3? How many pounds for the next $3? So how
many pounds for $6?... Although EB was able to answer the
questions correctly, she focused on patterns in the separate se-
qtances, first noting the differences between successive values
in the linked composites, "It's minus 2, minus 3, minus 4, ..."
then differences between thc differences in the two sequences
"It's always 3 thcn 2." Indeed, EB seemed to see two separate
sequences; the unfamiliarity of the context prevented EB from
seeing the problem in tcrnis of thc action of exchanging $3 for
every 2 pounds.

EB's ability to use operations with linked composites seemed to involve three
essential components. First, she needed to explicitly conceptualize the repeated
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action of linking the two composites to make sense of ratio problems. Second, she
needed to have sufficient understanding of thc meaning of multiplication and divi-
sion so that she could scc their relevance in thc iteration process. Third, and fi-
nally, EB needed to have sufficiently abstracted thc iteration process so that she
could reflect on it, then reconceptualize it in terms of her knowledge of the multi-
plication and division operations.

CR also dealt with linked composites in ratio problems by iterating, but at-
tempted to shortcn the iteration process in the episode below.

Episode 5. (Problem I) There are 3 boys for every 4 girls in Mrs. Smith's class. If
there arc 28 students in the class, how many girls and how many boys arc there?

CR: Well 4 plus 3, so 7 altogether. There arc 28 students. 7 times 3 is 21.
And you need 28. So another 7 on to 21 would equal 28. That's 4
different groups of 4 girls and 3 boys. For every group there's 3 boys
and 4 girls. So you have 3 times 4 which equals 12 boys, and 4 times 4
which equals 16. So 12 boys and 16 girls.

(Problem 2) Suppose in a large class, there are 4 girls for every 6
boys. There arc 250 students altogether. How many boys and how
many girls arc in this class?

CR: I know that there are 4 girls and 6 boys, and that equals 10. There are
250 students in the class. And so to make 100, that's 10 of them. So
double that to make 200, that's 20 of them. And then to make 50, that's
5 of them. So that would be 25. Int: 25 what?

CR: 25 groups of 10, groups of 4 girls and 6 Imys. You take 6, and times that
by 25 (she (toes the computation 25 times 6). So there's 150 boys in thc
class.

In these problems, CR curtailed the iteration process by using known multi-
plication facts to aid her in determining the total number of iterations. She then
correctly multiplied thc relevant composite unit by that total. This curtailment
required CR to sufficiently abstract the iteration action so that she could reflect on
it and anticipate that the result of several iterations cculd he captured by a known
multiplication fact. After CR completed Problem 2, thc interviewer queried her
about other ways to solve the problem. CR mentioned guess and check, thcn
division; but it wasn't immediately obvious to her how division could be used to
solve the problem. CR also admitted to getting confused by division. However,
she solved several subsequent problems by dividing with a calculator.

Extending Linked-Composite Sequences beyond Whole Numbers

One of the major accommodations that students have to make to the multipli-
cative scheme employed by JB and JR occurs w hen ihe numbers do not "divide
evenly " For instance, Lesh, Post, and Behr (l988) report a seventh grader enlarg-
ing a 2x3 rectangle by doubling the lengths of the sides to produce a 4x6 rectangle.
However, when asked to enlarge this rectangle so that the base would be 9, the
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student responded that doubling would make the base 12. So he added 3 to 4
because 3 had to be added to 6 to get 9. This student was unable to find a way to
appropriately alter his linked Lomposite scheme to deal with this new situation, so
he switched to an additive scheme. Two other seventh graders, TM and JR, how-
ever, were able to make proper accommodations to their linked pair iteration
schemes, although their strategics were quite different.

Episode 6. In hot chocolate, for every 2 cups of milk, one needs 4 teaspoons of
cocoa. If a person has 5 cups of milk to make hot chocolate with, how many
teaspoons of cocoa arc needed?

TM: There arc 2 cups for every 4 teaspoons, so this is a ratio, proportion
kind of thingy. Two goes into 4, 2 times. Four goes into 8, 2 times, and
there is a fifth cup left, so divide 2 by 2 to get 1. So 10 is the answer.

Int: How did you get that?

TM: O.K. There arc 2 cups of milk, and 2 cups of milk. That's 4 cups of
milk. We need 5 cups, so one left over. Thc first 2 cups of milk is 4
teaspoons. The second 2 cups is 4 more. MEE'S S teaspoons so far.
There is 1 cup left over. 1 cup is 112 of 2 cups. What's 1/2 of 4 tea-
spoons? That's 2 teaspoons. 8+2 is 10.

JR: I divided 2 cups of milk and 4 teaspoons by 1/2, and got 2 teaspoons. I
divided by 2 to come up with 112 or it.

Int: Half of what?

JR: I needed to know 1/2 of it because 2 doesn't go into 5. I divided it so
I could find out what 1 cup was. Half of 2 is 1 cup; half of the cocoa is
2 teaspoons. So, 5 cups is 10 teaspoons,

Because 2 does not divide 5, TM returned, in essence, to a skip-counting ap-
proach: 2 cups of hot chocolate for 4 tablespoons of cocoa, 2 more cups for an-
other 4 tablespoons. TM then altc7ed his strategy; instead of adding a full 240-4
linked composite, he added half of such a composite, getting 1 cup with 2 table-
spoons. In essence, hc started to extend his iteration scheme beyond whole-num-
ber increments, so that instead of making wholc-unit increments of a 2-to-4 linked
composite, hc made a half-unit increment of this composite.

JR's method, on the other hand, addressed thc problem by recalibrating the 2-
to-4 linked composite to make it a I 4o-2 composite. Hc divided thc 2-to-4 com-
posite by 2. m) mat the 2-cup component of that composite evenly divided 5 cups.
JR seemed to anticipate what unit hc needed by envisioning the whole iteration
sequence (i.e., by emberlding his linked composite in a who,e sequence). In the
episode below, JR did a similar thing, but gave it a new interpretation. He kept
dividing by 2 until he again obtained an increment unit of I. But this time he
interpreted the final ratio as a unit ratio.

Episode 7. Mr. Short is 4 large buttons in height. Mr. Tall is similar to Mr. Short
but is 6 large buttons in height. Measure Mr. Short's height in paper clips and
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predict the height of Mr. Tall if you could measure him in paper clips. Explain
your prediction.

JR: I took half this [6 paper clips] which is 3. then hc [Mr. Short] is half of
4 buttons, which is 2. The 3 and the 2 are the same thing. Then I
divided the 3 by 2 to get 1.5. I needed to figure out the number of paper
clips in a button; 1.5 times 6 = 9.

That JR's method included creating new increment units seems to be verified
by his strategy use in Episode 8.

Episode 8. These rectangles are the same
shape, but one is larger than the other.
Explain how you would find the height
of the larger rectangle.

6 feel

8 feat

12 feet

JR: I got 9. These two arc the same proportions. Everything is the same
other than thc size.

Obs: Why do you say that?

JR: If you blew this up and made it bigger, or shrink it, it would be the
same size.

Ohs: How can it he the same size?

JR: It would be the sante size as the bigger one, if you blew up the smaller
one. So I took this rectangle [the 6 by 81 and divided all the sides by 2;
also I multipliez.1 this [the sides) by 3 and that's the same size as this
[the larger rectangle).

Obs: What sides did you get?

JR: I took the smaller box. I got 3 and 4, then I multiplied this by 3, so you
get 9 and 12.

Ohs: Why did you divide by 2?

JR: Because I knew that if I divided by 2. I could find the missing side. The
smaller rectangle [6 by 81 I could find the nnssing side, then of the
larger rectangle 19 by 121 if I multiplied by something, and I kncw I
could do this.

In this episode, JR saw that 8 did not evenly divide 12. So he divided the 8 by
2 to get 4, which divides 12; so the iteration sequence included the target 12. He
then saw that it takes three 4s to get 12, and concluded that it takes 3 of the 3s to get
the desired side length. Also, he seemed to be able to use his thinking about stretch-
ing and shrinking to help him reason through this problem, especially with the
difficult interpretation of what he got when he first divided by 2 (a "smaller box").
Essential to JR's last step seem to be numerical transformations that stretch and
shrink rectangles, while preserving their shape and the ratio of the lengths of thcir
sides.
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Proportional Thinking

Students have achieved proportional thinking when they see how to numeri-
cally transform the terms in one ratio to the corresponding terms in an equivalent
ratio, when they see that the same transformation applies to corresponding terms
of equivalent ratios.

Episode 9. Find the value of p in these similar rect-
angles.

JB (sixth grade) writes the following:

20 p
36 27

21,

JB then solved the problem by figuring that you get 27 from 36 by
dividing by 4 then multiplying by 3, so you must do the same to 20: 20
+4 =5, x3 =15.

Ohs: How did you know to do this?

JB: They're equivalent fractions.

In Episode 9, JB has made the equivalence of ratios explicit. He performs a
more complex numeric transfomiation on the elements of the first ratio to get the
second, a natural evolution of the type utilized by JR.

Episode 10. Sue can walk 15 miles in 5 hours. How far can shc walk in 3 hours?

JB (seventh grade) writes:
15 x

5

3

1

JB: You have to multiply 5 by 3/5 to get 3, so x is 3/5 umes 15; so it's 9.

So JB has extended his thinking from the year before to be even more sophis-
ticated. He combined the two operations of multiplying and dividing into the
single multiplication by a fraction. He could even extend this thinking to irrational
numbers.

Ohs: How far can she walk in hours?

JB: Because it's 3 over I, you multiply 1 by If to get If , so you multiply

3 by

JB, who was in algebra when this interview occurred, also used cross multi-
plying to find answers to some proportional problems.

Cross Multiplying

Solving proportional equations by using cross multiplying requires the use of
structural operations from algebra, which is a difficult step for most students to
make. Thus, students are likely to rnal:e sense of this strategy only when they
understand such operations in algebra.

419 4 2 7



Conclusion

In our proposed constructive itinerary for ratio and proportion, students move
from iterating single composites to iterating linked composites to solve ratio prob-
lems. They progress to using operations with linked composites when they have
sufficiently abstracted the iterative process so that it can be connected to already
firm conceptualizations of multiplication and division. They also extend the itera-
tive process from whole number to fractional increments. Students make the tran-
sition to proportional reasoning as their focus shifts from implementing the itera-
tive process to reflecting on the numerical operations that transform one ratio to
equivalent ratios. (This shift may bc strongly connected with their emerging knowl-
edge of fractions and equivalent fractions.) The final step occurs as students apply
structural operations from algebra to classical proportional equations. In all cases,
transitions to more sophisticated thinking occur as students reflectively abstract
their current ratio schemes, taking them to a higher level in which thcy can bc
integrated with knowledge of other relevant mathematical concepts.
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SPLITTING REEXAMINED: RESULTS FROM A THREE-YEAR
LONGITUDINAL STUDY OF CHILDREN

IN GRADES THREE TO FIVE

Jere Ckniffey. Cornell University
Grace Hotchkiss Scarano, Cornell University

A report is made on the results of a three-year teaching experiment introducing students to
the concepts of multiplication, division and ratio as a trio, and to ratio and proportion in a

project-based curriculum with heterogeneous grouping. Fractions were introduced as a
subset of ratio and proportion. The paper outlines curricular changes in the third through

fifth grades and focuses on the major representational forms used by the students including:

Venn diagrams, daisy chains, contingency tables, tables of values, dot drawings, two-di-

mensional graphs and ratio boxes, and discusses the role these tools played in the develop-

ment of students' understandings of the multiplicative world. Results of the study are pre-

sented showing that these 10 and 11 ycar olds exceeded the comparative performance of 14

and 15 year olds on ratio and proportion test items.

Ratio and proportion is arguably the most critical concept to learn in the el-

ementary curriculum in order to male a successful transition into advanced math-
ematics. Its centrality is secured by both its conceptual and practical characteris-

tics. Proportional thinking represents increased cognitive complexity in compari-

son to other arithmetic procedures of the elementary curriculum and demands con-

siderable mental flexibility. It underlies such notions as scale, rate of change,
acceleration, algebraic fractions, etc. Proportional thinking is involved in all kinds

of applications of mathematics, from gears to weights, from motion to conversion

tables. The learning of ratio and proportion has garnered significant atteiltirm
from researchers around the world (Hart, 1988; Lamon, 1994). Its relationship to

fractions has been hotly debated (Behr, Harel, Post & Lcsh, 1992), its placement in

multiplicative conceptual fields explored (Hard & Confrey, 1994; Vergnaud, 1994),

and its developmental sequences articulated multiple times (Karplus, Pulos & Stage,

1983; Noelting, 1980; Piaget, Berthoud-Papandropoulou & Kilchcr, 1987).

One of the most compelling and startling analyses of personal knowledge of

rational numbers is offered by K icren (1988). Hc proposes that this "complex and

textured" (Kieren, 1988, p. 162) knowledge is comprised of multiple constructs
including partitioning, equivalcncing, measure, quotient, ratio number, an )thers.

More recently extending and simplifying these constructs, Confrey proposed the

splitting conjecture (Confrey, 1988). This conjecture posits that counting and split-

ting ere two of thc primitives that spawn our number system. Confrey argued that

just as the act of partitioffing is a primitive that cannot be reduced to repeated
subtraction, a complementary construct, thc inverse of partitioning; exists that is
the precursor to multiplication and cannot be reduced to repeated addition. These

partitioning acts which are precursors to multiplication and division evolve from a

primitive she called "splitting" that involves the activities of sharing and folding,

and geometric constructs which create a fundamental relationship to similarity.
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Furthermore, Confrey argues that splitting is a basic cognitive structure that paral-
lels, but differs from, counting.

This conjecture implies profound alterations in the scope and sequence of the
typical course, particularly from third through fifth grade (and before and beyond).
To examine these changes, a three-year longitudinal study at Belle Sherman El-
ementary School in Ithaca, NY was undertaken starting with a group in the third
grade who would remain together until fifth grade and entry to middle school. The
curriculum used by the experimental class incorporated significant changes which
are described below.

In third grade, I) multiplication, division and ratio were introduced as a trio.
The order of introduction followed a splitting sequence, starting with twos, fours,
fives, tens, eights, throes, sixes, nines and then sevens. 2) Extensive exploration of
partitive and quotitive division and their interrelationship through the use of arrays
was investigated.

In fourth grade, I) least common multiple (LCM) and greatest common factor
(GCF) were introduced early in the curriculum using prime factoring as students
were encouraged to increase their mental flexibility in multiplicative conceptual
space. 2) Ratio and proportion were introduced prior to the development of any
operations on fractions, except simple recognition and naming of fractional parts.
3) The operations of multiplication and division within rational numbers were de-
veloped as extensions of ratio relations. 4) Explorations of ratio involved the two-
dimensional plane and similarity relations on geometric figures. 5) Fractions were
developed as a subset of ratios which share a common unit, and addition and sub-
traction of fractions as therefore requiring the identification of a common mea-
surement unit.

In fifth grade, further extensions of ratio thinking, especially as regards mul-
tiplication and division, were developed. 1) Transitions to decimals were facili-
tated using the notion of ratio conversions between smaller and larger units. Mixed
systems (such as weight measured in ounces, pounds, and tons) were contrasted
with the "pure" system (where one n:1 ratio serves as the conversion factor be-
tween adjacent sized units) of decimal notation which utilizes the 1 0: 1 ratio
(Lachance, 1995 this volume). 2) Percent was treated in relation to decimal as
ratio is in relation to fraction. 3) A transition to the use of algebraic symbolism
was undertaken (Luthuli & ('onfrey, in progress).

Most units were taught using a project-based approach. Students were pre-
sented with project challenges, and materials and tools were provided for explora-
tions (Preyer, in progress). For example, during the fourth grade year, the children
designed handicap rampS. They were given a child's wheelchair and went outside
to find a slope they could go both up and down while remaining in control. Stu-
dents used a plumb linc, measuring tape, and level to figure out how to describe
their slope. Each group of students used their slope to create scale drawings and a
model ramp for a given height of stairs. They also predicted the cost of materials
given a certain set of conditions. Children were heterogeneously grouped with the
assumption that all students would complete a performance assessment and an
individual open-ended written assessment on all topics.

422



_

During the three-year teaching experiment, an exploratory methodology was
used. Curriculum units were developed that were aligned with the splitting con-
jecture. This meant that ratio find proportion were assumed to be intimately con-
nected to multiplication and division, that addition and subtraction of fractions

were assumed secondary to multiplication and division, and that connections to
geometry were given priority over additive relations. These subconjectures were
modified as the experiment evolved in light of student work. All classes were
videotaped and when the children worked in small groups, a single group was
selected for videotaping for the duration of the project.

We will introduce the major forms of representation used extensively by the

students and then report on the quantitative data concerning the students' perfor-
mance on written ratio and proportion assessments.

1. Venn diagrams for LCM and GCF. The children were taught to prime
factor numbers and to find their LCM and GCF using Venn diagrams. For two
prime factorizations A and B, A n B yields the GCF and A u B yields the LCM.
LCM was explored in the context of clapping rhythms to predict when two clap-

pers would clap simultaneously. The idea behind this exploration was to explore

numbers' "multiplicative biographies."
2. Daisy chains. Before beginning the introduction to ratio and proportion,

students were asked to explore multiplicative space by creating sequences of op-

erations, only using multiplication and division, to move from one number to an-

other. Thus, to go from 28 to 36, a student might write: 28 + 7 4 X 3 12 X 3

36. Later this notation would be curtailed to 28 X _9 = 36. The students
7

discovered two important methods concerning how to move from a to b (where a

and b are rational numbers): 1) divide by a to get 1 and then multiply by b; 2)
multiply by b to get ab and then divide by a. We claim that this is the critical
meaning of multiplication by a ratio.

3. Contingency tables. The introduction to comparing ratios was under-
taken in the context of polling. Students used 2 by 2 contingency tables, often

divided into boys' and girls' responses catego-
rized into "ycs" and "no." Totals were listed
in the margins. This format, in contrast to

yes(part)
wiling the proportions as , cncour-

Boys Girls Total

Yes 3 5 8

No 7 9 1 6

Total 10 14 24
aged the students to work flexibly with their
data concerning both "numerators" and "de-

nominators." Children described results as part to part or part to total, depending

on what they wanted to claim from their data.
4. Tables of values. As the children extended their explorations from the

comparison of ratios to the equivalence of ratios, the use of the contingency table

was extended to the use of a table of values. Employing the context of a two-
ingredient recipe (one ingredient in each column), students easily made larger reci-

pes by doubling or tripling the original recipe. Then they explored halving it and
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argued for its equivalence. One student recognized the "pace" of the ingredients
(water and oranges) claiming, "Just add three (waters) on every time you add an
orange" (Confrey, 1995, p. 9). Students used other terms including "basic combi-
nation" and "little recipe" (which became thc class favorite) to refer to the smallest
whole number ratio for a given proportion. Wc suggest that this be named a ratio
unit (Ibid., p. I I), to recognize its importance as a multiplicative unit .

5. Dot drawings. Thc children used dot drawings in order to find the "littlest
recipe" (2 to 1 in the figure below). Rather than finding the littlest recipe numeri-

cally using factoring, they used dot drawings
and employed a recursive process to check the
validity of "little recipes." Validation was de-
termined when the children's search image of
a series of circled little recipes left no dots
uncircled and each set was identical, or when

they regrouped to see thc recursiveness in the whole picture. If uncircled dots
remained after using the attempted ratio unit, children would recursively select
another ratio unit for a further attempt at determining the "little recipe."

6. Graphing On the two dimensional plane. The children were introduced
to the idea of a ratio (a:b) as a vector from (0,0) to (a,b). The axes' labels allowed
them to distinguish'a:b and ba. Equivalent ratios lie along a vector. The children
found this notion extremely generative and connected, and explored its relations
to rectangles, stairsteps, triangles and straighwess. They were able to make sense
of the meaning of steeper and less steep, and learned to interpolate and to extrapo-
late using data. Later, in the context of falling domino chains, without any formal
introduction, the students extended their analyses to include discussions of accel-
eration and deceleration based on the shapes of curves.

7. Ratio boxes. Ratio boxes encouraged student exploration of the ratio
relations both across and down (as an isomorphism of measures and as a func-
tional relation in Vergnaud's terms). Using ratio boxes avoided problems concern-

ing the lack of distinguishing notation between ratio and fraction,
and supported a smooth conceptual networking of contingency tables,
tables of values, and ratio hoxes. Having become a primary tool for
the children, the use of ratio boxes led to three significant results: I )

all students in the class believed that for any three values, a fourth
could bc found; 2) a student recogniied that the fourth value could he obtained by
multiplying the two numbers in the diagonal positions, and then dividing that product
by the number in the third position (2 X = 72. 72 + 12 = 6); and 3) students
learned that if thcy could find a daisy chain to go from one cell to an adjacent cell,
that same daisy chain should also work for the other pair of cells (12 + 4 ..=* 3 X 3
= E so + 4 2 X 3 = (2).

This paper claims that, given appropt late contextual challenges and represen-
tational tools with which to approach ratios, an earlier and more robust introduc-
tion to ratio can be presented. The table below presents the results of these stu-
dents' written assessments given at the end or fourth grade and repeated at the end

12

8
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of fifth grade, and the comparative data from the "Concepts in Secondary Math-
ematics and Science" (CSMS) studies (Hari, 1988).

PROBLEM Age 13

CSMS

Age 14 Age 15

Belle Sherman

Ages 9-10 Ages 10-11

Short/Tall 28.1 (51.4) 29.6 (50.6) 42.0 (39.1) 45 (15) 90 (5)

Ls 7.9 (47.6) 11.0 (39.4) 19.7 (39.7) 35 (30) 65 (10)

Onion Soup:
Water for 4 94 94 96 90 100

Cubes for 4 95 95 96 90 100

Water for 6 85 84 88 70 70

Cubes for 6 75 75 79 75 75

Cream for 6 24 23 91 35 45

Percentage correct (Percentage using additive strategy)

In Mr. Tall and Mr. Short, students arc given, "Mr. Short's height is 6 paper
clips or 4 buttons. His friend Mr. Tall's height is 6 buttons" and are asked, "How
many paper clips are needed for Mr. Tall's height'?" (Karplus R., Karplus, E., &

Wollman, W., 1972). Of these fifth graders, 90% answered correctly and only 5%
(one student) showed any evidence of using additive strategics. These are striking
results in light of the CSMS data for 15 year olds where only 42% answered cor-
rectly and nearly as many (39.1%) used additive strategies.

On the Ls problem, students arc asked to "work out how long the missing line
should be if this diagram is to be the same shape but bigger than the one on the

left" (Hart, 1988). Of the fifth graders in this study,
65% solved it correctly and only 10% showcd any evi-

3 5 dence of additive strategies. This is in contrast to the
15 year olds in CSMS where 19.7% got the item cor-

rect and nearly 40% gave evidence of additive approaches.
On the onion soup problem, given a recipe to serve 8 people, 100% of the fifth

graders figured out the amount of ingredient needed to serve 4 people. When faced
with what seems to be the most difficult problem for students (determining the
amount of cream for 6 people given that thc amount for 8 people is F(1,2) pint), the
data from non-experimental students shows dramatic drops in performance (to
21% among 15 year olds). However, with the children in our study, the drop in
performance is considerably less (to 45% among 10 and 11 year olds). In fact,
these IC and 11 year olds more than doubled the accuracy of thc 15 year olds in the
CSMS studies on this challenging question, demonstrating the robustness of their
approaches.

The data presented here suggests that conceptual analyses and developmental
studies (Karplus et al., 1983; Noelting, 1980) have tended to underestimate the
power of different representational forms in allowing students access to the con-
ceptual understanding of ratio and proportion. In contrast to traditional curricula
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which have treated ratio and proportion in settings with little (single) or no con-
text, we are embedding the study of ratio and proportion in a rich interactional
system with physical and representational tools, and in multiple problem contexts.
Our results suggest that higher success may bc achieved by many students at an
earlier age.
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A COMPARISON BETWEEN PROPORTIONAL AND NON-
PROPORTIONAL MANIPULATIVES IN DECIMAL
ADDITION AND SUBTRACTION INSTRUCTION

Rosemary S. Mitchell, Straley Elementary School
Rose Sinicrope, East Carolina University

The generalization of decimal computational algorithms from whole number
computational algorithms appears simple symbolically; however, for many stu-
dents it is not (Hiebcrt & Wearne, 1986). Critical to the generalization are the
students' prior concrete experiences (Wcarne & Hicbcrt, 1988). What must be the
nature of these concrete experiences? Is the use of a non-proportional manipula-
tive adequate as the primary model for the development of addition and subtrac-
tion algorithms for dec imals?

Subjects. The 26 students in a self-contained, heterogeneously-formed, third-
grade classroom were the subjects of this study. Eleven of the students were fe-
males; 15 were males. Approximately two-thirds of the children were from low
socio-economic families.

Method. Prior to any decimal instruction, the students completed a 15 item
test on addition, subtraction, and comparison or decimals and decimal-fraction
conversions. After five days of whole-class instruction on decimal numbers, the
students were randomly assigned to two equal-sized groups. Students in one group
were given Dienes' blocks, with the flat representing a whole, and place value
mats (ones, tenths, and hundredths). The students in the other group were given
red, blue, and yellow cubes with color-coded place value mats. For the following
14 school days, the students, using the manipulatives assigned to their respective
groups, solved problems and discussed their solutions within their groups. Stu-
dents kept daily journals and submitted written assignments. The teacher pro-
vided written and oral feedback. Immediately after instruction and approximately
one month later, the students were given the same 15 item test. The test was not
timed, and students could choose to use manipulativcs in answering the questions.

Results. A comparison of gain scores between the pre-test and post-test for
the two groups yielded a significant difference at the 0.10 level in favor of the
proportional group. The L statistic for the delayed post-test comparisons was not
significant.

Summary. Decimal addition and subtraction instruction is most effective
when a proportional manipulative is used. Students need both concrete represen-
tations of decimals and of place value. Thc lack of a difference between the two
groups on the delayed post-test raises questions about student interactions between
groups and thc roles of time and cognitive conflict in making generalizations.
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RECONSTRUCTING THE WHOLE: A GAUGE OF FRACTION
UNDERSTANDING

Sylvia R. Taube, University of Texas-Pan American

This study analyzed graphical solutions of 260 students (Gr 4-college) who
were administered a 40-item assessment (r =.83) of basic fraction concepts. Of

xy

particular interest arc three problems which required completing the whole given a
fractional part drawn on a square dot paper. The fractions studied were "4/6" (ir-
regular-shaped), "3/4" and "2/3" (both regular-shaped).

Results indicated the younger students frequently used the "doubling" strat-
egy even if the fractional part showed "2/3". At other times, they represented the
whole by drawing a rectangular region of any size. Videotaped interviews clearly
revealed these two dominant strategies. Moreover, misconceptions held by both
prescrvice teachers and elementary students include the assumption that the unit is
always a regular-shaped geometric region rather than irregular.

The Findings indicate the influence of the rectangular region often used in
traditional mathematics textbooks and support the use of varied models or con-
texts (e.g., money, pattern blocks, dot paper) to strengthen understanding of part-
whole relationships in fractions. Reforms in the teaching of fractions should in-
clude not only unit partitioning but also activities involving completing the whole.
Various ways to reconstruct the whole using the arca model must he stressed.
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TOOL BASED INVESTIGATION: A MATHEMATICAL EXPERIENCE

Richard M. Preyer, Cornell University

This report will discuss the role of physical classroom tools and materials in
mathematics education. Through an evaluation of a fifth grade project using bal-
ances to investigate ratio and proportion, I will focus on students' use of materials
as tools for investigation and how, as a result of these actions, students develop
and express mathematical experiences. It will be argued that tool-based investiga-
tion, in contrast to the use of mathematical man ipulatives for demonstration, pro-
vides a medium for student reflection on kinesthetic experience. This gives them
a means to express their insights that can be subsequently transformed into the
traditional symbolic codes. Just as tools arc used in our daily activities to orga-
nize, control and construct our world, tools allow students to construct sophisti-
cated mathematical understandings of thc world by virtue of their experimental
processes. An analysis of their actions and verbalizations while involved in this
process reveals six components of such experience: I) A sense of accuracy 2)

Kinesthetic knowledge, 3)Investigative methods 4) Structural thinking, 5) Meta-
phorical relationships, and 6) Perception of concept applications. Examples of
the tools themselves, and videotaped excerpts of students' work will illustrate these
six types of mathematical experiences.

A four-week design problem based on international monetary exchange pre-
sented students with the challenge to find and describe the relationships amoung
weights of various shapes and materials. First, each group of students needed to
establish ratio relations (all were rational) among the weights in their own system,
so that the information could he given to tourists wanting to purchase goods in this
fictitious kingdom. The students were given materials for the construction of a
balance that allowed a range of choices regarding its possible organization and
calibration. The balance was designed particularly for this problem and encour-
aged the students to progressively extend tb,'ir understanding of the balance's
mechanics as well as their physical skills in its operation. The implications for
future tool design, implementation and assessment will be discussed as they re-
lates to the project findings.
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History and Aims of the PME Group

PME came into existence at the Third International Congress on Mathematical
Education (ICME 3) held in Karlsruhe, Germany, in 1976. It is affiliated with the
International Commission for Mathematical Instruction.

The major goals of the International Group and of the North American Chapter
(PME-NA) are:

1. To promote international contacts and the exchange of scientific in-
formation in the psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the aforesaid
area with the cooperation of psychologists, mathematicians and math-
ematics teachers;

3. To further a deeper and better understanding of the psychological
aspects of teaching and learning mathematics and the implications
thereof.
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Preface

This program began with a meeting of interested volunteers in November
1994 at Baton Rouge during the PME-N A meeting. The results of the suggestions
made were taken to a meeting of the local program committee at The Ohio State
University where the overarching theme of research on teaching and learning
mathematics in diverse settings and the subthemes of diversity, constructivism and
algebra were selected. These emphases are achieved in the plenary papers.
Constructivism from a social perspective in the paper by Paul Cobb and Erna Yackel
takes account of diverse learning idiosyncrasies. Fairness in dealing with diver-
sity in characteristics and background of the learners was addressed in the paper
by Suzanne Dannarin. Reform in algebra toward making algebra more accessible
to all students is addressed in the paper by James Kaput. No reaction paper to the
Cobb and Yackel paper was requested because the opening plenary session ended
with questions posed by the speaker, Paul Cobb. for roundtable discussions. Reac-
tions to the paper by Suzanne Damarin were prepared by Ruth Cossey and Edward
Silver from their perspectives of the work in which they are involved. Reactions
to Jim Kaput's paper were written by Gail Burrill and Elizabeth Phillips who are
involved in aspects of change in algebra curriculum.

Included in these Proceedings are 84 research reports, two discussion groups.
40 oral reports and 43 poster presentation entries. The one-page synopses of dis-
cussion groups. oral reports and poster presentations are organized by topic along
with the research reports following the pattern begun with the Proceedings of the
1994 PME-NA meeting. Proposers expressed rust choice: 124 research reports (2
withdrawals), 12 oral presentations, 35 poster presentations. and two discussion
groups. Proposals for all categories were blind reviewed by three reviewers with
expertise in the topic of the submission. Cases of disagreement among reviewers
were refereed by subcommittees of the Program Committee at The Ohio State
University. This process resulted in rejection or reassignment of about 31% of the
research report proposals and about 25% overall.

For the first time, the submissions for the Proceedings were made on disk.
These Proceedings were produced by the ERIC/CSMEE staff. The format of the
papers were adjusted to make them uniform. As papers were assigned to topic
areas for the table of contents, possible secondary or tertiary topic areas were noted.
Thus, most papers are included with more than one descriptor in the index in the
appendix in Volume 2. An alphabetical list of addresses of authors is included in
the appendix in Volume 2 with page numbers of their report or synopsis. For the
first tin-ie the electronic mail address is included in this address list. In the case of
multiple authors. submissions were made with presenting author(s) name(s) un-
derlined.

The editors wish to express thanks to all those who submitted proposals, the
reviewers. the 1995 Program Committee. the PME-NA Steering Committee for

vn



making the program an excellent contribution to ongoing research and discussions

of psychology and mathematics education; Dean Nancy Zimpher,College of Edu-

cation, and the administration of thc Department of Educational Theory and Prac-

tice at The Ohio State University, for their support; The Mathematics Education
faculty and graduate students for their endless committee work; and the
ERIC/CSMEE staff, especially Director David Haury, Linda Milbourne, and J.

Eric Bush for the production of these Proceedings.
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HOW SHALL WE DEFINE AND RESEARCH
CULTURAL DIVERSITY?

Todd M. Johnson, Illinois State University

The overall theme of PME-NA XVII is Mathematics Learning in Culturally
Diverse Settings. Concern about how cultural diversity has been defined and re-
searched has been raiscd by numerous authors.

Nickerson (1992) identifies culture as one of the popular catchwords often
used by educational researchers without clarifying what the term means or consid-
ering the relevance. For researchers concerned with the classroom as their unit of
study, Nickerson recommends coming to some understanding of culture at that
level before considering how wider aspects of culture impinge on that of the class-
MOM.

Secada (1992) questions the categories used to describe student diversity.
Secada suggests that the categories used arc often treated as unquestioned givens
and unless our ways of viewing the world arc examined, our research may grant
legitimacy to the social arrangements that originally lead to the disparity under
study.

Like Secada, Fennema (1981) is concerned that research may perpetuate myths
that affect students. As an example, Fennema includes the following justification
a middle school boy gave for believing a boy was more likely than a girl to answer

an arithmetic problem correctly.

Okay, C117. I read somewhere ... that, urn boys are, it's some kind of
scientific thing that boys arc better in math than girls ase.

All individuals interested in exploring the categories that we use when we
consider cultural diversity and how these categories arc maintained in our research
are invited to take part in this discussion group.
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ERIC CLEARINGHOUSE FOR SCIENCE, MATHEMATICS,
AND ENVIRONMENTAL EDUCATION

Michelle K. Reed, The Ohio State University

The Educational Resources Information Center (ERIC) is a nationwide infor-
mation system sponsored by the U.S. Department of Education. ERIC has devel-
oped the world's largest education-related database and continuously collects, ana-
lyzes, and distributes information from local, state, federal, and international sources.
This paper describes those services of the ERIC Clearinghouse for Science, Math-
ematics, and Environmental Education (ER1C/CS MEE) which may be of interest
to PME participants.

Database Building

The Clearinghouse actively seeks materials for inclusion in the ERIC data-
base. Anyone producing documents of interest is encouraged to submit manu-
scripts directly to the Clearinghouse for consideration. Thc documents can in-
clude research reports, books or chapters in hooks, curriculum materials, theoreti-
cal papers, final reports of funded programs, and other items which lack a suitable
publication outlet. Publication in ERIC does not preclude an author from publish-
ing the material elsewhere.

Publications

Each year the Clearinghouse produces an array of digests, informational bul-
letins, bibliographies, and monographs on topics of broad interest in science,
mathematics, and environmental education. The Clearinghouse also welcomes
proposals for manuscripts that address the latest topics of interest in these areas. If
you arc interested in writing or reviewing manuscripts, please contact the Clear-
inghouse Director.

Electronic Ser.% ices

Many Clearinghouse products, services, and directories are available elec-
tronically through the Intemn. Important internet addresses for ER1C/CSMEE
are: (I ) E-mail lericseosu.edul, (2) Gopher server lgophenericse.ohio-state.edul,
(3) World Wide Web server Ihttp://gopherencse.ohio-state.edul, and (4) AskERIC
question and answer service laskeric@ericirsyredul. Resources available through
the Gopher and Wch servers include full-text documents, directories, ERIC sys-
tem information, and pointers to other servers around the world. You can also add
yourself to the ER1C/CSMEE mailing list through the server. In addition, free
electronic access to the ERIC database is available at several locations on the
Internet.
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Distribution of Materials

Many documents produced by other programs and projects in science, math-
ematics, and environmental education are distributed through direct sales by the
Clearinghouse. If you have any materials that you wish to have considered for
distribution through the Clearinghouse, contact our Outreach Coordinator.

Partners

The Clearinghouse seeks active partnerships with organizations, associations,
centers, businesses, government agencies, colleges, schools, and special interest
groups interested in supporting ongoing improvement of science, mathematics,
and environmental education in the nation and worldwide. The Clearinghouse
works with partners to enhance and extend the services, outreach, and dissemina-
tion activities provided by the Clearinghouse, Partners, and the ERIC system. For
more information, contact our Outreach Coordinator at (800) 276-0462; 1929 Kenny
Road, Columbus, OH 43210.
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HEIDEGGER AND HALL DUTY: USING VIGNETTES OF
TEACHER'S DAILY PRACTICE TO TRIANGULATE

0:3SERVATIONAL DATA

Sharon B. Walcn, Montana State University
Steven R. Williams, Brigham Young University

Little is known about teachers' reflections on current reform efforts in real classrooms (Cu-
ban, 1993). This study describes methodology and data on teachers' efforts to implement a
four-year secondary mathematics reform curriculum at a statewide level. The methodology
uses vignettes in an attempt to retain the best part of careful observational case-study tech-
niques while bowing to practical pressures of dealing with hundreds of teachers in as many
sites. As such, it allows us to triangulate observational data, to affirm working hypotheses
based on that data, and to provide teachers with a rich opportunity for reflection on class-
room practices.

Objecti ves

The importance of reflection to changing teaching practice is widely recog-
nized. Indeed, the model of teachers as reflective practitioners (Schon, 1987)
makes it clear that reflection on the practice of teaching is vital to professional
growth. Also important is thc use of reflection as a data source in the study of
teaching. This is true especially as wc attempt to understand thc everyday world
of the teacher and how that world transforms. The coupling of teachers' reflec-
tions with observational data is a valuable means of triangulation.

Recognizing the importance of reflection does not obviate the theoretical and
practical problems connected with its use as a data source. The act of reflection is
necessarily distanced from the acts reflected on and is thus affected by memory,
emotions, and various subjective variables. An important question, then, is how
best to stimulate reflection on practice to obtain maximally useful results. With
this in mind, the purposes of this paper are fourfold: 1) Introduce a method of
stimulating reflection on practice that we find particularly compelling, 2) Outline
its advantages, 3) Report particularly insightful results obtained by the method,
and 4) Analyze the reasons for the method's success by way of an interpretive
theoretical model.

Theoretical Framework

We base our analysis of reflection in general on Heidegger's work and more
recent writings in psychology and in education (for a complete discussion see
Williams, 1993). We suggest that the primary imxlc ol human functioning is a
kind of unreflective being-in-the-world, a mode of existence that Heidegger calls
the ready-to-hand. To use his favorite example, when we arc hammering, we arc
not reflecting On the hammer; indeed, we are hardly aware of it. Rather, we arc
immersed in hammering. From this fundamental mode, we can move to a more
reflective mode if, for example, the hammer breaks. We then focus on the ham-
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mer, seeing it as broken, and aucmpt to replace it or work around it. This mode is
called the unready-to-hand and suggests a kind of reflection still embedded in the
context of the larger program of which hammering was part. A more abstract
reflection can be performed when, for example, one wishes to design a hammer or
to choose a particular kind of hammer for a job. Here, more than in the other two
modes, the hammer emerges as an object. Then, abstract knowledge about the
hammer (wcight, balance, etc.) gains salience. This most abstract mode is called
the present-at-hand and represents the mode in which much of what we would call
reflection occurs.

Reflection is most often provoked by a breakdown in the normal, ready-to-
hand flow of everyday coping. To reflect, we must step out of that deeply contex-
tual mode, but as we do so, the original actions on which we reflect begin to re-
cede. As we enter the unready-to-hand mode, salient features of our actions and
environment emerge for reflection. Thc context of the original actions remains
important as background; the reflection remains oriented toward ongoing activity.
If the breakdown is more fundamental, salient features emerge and are dealt with
as separated from their original contextsas abstract objects of reflection. The
original acts then become separated from their context. This characterizes the
present-at-hand mode.

Our problem, then, is to encourage reflection that stays oriented tc ward prac-
tice, as in the unready-to-hand mode, away from the abstract knowledge of the
present-at-hand. We would ideally deal with individual teachers contemplating
their daily practice. However, when more systemic reform is being studied, in-
volving many teachers across multiple sites, the burden of collecting data in this
way proves insupportable. We describe below a methodology that, although tak-
ing steps away from typical case study techniques, remains sensitive to the under-
lying ontology of reflection we have described.

Methods and Data Sources

Although our philosophical framework mandated the gathering and analysis
of rich ethnographic data, the size of our project and the multiple sites involved
presented a particularly intriguing challenge. We met this challenge by modifying
and merging current research methods. Thc following section presents the story of
how we used observation to identify issues, vignettes to set the stage tbr a discus-
sion of important themes, and the resulting discussions to validate the nature of thc
issues.

Previous data from 16 paricipant observers' visits provided us with richly
detailed snapshots of 35 individual classrooms. Although rich, the data did not
result in common threads necessary to weave a picture across reform classrooms.
Zn an attempt to find these threads, the observers designed and employed a semi-

uctured observation form. Observers indicated this allowed them the individual
freedmn to make original insightful observations yet assisted thcm to focus on
curricular objectives essential for impleinentation of the rcform curriculum.
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As analysis of the data gathered using the semi-structured form began to out-
line common themes across this subset of reform classrooms (assessment, com-
munication, and time manai;ement), we felt the need to triangulate the themes
within the larger group of participating teachers. We began thinking about how
classroom vignettes enhance communication and, with this in mind, we wrote 4
vignettes with the themes found in the observational data as story-lines. Several
revision cycles occurred before thc participant observers agreed that each vignette
told a valid classroom story. During the writc and revise cycle, we took care not to
present the stories as moral lessons. Wc wanted all teachers in all stages of reform
to willingly talk about issues and bc comfortable with their currently held beliefs.
We also remained sensitive to thc fact that many reform teachers previously taught
using traditional methods and currently worked with and respected teachers pre-
ferring to usc traditional methods. The vignettes did not portray mathematics edu-
cation reform as us agams1 them hut rather as an Opportunity to debate issues.

During a two-day grant sponsored teacher meeting, 115 teachers from across
the state read and discussed the 4 vignettes. The 16 original classroom observers
facilitated each teacher discussion group and recorded individual teacher com-
ments. Other group members also provided written comments and documentation
of consensus on primary issues. Triangulation of these data validated the impor-
tance of the themes presented in the vignettes.

Vignettes and Teachers' Comments on Key Reform Issues

Thc following discussion revolves around 1 of the 4 vignettes. Although each
vignette allowed us to validate a common theme, this particular discussion illus-
trates the richness of the data. During these discussions, teachers interpreted is-
sues both individually from their personal context of teaching and generally from
thcir common knowledge of what it is to teach. The meaning and significance of
the themes became clear as each group assisted the vigneue-teachers.

Vignette #I: Assessment and Communication Issues in Reform
Classrooms

Thc vignette in Figure 1 focuses on 2 of the 3 central relbrin themesassess-
ment and communication. We had heard teachers across the state say that new
forms of as,,essment were more difficult to implement than the reform curriculum,
itself. Many teachers indicated they had used the integrated curriculum for 2 years
without changing classroom assessment. They stated that they were beginning to
recognize the mismatch between traditional tisessinent and the reform curricu-
lum. Comments from these teachers included, "I know that I need to change how
I assess, but I can only do one thing at a time. I'm working on the curriculum and
technology. I'll get to the assessment next." One teacher commented, "OK, I have
the kids writing journals. Now I don't know what to do with them I the journals)."
Grading was a genuine concern. Generally, teachers using alternate assessment
did not recognifc the value of their el forts or express confidence with their results
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but repeatedly requested assistance. The vignette-tcacher modeled these teachers'
views.

Beth Davis looked up, startled for a second at the loud crackling voice on the intercom.
"Yes, this is Ms. Davis."

"Sorry to interrupt, Ms. Davis, but could you please stop in the main office before you
leave tonight?"

"Yes." At that note, Beth turned toward the clock surprised to see that an hour had gone by
since the last of the Level 1 students had left her room for the day and she had begun to read
the student portfolios. With an inward smile. Beth thought; The projccts are really well
done. Even though there was a wide range of skills in hcr class this year, Beth had decided
to require the students to choose research projtuns. They sermed to like their first projects,
but their second projects were fantastic, especially Faith's. ;)he seemed to have real talerit.

Beth gathered a few of the student projects to finish reading, slipped on her coat, and headed
toward the office.

"Ms. Davis, the prir.cipal, Ms. Waters, wishes to make an appoinunent with you tomorrow
during your free period. Faith Old Elk's father will be here. He has called and expressed
concern about Faith's math work. Will 10:15 be OK?" Beth finished discussing the details
of tomorrow's meeting and walked to her car.

"Good morning, Ms. Davis. Please sit down." Ms. Waters' voice was low and friendly, but
Beth still felt uneasy. "So. Mr. Old Elk, you said over the phone that you would like to talk
to us about Faith's math work?"

Mr. Old Elk looked uncomfortable. "Yes, I did. You know that Faith has always done well
in math. This is hard for me to say. Faith says she doesn't know what math she is learning.
Her cousin spent the weekend with us and his book looks like the one I had in high school.
We want Faith to be able to go to college. She has to do well on the tests for college so she
can get a scholarship. Faith says you are giving her an A for this quarter in math, but I'm
afraid that you're not preparing her tor college. Faith spent the last month writing about the
traditional ways to tan hides and comparing that to chemical tans for her math project. But
she couldn't help her cousin with his algebra homework until she read the whole chapter in
his book. Faith has always been better than him at math but now he's ahead of her. What
does her A mean, Ms. Davis'? Will she he able to do well in college math?"

Later that evening as Beth replayed that morning's conversation in her mind, she started to
wonder about the changes she had made in her mathematics classroom. How can I be sure
I'm really right about Faith's A? Will Faith really do OK? What do I really know about
Faith's math skills and concepts?

What is the problem? Whose problem is it? What should Beth do next?

Figure I . Vignette #1: What's an A?

It did not surprise us that every tucher-discussion group validated student
assessment as a primary issue. Assessment and grading were genuine concerns
across the state. During the discussions, teacher groups validated another kcy
issue related to classroom assessment; they were afraid that students' scores on
standardized tests would not rellsct what their students really knew. If this were to



happen, colleges would not be able to assess the depth of their students' under-
standing. Teachers expressed frustration with the way things were and offered
solution strategies ranging fi-orn supplementing with more drill-and-practice (so
the curriculum resembled traditional texts) to teaching to standardized tests. "We
ought to just take 2 days out and tcach thcm the standardiz.cd test-teach them to
take the test," commented one teacher.

However, these solutions did not satisfy the groups. They were comfortable
with what they currently saw their students learning and doing. Thc teachers val-
ued the improvements they saw in their students' problem solving skills, abilities
to use technology, and attitudes towards mathematics. After a brief discussion,
teachers stopped talking about returning to traditional teaching and started talking
about challenging the standardized testing structure.. The following 4 comments
represents their suggestions: I. "Will letters from teachers help on scholarships
and college entrance?"; 2. "Can we start sending portfolios?"; 3. "Arc these tests
ACT SAT and placement tests valid anyway'?"; and 4. "Our system is in a transi-
tion and integrated math is strong on teaching kids how to learn. We can show
them that." As teachers continued to talk about the values they saw in using the
integrated mathematics curriculum, discussions turned to communication as criti-
cal to fixing problems.

Teachers identified two areas of communication needing improvement-be-
tween high schools and universities and between parents and teachers. In the
high-school-university discussions, teachers talked about how they had previously
followed colleges and universities lead. University calculi's course content previ-
ously drove many high school curriculum choices. Now they were not so certain
that was going to continue to work. One teacher expressed hcr frustration, "I don't
know what I'm preparing my students for with all the changes in calculus. Stu-
dcnts can't drive those changes. We need to help people at the university. We need
to start talking to them-telling them what we are doing." These teachers wanted to
align the two curriculums rather than to continue to passively feed their students
into the universi.y. In the parent-high-school discussions, teachers stated that the
vignette-teacher needed to improve communication with parents. This teacher's
comment summarized the discussion, "Resistance to change-parents arc just re-
sistant to change." Time changes attitudes. Communication with community is a
must. That's when we all get in trouble-failing to communicate." Within this
segment of the discussion, several teacher groups validated proactive information
sessions with parents, community, and other tea,:hers. They discovered that all thc
teachers whose overall interaction with parents had been positive had all had par-
ent nights. Therefore, parent night was a critical way to avoid problems. Teachers
shared their plans and experiences. Several teachers volunteered to drive hun-
dre.th of miles to help others plan and present parent night.

In summary, the teacher discussions began in a passive mode with acceptance
of the currcnt situations and ideas for fitting into the existing system then quickly
progressed to challenging the system. As individuals became aware of similarities
in their ideas, teachers expressed confidence in their ability to find ways to change
the system. Teachers genuinely enjoyed the opportunity that vignettes provided
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for discussion. One teacher summed it up by saying, "This let us have lots of good
discussion about situations similar to the vignette and how we handled it." An-
other teacher added, "Yes, and it let us find out that we weren't alone in our con-
cerns." This discussion confirmed, explained, and triangulated 2 of the themes
key to reform teachingassessment and communication.

Implications of the Method

Teachers' discussions and solutions reflected a personalized, contextual rich-
ness. We believe the methodology facilitated this in two ways. First, the vignettes
focused on familiar situations of practice for the teachers. These were not the
same as engaging in practice, but oriented the teachers toward a ready-to-hand
mode. The vignettes also provided a safe forum for discussion of problems they
recognized, yet were previously unwilling or unable to offer for discussion. One
individual commented after thc conference that she had not previously talked about
her problems because she thought of them as "specific to my own classroom and
not important enough to take up the valuable conference time." However, she now
recognized the problems as valid and a valuable forum for discussion.

Second, the vignettes dealt with breakdowns in practice calling for solutions
that make sense within the context of that practice. This oriented teachers toward
an unready-to-hand mode and enabled more context-sensitive reflection. We might
say that the vignettes supported reflection on action that was largely oriented to-
ward reflection in action. One teacher commented during a break in the gruuji
discussions, "I've seen myself in each of the discilssions. These arc problems that
I've had. [Laughs] I wonder what will be in the next 2 vignettes that we are going
to read after break." She identified with the reform efforts in the vignettes. Om
facilitator who attempted to direct the discussion saki, "These teachers saw and
discussed what was of conccrn to them in ciich vignette and wouldn't be moved."
This data indicated the vignette-teacher's voice deeply resonated with the indi-
viduals composing the discussion groups. After the group discussions, 7 indi-
vidual teachers said that although we had not visited them, they still felt the stories
were from their classrooms. This ;:onfirmatory data validated the practice-ori-
ented nature of the vignette topics.

Although the problems described in the vignettes were not thc teachers' own,
they showed considerable engagement with the issues and felt compelled to find
solutions. Again, we feel that this was supported by the methodology. Teachers in
thc study were sensitive to the plight of the vignette-teachers and seemed to bc
called out by some sense of responsibility or camaraderie to deal with their prob-
lems. Specific data indicated that these teachers valued the vignette-teacher's situ-
ations and identified with the teachers in the stories. Although wc informed the
teachers that only the issues were real, they referred to the vignette-teachers as
actual teachers necdi..g advice. As they assisted the vignette-teachers, they found
themselves reflecting on their classrooms. lb return to Heidegger's example, the
teachers seemed to engage willingly in dealing with another teacher's broken ham-
mercven though that teacher was not real.



As efforts increase nationwide to reform the way mathematics is taught and
learned, issues clearly center around individual teacher's practice. This methodol-
ogy allowed us to triangulate observational data and affirm working hypotheses.
Most importantly, this methodology provided rich opportunities for teachers to
engage in reflective activity and to support cach other's reform efforts.
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MODELS OF NEURAL PLASTICITY AND CLASSROOM PRACTICE

Dawn L. Brown Tallahassee Community College
Grayson H. Wheatley, Florida State University

Mathematics instruction involves assumptions about the nature of learning.
Because of new discoveries about brain activity during cognition, some of these
previously held assumptions arc now being questioned. Although we acknowl-
edge that learning occurs in the brain, little attention has been paid to the mecha-
nisms by which this occurs. Historically, there arc many reasons for this stance.

As psychology undergoes a paradigm shift from a behavioristic to a cognitive
science approach new interest is being kindled in brain functioning. A number of
new research tec;miques have become available which permit the study of brain
activity which has previously been inaccessible. The result has been an explosion
of knowledge and new views about how the human brain functions in complex
reasoning tasks. Many of these views are quite consistent with the ideas of
constructivism and therefore should be of interest to mathematics educators.

One of the strongest arguments for radical constructiv ism is the transduction
process which occurs at thc level of the sensory receptor. This process and its
consequences for constructivism has been discussed elsewhere.

At the level of the central nervous system the idea of neural ?lasticity and
many of its consequences is also highly consistent with the constructivist philoso-
phy. Neural plasticity has been defined as the capacity of the central nervous
system to modify its Own structural organization in response to environmental
conditions. This concept allows onc to consider changes we normally think of as
"learning" to be considered as similar te changes which occur during the normal
growth process and recovery of function after neural damage. In a similar fashion,
a constructivist perspective groups classroom learning with learning which occurs
in other settings.

Neural plasticity resurch and the ideas about brain functiori when it has gen-
erated also have implications for classroom practice. One of these findings is that
the brain is organized to process material along sequential and parallel pathways.
The other is thc idea of critical perimIs for experience during development. Both
of these concepts can be taken to support constructivist classroom practices for
learning mathematics.

This presentation will discuss recent development.s in neural functioning dur-
ing cognition. In particular, we will discuss neural plasticity, the concepts men-
tioned above and their implications for classroom practice. We feel that
neuroscientifie research has great potential tor providing insights into mathemat-
ics learning.

,
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MATHEMATICS TEACHER DEVELOPMENT: LESSONS LEARNED
FROM TWO COLLABORATIVE ACTION RESEARCH

PARTNERSHIPS

Anne M. Raymond, Indiana State University

Collaborative action research partnerships create rich opportunities for the
professional development of teachers and classroom reform. One of the primary
goals of collaborative teacher research is to bridge thc gap and strengthen the rela-
tionship between universities and schools (Miller & Pinc, 1990). Theorists claim
(Cardelle-Elawar, 1993) and studies show (e.g. Raymond, 1995) that teacher-in-
spired action research has the potential to result in immediate classroom reform
because the results are more context specific and meaningful to thc teacher.

In the past year I have had the opportunity to participate in two collaborative
action research projects with two middle school mathematics teachers. The first
project was one in which a seventh-grade mathematics teacher wanted to change
his mathematics teaching in an effort to more effmively address the National
Council of Teachers of Mathematics' (1989) cal to infuse problem solving into
the mathematics classroom. In doing so he hoped to improve his students' atti-
tudes toward and abilities in mathematical problem solving. The second collabo-
rative project stemmed from an eighth-grade teacher's desire to investigate whether
or not her efforts in teaching algebra through the use of a "Hands-On" manipula-
tive program were worthwhile. Specifically, she wanted to compare students' at-
titudes and academic achievement when working solely from a traditional algebra
textbook to their attitudes and achievement when working with the "Hands-On"
manipulatives.

Both projects wcrc teacher-driven and yielded a number of interesting results.
In my poster session I propose to (a) briefly present findings from the two studies,
(b) discuss the similarities and differences between my roles in the two studies, (c)
provide suggestions for engaging in collaborative action research projects, and (d)
offer my thoughts on the role of action research in the professional development of
mathematics teachers.
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DEVELOPMENT OF ALGEBRAIC REASONING IN CHILDREN AND
ADOLESCENTS: A CROSS-CULTURAL AND

CROSS-C1IRRICULAR PERSPECTIVE

Anne Morris, University of Delaware
Vladimir Sloutsky, The Ohio State University

This study examined effects of cultural and curricular variables on algebraic reasoning in
early and middle adolescence. Four alvbra curricula in England and Russia were included
in the design. Two age groups were included in the samples: 10 to 14 years, and 14 to 16
years. Algebraic reasoning processes were examined using a written test and interviews.
Profound cross-cultural and cross-curricular differences were found in students' algebraic
deductive reasoning for both age groups.

Comparative and developmental studies consistently reveal cross-cultural and
cross-sectional differences in mathematical reasoning (e.g., Crosswh ite et al., 1985;
Inheldcr & Piaget, 1958). While cross-cultural variability has been established,
specific ,:ultural and social variables accountable for the variation rcmain unclear.
Candidate factors include educational variables; family processes; cultural belief
systems and practices; semiotic systems; social factors; and interactions between
these variables. Sources of within-cultural, cross-sectional variability in math-
ematical reasoning also remain unclear. Age has been firmly established as an
important contributing factor, and cross-sectional differences have been primarily
attributed to cognitive developmental stages (e.g., Kiichemann, 1981; Piaget, 1983),
or to an interaction betIkeen developmental and socio-cultural factors (e.g., cur-
riculum, cognitive tools, SES) (e.g., Davydov, 1975).

There arc inherent difficulties in identifying explanatory variables, and estab-
lishing mechanisms via which these factors affect reasoning. First, sources of varia-
tion arc usually examined in isolation from one another. Consequently, critical
sources of group differences, arid interrelationships among contributing variables
remain unclear (see, e.g., Reyes & Stanic, 1988). For example, within-cultural
cross-sectional studies have attributed variation in algebraic reasoning to cogni-
tive developmental factors without an accompanying analysis of the effect.s of
socio-cultural and curricular variables (see, e.g., KUchemann, 1981). To develop a
cohesive model of reasoning, multiple sources of variation must be examined within
a single design (Stedman, 1994). Second, to establish relationships between spe-
cific socio-cultural variables and specific cognitive outcomes and processes in-
volved in mathematical reasoning, sufficient variability has to be obtained in both
sets of variables.

This study attempted to identify explanatory variables affecting mathematical
reasoning (to detect an measure effects, and to point to likely candidate factors),
and to establish underlying mechanisms by (1) examining multiple sources of varia-
tion in a Single design; and (2) obtaining sult icient variability in socio-cultural
contexts. Thc latter was viewed as a preliminary move toward establishing links
between variability in specific socio-cultural factors and variability in reasoning.
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To address the problems, two curricular settings were identified that incorpo-
rated profoundly different models for developing algebraic reasoning. The first
curriculum, National Mathemnatics Project in England (Harper, Kiichemann, et al,
1987), has a strong concrete-to-abstract orientation. Thc curriculum tends to rep-
licate a natural progression in developmentthe progression from more concrete
to more abstract concepts (e.g., in developing algebraic letter concepts and con-
cepts of mathematical structure) (e.g., Piaget, 1983). Thus, NMP emphasizes in-
ductive, case-based reasoning and learningthe investigation of a number of par-
ticular cases to formulate and to assess the validity of algebraic generalizations,
emphasizing the importance of empirical checks. V ith respect to developing
children's ability to create and operate on abstract algebraic objects, to recognize
and use structure, and to perform algebraic transformations, NMI' uses a proce-
dural-to-structural curricular model (Kieran, 1992). Emphasis on less abstract
numerical input-output interpretations ("procedural interpretations") of algebraic
constructs precales emphasis on structural interpretations, and on algebraic trans-
formations.

The second, Davydov's elementary mathematics curriculum in Russia, as-
sumes the natural progression in concept development is not the most efficient.
Davydov draws on Vygotsky's distinction between development of spontaneous
and scientific concepts. While spontaneous concepts develop as an abstraction of
properties of concrete instances, scientific concepts develop in the opposite direc-
tion: from formal definitions of properties, to an ability to identify those properties
in concrete instances. Formal education is viewed as thc environment that can, and
must, foster development of scientific concepts. Thus, Davydov's curriculum em-
phasizes abstract deductive, law-based reasoningthe logical derivation of par-
ticular (e.g., numerical) cases from general mathematical principles and relation-
ships where those principles and relationships are first expressed algebraically.
Davydov's curriculum can be characterized as abstract-to-concrete and structural-
to-procedural. Concepts of "relation or structure" are developed prior to numeri-
cal work, and prior to emphasis on algebraic transformations.

Curricular variables across cultures were confounded with other potentially
important variables such as language, family and cultural beliefs and practices,
etc. To control potential confounds, and to investigate alternative sources of varia-
tion, two "non-experimental schools" were selected in the same countries. Schools
wem in the same geographical area, and had comparable student and teacher popu-
lations; however, they did not have curricula that were designed to develop spe-
cific kinds of algebraic reasoning.

This paper specifically examines curricular elfect.s on components of alge-
braic deouctive reasoning, including letter interpretation, formulation of Nutt, ions,
and children's understanding ol the logical ticcelty ol deductive conclusiot, ,le-

rived front algebraic proof.



Method

For purposes of comparison, four groups wcrc included: (1 ) students and gradu-
ates of Davydov's curriculum, implemented in Moscow School #91 in Moscow,
Russia (n=120); (2) students in a non-experimental school in Moscow (n=89); (3)
students in an upper school in England that had implemented NMP for seven years
(n=I20); and (4) students in an upper school in England with a "non-experimen-
tal" curriculum (n=120).

Outcome variables were measured through written open-ended problems and
follow-up interviews. Students were tested and interviewed within their schools.
The following task from the CSMS study (Kiichemann, 1981) examined ability to
interpret letters as variables:

Which is larger, 2n or n+2? Explain.

Thc following task, adapted from Clement, Lochhead, and Monk (1981),
measured ability to formulate algebraic equations that represented verbally de-
scribed quantitative relationships:

Write an equation using the letters S and 'I to represent the fol-
lowing statement:

"There are six times as many students as teachers at this school."
Use S for thc number of students and 'I' for the number of teachers.

The following problem from Lee and Wheeler (1989) examined students' ten-
dency and ability to formulate algebraic deductive arguments:

A girl multiplies a number by 5 and then adds 12. She then
subtracts thc original number and divides thc result by 4. She
notices that the answer she gets is 3 more than the number she
started with. She says, "I think that would happen, whatever
number I started with." Is she right? Explain carefully why
your answer is right.

Data were aggregated by age and culture-curriculum composites ("Groups").
Thus, four groups were used in the analyses: Russian non-experimental curricu-
lum ("R-NEX"), Russian experimental curriculum ("DV"), English non-experi-
mental curriculum ("E-NEX"), and English experimental cucriculum ("NMP").
Subjects within each of the curricular groups were divided into two age groups:
10-14 and 14-16 years. Since the data were categorical, and frequencies of cat-
egdries of responses were aggregated across groups and ages, log-lincar analysis
was deemed an appropriate approach to data analysis. Log-linear models were
used to discern cultural, curricular, and age- related effects on algebraic reasoning.

Results

For Kiichemann's task, Figure 1 compares the percentages of correct condi-
tional responses (e.g., 2n, when n>2) bur the various curricular groups and age
groups.
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Figure I . Percentages giving correct conditional responses

For interpretation of letters as variables, Group and Age had independent effects
(gminess of fit 0(3) = 2.26; p=0.52). The effect size of Group was large (0.53),
while thc effect size of Agc was moderate (0.30). Data analyses suggested cur-
ricular effects. Davydov's group gave correct responses more often than other
groups (p<AX)1), and the English non- experimental group gave correct responses

less often than other groups (p<.0001).
Figure 2 shows percentages formulating a correct algebraic equation in re-

sponse to Clement et al.'s (1981) task. For formulation of a correct equation, Group
and Age had independent effects (goodness of fit 03) = 7.49; p=0.06). The effect
size of Group was moderate (0.42), while the effect siz.e of Age was small (0.14).
Analyses revealed curricular effects. Davydov's group wrote correct equations more

often than other groups (p<D001). Experimental groups wrote correct equations

more often than nonexperimental groups (p<.000 I).
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Figure 2. Perceraages.formulating a correct algebraic equation (S=61)

Figure compares the percentages of students independently formulating an
algebraic deductive argument in response to Lee and Wheeler's task. For use of
algebraic deductive rea:;oning, Group and Age had independent effects (goodness
of fit 0(3)=0.85; p=0.8375). Effect sizes of Group (0.5) and Age (0.67) were large.

Analyses suggested cultural effect.s, and a combination of cultural and curricular
effects. Russian groups formulated proofs more often than English groups
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Figure 3. Percentages formulating an algebraic proof during the written test

(p<.(X)01), and Davydov's group formulated proofs more often than other groups
(p<.000 I ).

English groups were more likely than Russian groups to use purely numerical
reasoning on this task (p<.0001); e.g., 76% of NMP students used only numerical
examples, with no use of algebra. "Empirical proofs" were often formulated in
response to this task; i.e., children used inductive numerical arguments, conclud-
ing a generalization held for an infinitc set after verifying that a generalization
held for particular numerical cases. Curricular effects were evident: Davydov's
group used "empirical proofs" less often than other groups (p<0001), whereas
NM? students used "empirical proofs" more often than other groups (p<.0001).
Forty-seven percent of NM? students formulated an empirical proof, while 10%
of Davydov's group used empirical arguments.

If a student did not use algebra on this item during the written test, he/shc was
asked to do so during the follow-up interview. Students' ability to use algebra as a
tool for reasoning could therefore be examined, as well as their tendency to do so.
When prompted to use algebra, 170, of high track ("Red Track") NMP students
formulated an algebraic proof, while 3% of high track NM? students used an
algebraic equation/expression only as a template to generate numerical examples.

Discussion

Davydov's group was more likely to interpret ietters as variables, to formulate
correct equations, and to formulate algebraic proofs. For algebraic deductive rea-
soning, differences between Davydov's group and other groups tended to increase
with children's agesuggesting effects of instruction tend to increase with age.
Though age is an important contributing factor in development of algebraic rea-
soning, comparison of younger and older children's responses across groups sug-
gests socio-cultural factors can ampl4 development of algebraic reasoning
over-shadowing effects of age (Figure 3).

While the Russian groups and NMP group acquired component understand-
ings required in algebraic deductive reasoning (variables, equations), there were
profound differences in their use of algebraic deductive arguments. Differences
did not appear to be due to across-group differences in children's tcndcncy to use,
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or apply algebraic concepts and skills. Rather, findings suggested children in the
curricular groups had acquired very different kinds of understandings of algebraic
reasoning, constructs, and operations.

These results were consistent with other findings from this study (Morris,
1995). In comparison with other curricular groups, Davydov's group was more
likely to use algebraic deductive arguments; to believe algebraic proof establishes
"universal validity"; to use arithmetical structure; to manipulate algebraic expres-
sions correctly; and to acquire concepts of generalized numbers, variables, and
givens. In comparison with other curricular groups, the NMP group was more
likely to use inductive, numerical arguments on proof tasks; to believe algebraic
proof requires empirical support; to computc, rather than use arithmetical struc-
ture; and to use only procedural interpretations of algebraic constructs. In com-
parison with the English non-experimental group, the NM? group was more likely
to acquire concepts of generalized numbers and variables; to formulate correct
equations; and to manipulate algebraic expressions correctly. Thus, while the ap-
proach developed some component understandings, prolonged emphasis on in-
ductive, case-based reasoning and numerical input-output interpretations seems
to promote empirical, rather than theoretical reasoning (see Hatano ct al., 1995).
Using numerical reasoning, children attempted to establish "whether a generaliza-
tion worked," rather than "why it worked."

When prompted to use algebra on proof tasks, NM? students tended to sub-
stitute numbers to makc sense of algebraic statements, to test cas-s, and to g ner-
ate empirical evidence. Russian groups operated at a different le velcper_aing at
the level of relationship or structure. This was particularly evident among
Davydov's group. Approximately 70% of Davydov's graduates operated at the
level of structurewriting proofs, and demonstrating an understanding of the logical
necessity of deductive conclusions derived from proofs.

Findings suggest different curricular approaches tend to lead to different con-
ceptual organizations of children's mathematical knowledge. This conceptual or-
ganizztion, in turn, affects how and whether children utilize and apply their alge-
braic knowledge and skills in the solution of particular problems.
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EXPLORING GENDER DIFFERENCES IN SOLVING OPEN-ENDED
MATHEMATICAL PROBLEMS

Jinfa Cai, Marquette University

Open-ended tasks were used to examine gender differences in complex mathematical prob-
lem solving. The results of this study suggest that overall, males perform better than fe-
males, but the gender differences vary from task to task. A qualitative analysis of student
responses to those tasks with gender differences showed that male and female students had
many similarities in their solution processes of solving these problems, such as making
similar types of mathematical errors and using similar strategics and representations. This
study suggests not only the complexity of the issue of gender differences, but also the fea-
sibility and usefulness of using opcn-ended tasks to explore the issue.

Gender differences in mathematics performance have been a popular but un-
resolved issue in educational research (Fennema & Leder, 1990). Since Sells (1973)
expressed the concern that early decisions not to study mathematics in schools
might be excluding students, and especially female students, from higher paying
occupations such as those in science, engineering, and medicine, there has been an
increased interest in research about gender and mathematics (Fennema & Leder,
1990). In particular, researchers have focused on investigations of gender-related
differences in mathematical performance and have provided different theoretical
models to explain thc gender differences in mathematics performance.

In the early 1970s, Maccoby and Jackl in (1974) conducted a comprehensive
review of research on gender differences and concluded that "boys excel in math-
ematical ability" (p. 352). Others indicated that there were no gender differences
in the earlier years of elementary school, hut in upper elementary, junior high, and
senior high school, males outperformed females in mathematics. A review of re-
search on gender differences in mathematics by Hyde, Fennema, and Lamon (1990)
suggests that gender differences arc declining. However, females continue to ex-
press less confidence in their mathematical ability and a lower perception of the
usefulness of mathematics to them in the future (Lindquist, 1989). Even among
the mathematically gifted students, females have lower educational aspirations in
mathematics and sciences than do males (Benbow, 1992). As Leder (1990) indi-
cates, "the issue of gender differences in mathematics learning is complex and
there arc many perspectives from which it can be explored" (, 21).

Most of the previous studies used multiple-choice tasks to examine the gen-
der-related differences in solving routine mathematical problems (Marshall, 1983).
How male and female students dif fer in solving more complex mathematical prob-
lems remains to be investigated. The purpose of this study is to use open-ended
tasks to explore the gender-related performance differences in solving complex
mathematical problems. The open-ended problems allow students to display their
solution processes, so male and female students' thinking and reasoning can be
examined beyond the correctness of the numerical answers. Thus, this study is
intended to provide more in-depth information about male and female students'
thinking and reasoning in solving complex mathematical problems.
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Method

Data Source

The data used in this study were from an earlier research project (Cai, in press).
In particular, 227 sixth-grade students (96 females and 131 males) from the Pius-
burgh arca participated in this study. Subjects were asked to complete sever. open-
ended problems within a regular classroom setting (about 40 minutes.
open-ended problems involve a variety of important mathematical content areas,
such as number sense, pattern, numbcr theory, pre-algebra, ratio and proportion,
estimation, and statistics. The appendix shows two of the seven tasks. These
problems were from the QUASAR project (Silver, 1993).

Data Coding and Analysis

Thc data were coded and analyzed according to two analysis schcmcs: quan-
titative analysis (Lane, 1993) and qualitative analysis (Cai, Magonc, Wang, & Lane,
in press; Magone, Cai, Silver, & Wang, 1994). In the quantitative analysis, each
student response to an open-ended problem was scored using a five-point scale (0
- 4) with 0 = no understanding, 1 = beginning understanding, 2 = some under-
standing, 3 = nearly complete and correct understanding, and 4 = .:.omplete and
correct understanding. In the qualitative analysis, each student's response is ex-
amined in detail in terms of cognitive aspects of solving the open-ended problems,
such as solution strategies, mathematical errors, mathematical justifications, and
representations. These cognitive aspects are the focus of the qualitative analysis
sincc they have been identified as important and significant dimensions in cogni-
tive psychology in general and in mathematical problem solving in particular. An
elaborate description o thc framework for the qualitative analysis can be found in
Cai (in press).

Inter-rater Agreement

In order to ensure a high reliability of coding student responses to open-ended
problems, two raters independently coded about 50 student responses to three of
the open-ended problems. The inter-rater agreements for thc quantitative analysis
range from 84-89%. Inter-rater agreements for the qualitative analysis range from
86- 98%.

Results

Quantitative Results

Overall, male students have significantly higher aggregated mean scores than
female students (M.k. =18.79, =16.36; = 2.43, 2 < .01). The gender
differences were also examined tor each open-ended problem. Table I shows the
mean scores of male and female students on each open-ended problem. Males
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have significantly higher mean scores than females on four of the problems. This
implies that the overall difference between male and female students is mainly due
to the differences on the four problems. It is interesting to note that the four prob-
lems on which there are statistically significant gender differences require compu-
tation, but the others on which there arc no significant gender differences require
less computation.

Table 1.
Mean Scores of Male and Female Students on Each of the Open-ended Problems

Diwin* Esinision Awfa9e Mote Theory' Pito Rio 8' Preatetn'

ProSen Probton Pitdern Prnkrn Probla Pitcairn Probkrn

Prcbtaii

Male(a.:131) 3.15 2.15 2.18 2.27 3.05 2.90 3.09

Female(.96) 2.79 2.19 2.07 1.66 2.96 2.08 2.61

* For this problem, the difference in mean scores between male and female students is
statistically significant (p < .05) .

Qualitative Results

Because of the space limitation, the qualitative results based on the first three
of the problems for which there exist gender differences are reported in this paper.
Of these problems. two of them (Division Problem and Number Theory Problem)
appear in thc appendix.

Division Problem. The first open-ended problem which shows gender differ-
ences is a division-with-remainder story problem (see appendix). In solving thc
division problem, one not only needs to apply and execute division computations
correctly (computation phase), but also one needs to interpret the computational
results with respect to a given story situation (sense-making phase). The qualita-
tive analysis of the Division Problem ww; conducted from four aspects: (1) solu-
tion process, (2) exec ution of procedures, (3) numerical answer, and (4) interpreta-
tion.

Over 90% of the male and female students selected the appropriate procedure
(e.g., long division) to solve the problem However, a significantly larger percent-
age of male (86%) than female students (75%) executed the procedure flawlessly

= 2.01,12 < .05). A larger percentage of male (70T( ) than female students (61%)
provided the correct answer of 13, but the difference is not statistically significant.
For those who had incorrect answers, both male and female students frequently
gave 12 or 12 with a whole number icmainder (i.e., 12 R 8) as their answers. Only
a few st.ident.s expressed their numerical answer as 12 with a decimal remainder or
12 with a fractional remainder. Similarly, although a larger percentage of male
(50%) than female students (44'7( ) provided appropriate interpretation of their an-
swers, the difference is not statistically significant. Therefore, the qualitative re-
sults of the Division Problem suggest that there is a significant gender difference
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in the computation phase of solving the problem (favoring males), but gender dif-
ference does not exist in the sense-making phase.

Number Theory Problem. This problem (see appendix) assesses student
number sense and the ability to use basic conccpts of number theory to snlve a
problem. It allows for multiple correct answers. In particular, the number 1 and
any multiple of 12 plus 1 arc correct answers (i.e., 1 + 12n, for n = 0, 1, 2, ...). Each
student response was coded with respect to: (I) numerical answer, (2) solution
str itegy, (3) mathematical error, and (4) representation.

A significant larger percentage of male (61%) than female students (43%) had
cc rect numerical answers (z= 2.69, <.01). For those male and female students
wao had crwrect answers, 83% of female and 86% of male students had the correct
a.iswer of 13. The remaining 17% of female and 14% of male students had a
correct answcr other than 13, including 25, 49 etc. This implies that for those who
had correct answers, female and male students tend to provide similar types of
correct answcrs.

In solving the Number Theory Problem, eight different solution strategies were
identified. Some students used common-multiple strategies to solve the problem.
For example, a student might find 12 as a common multiple of 2, 3, and 4 by direct
computation (2 X 6 = 12, 3 X 4 = 12, 4 X 3 = 12), and then found the answer by
adding one to the common multiple. Another example is that a student listed the
multiples of 2, of 3, and of 4; then identified the common multiple; and added onc
to find the answer, as shown below:

2, 4, 6, 8, 10,12 14, 16, ...
3, 6, 9, 12, 15, 18, ...
4, 8, la 16, 20, 24, ...
12 + 1 = 13, so the answer was 13.

Other students used guess-and-check strategies to solve the problem. Only a slightly
larger percentage of male students (53%) than female students (48%) had a clear
indication of using one of the solution strategics, with the difference being not
statistically significant. For those who had a clear indication of using one of the
strategies, female students tended to use common multiple strategies more fre-
quently than males; while male students tended to use guess-and-check strategies
more frequently than females (x2 (1, N = 116) = 4.93, u < .05).

Male and female students made similar mathematical errors and used similar
representations. Thc most frequent error (atxmt 30%) made by both male and
female students is that students manipulated numbers unreasonably. For example,
they simply added the given numbers together to get the'answer without any math-
ematical justification. Thc same percentage of male and female students (42%)
used mathematical expressions to show their solution processes; 17% of female
and 14% of male students used pictorial representation to show their solution pro-
cesses; and 42% of female and 44% of male students used written words to show

their solution processes.
Ratio and Proportion Problem. This problem imesses student problem-

solving skills in a map-reading context that requires knowledge of ratio and pro-
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portion. In particular, students were given that 3 centimeters in a map represents
54 miles in actual distance, and they were asked to use proportional rcasoning to
determine the actual distance that 12 centimeters represents on the map. Each
student's response was coded with respect to: (1) numerical answer, (2) solution
strategy, (3) mathematical error, and (4) representation.

A larger percentage of male (69%) than female students (48%) had correct
numerical answers (4 = 3.19, < .01). Similarly, a larger percentage of male
(82%) than female students (60%) had a clear indication of using one of the iden-
tified solution strategies = 3.68, < .01). However, both male and female
students most frequently used a "unitary strategy" to solve the problem. One of
the examples of using unitary strategy is like:

12 + 3=4. Since 3 centimeters represents 54 miles, 4 X 54 =
216, so it is 216 miles.

Another example of using unitary strategy is like:

Since 3 centimeters represents 54 miles, 54 + 3 . 18, 18 X 12 =
216. So it is 216 miles.

Two male students used formal proportional reasoning strategy to solve the prob-
lem; no female students did so. Moreover, male and female students useci similar
representations in their solutions. In fact, over 900/e of the male and female stu-
dents used symbolic representations to show how they found their answer. The
most frequent error made by both male and female students in solving this prob-
lem was that they manipulated numbers unreasonably; this finding is similar to
what was found for the Numbcr Theory Problem.

Brief discussion

This study used open-ended tasks to examine gender differences in solving
complex mathematical problems. The results of this study suggest that overall,
male students perform better than female students, but the gender differences vary
from task to task. Gender differences appear to be significant on tasks requiring
computation, hut the difference dramatically decreases on tasks not necessarily
requiring computation. In particular, in solving the division-with-remainder prob-
lem, males outperform females in the computation phase, but not in the sense-
making phase

For those tasks showing significant gender differences, a more elaborate quali-
tative analysis of student responses was conducted. Although, a larger percentage
of male than female students provided the correct answer, male and female stu-
dents showed many similarities in the solution processes used to solve these open-
ended problems, such as making similar types of mathematical errors and using
similar strategies and representations. The results of this study suggest not only
thc complexity of the issue of gender differences in mathematics, but also the
feasibility and usefulness of using open-ended problems to explore this issue.
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Appendix

Division Problem

Students and teachers at Miller Elementary School will go Spring sightseeing by
bus. There is a total of 296 students and teachers. Each bus holds 24 people.
How many buses arc needed?

Show your work.
Explain your answer.

Answer:

Number Theory Problem

Yolanda was telling hcr brother Damian about what shc did in math class.
Yolanda said, "Damian, I used blocks in my math class today. When I
grouped the blocks in groups of 2,1 had 1 block left over. When I grouped
the blocks in groups of 3, I had 1 block left over. And when I grouped the
blocks in groups of 4, I still had 1 block left over."

Damian asked, "How many blocks did you have?"
What was Yolanda's answer to hcr brother's question?
Show how you found your answer.

Answer:
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FAMILY CONFIGURATION AND MOTIVATION OF AFRICAN
AMERICAN HIGH SCHOOL STUDENTS

Norma C. Presmeg, The Florida State University
Catherine Hill, Godby High School

Arthur R. Skelly, Jr., Rickards High School

Consonant with thc current concern for achievement of minority students, the two action
research projects described in this paper use interviews and case studies of ten African
American high school students to address some issues relating to motivation in the learning
of mathematics, particularly as this motivation concerns aspects of the family structures of
which these students are a part. The data supp rt the literature suggestion that high motiva-
tion to learn mathematks i. more readily achieved amongst African American students
from two-parent homes. However, the motivating factors arc complex: amongst other fac-
tors, a negative role model effect is described, in contrast to the motivating effect of a
relationship with a caring adult who values mathematics learning.

The Problem and its Significance

With an increasing concern that mathematics education should be fair, equi-
table, and accessible for all students, there is evidence that this is not the case in
many American schools (Mathematical Sciences Education Board, 1990). In par-
ticular, African American students arc not proportionally represented amongst high
mathematics achievers, and in courses which prepare students for the study of
mathematics at the tertiary level. The present research project investigated one
aspect which has bearing on this issue (Banks & Banks, 1995), i.e., the influences
of various family configurations and family members on thc motivation of se-
lected African American students in two schools.

Another issue is that research which is carried out in higher education institu-
tions is sometimes perceived by teachers as not highly relevant to their day-to-day
classroom activities and pedagogy (Lankford, 1993). The research described in
this paper was carried out by two practising high school mathematics teachers in
collaboration with a university mathematics teacher educator. The two related
projects were chosen by the teachers as deeply significant to thcir work with Afri-
can A lerican students in thcir own mathematics classrooms. One veteran teacher,
herself an African American, had achieved highly in mathematics although she
came from a single-parent home. Hcr project, which wc call thc 'Family Project',
investigated the family configurations (father-absent, mother-absent, and two-par-
ent families) and related influences on the achievement and motivation of six of
her students. In the second project, the 'Motivation Project', a tcachcr in his eighth
year of teaching mathematics in another school in which 70% of the students arc
African American, investigated factors - including family configuration - which
influenced motivation in the learning of mathematics.



Theoretical Framework

"It is generally accepted that school related achievement, attainment, personal
and career aspirations, and eventual attainment, arc functions of the direct and
interactional effects of many factors. Among these arc the individual, family and
community" (Johnson, 1992, pp. 99-1(X)). Research on single parent versus two
parent families and the achievement of the children from these two configurations
is mixed, but tends to support the idea of higher achievement among zhildren from
the two parent families. However, these findings arc influenced by the socioeco-
nomic status of the families involved, since single parent families usually arc more
economically disadvantaged than two parent families. Weissglass (1994, p. 69)
wrote that "It is unwise and counterproductive ... for reformers to ignore the fact
that the current effort at reform is occurring at a time when schools are dealing
with the effects on children of divorce, single-parent families, alcoholism,
homelessness, violence, racial prejudice, sexual and physical abuse, and thc wide-
spread availability of drugs." He saw the effects of these conditions in classrooms
as resulting in heightened stress levels for teachers. In seeking to understand the
background experiences of some of our minority students and how these might
influence their learning of mathematics, we adopted the theoretical position that
motivation and achievement are influenced by a complex interrelationship of fac-
tors, including family configuration. We therefore chose African American stu-
dents of both sexes from single-parent and two-parent homes for the purpose of
learning more about aspec Ls of their family life which influenced their learning of
mathematics.

Methodology

Within this theoretical framework of personal and social factors, it was recog-
nized that a qualitative methodology was appropriate, since it would provide the
flexibility required to pursue unexpected issues as these arose. Data collection in
both projects included transcripts of interviews with students, and classroom ob-
servation of students, as well as documents in the form of achievement and class-
room tests.

The ten African American students in the two projects were as follows:

FAMILY PROJECT

NAME SEX AGE GRADE FAMILY

Event M 15 10 Two-parent
Jamella F 15 10 Two-parent
Tim M 18 12 Father-absent
Trivanna F 14 9 Father-absent
Gerome M 14 9 Mother-absent
Marie F 18 12 Mother-absent

493
32



MOTIVATION PROJECT

NAME SEX GRADE CURRENT MATH COURSE PARENTS

Kizzy F 12 Explorations Math 2 Divorced
Mario M 10 Explorations Math 2 Divorced
Tremecia F 11 Geometry Divorced
Trineshla F 9 Algebra 1 Married

Data, interpretation and discussion

Our interview protocols tend to support the conclusion that high motivation to
learn mathematics is more readily achieved amongst African American students
from two parent homes. However, more importantly, our data suggest that the
quality of a student's relationship with a caring and encouraging adult who values
mathematicswhether in a single parent or a two parent homeis the crucial
factor. In some cases our students were motivated to achieve in mathematics by
negative or reverse factors: they did not want to grow up to be like a family mem-
ber whom thcy did not admire. For instance, Tremecia spoke as follows.

I look at my brothers and sisters and I get motivated. I do not
want to grow up and be a bum. None of them has a regular high
school diploma. Some have GED's, and some don't even have
that. They don't do anything for themselves. If they need money
or something, they mooch off of my parents. I hate that! I want
better for myself.

This reverse role-model effect is similar to the phenomenon reported in Presmeg
(1991), in which African American prosNctive teachers remembered poignantly
negative experiences with mathematics teachers, whic:1 had the effect of causing
thcm to aspire to be more caring and effective teachers than these negative role
models were.

Career aspirations, sometimes h:,,ed on family role-models, were also a strong
motivating factor in the desire to achieve well in mathematics. Of the ten African
American students in this research, all but One saw mathematics as the gateway to
college studies and successful careers. However, their mot.vations were complex
and individual. Mario, who eventually hopes to own his own business, had the
following to say regarding his perceptions of college:

If I don't go to colkge, I'll never own my own business. I mean
I could, but I'd probably go broke because I would not have any
formal training. That's why I'm in this program that helps stu-
dents with their studies. It also provides us with experiences out
in the business world, sort of like an internship. Before I entered
this program, I did not like school and I had no incentive to do
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good. Now that I have a goal. I want to prove to myself that !can
do this. I really like the challenge.

Trineshia had a related concern, as follows:

I need to do good now so that I can get a scholarship. My parents
make a good salary, but I don't think they could afford what a
college education costs these days. I just want to try my best so
that the rewaras could possibly help me and my parents in the
long run.

With regard to motivation to do well in mathematics, whether or not a student's
parents were divorced appeared to be less important than the quality of a relation-
ship with a parent who cared and valued learning. Tremecia, who lives with her
mother, spoke as follows:

My mother tries to keep on me about my studies. I think that has
more to do with the fact that she is now back in school herself.
She has held many different jobs, and I think that she wants to
get a degree to get a steady job. She wants me to get my educa-
tion now so that I won't have a hard time in the future. Shc
knows that math is not my hest subject. She is sympathetic be-
cause she did not do very good in math as a child. However, it is
not an excuse to do poorly. She just tells me to try harder, and
not to give up.

With regard to achievement, analysis of data from the family project suggests
that the two students in this study who live with their fathers appeared to be under-
achieving in mathematics, while the other four students were achieving satisfactc
rily. From these data alone, no generali/ations can be made. However, from the
interviews in both projects it appears that single parents who work because of
economic necessity often find it more difficult to devote the time to take an inter-
est in the quality of their child's learning in mathematics. According to research by
Nieto (1992), the family as a unit is a significant asset in successful learning by
minority students. Having a close-knit family that encourages a child, allows for
open and meaningful conversations that facilitate the desire to achieve. Our data
support this conclusion.
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GENDER-RELATED DIFFERENCES IN INTERACTION PATTERNS IN
ELEMENTARY SCHOOL INQUIRY MATHEMATICS CLASSROOMS

Diana Underwood Gregg, Purdue University Calumet

The purpose of this study was to identify interaction patterns that emerged during math-
ematics instruction in elementary school classrooms which established an "inquiry" math-
ematics tradition, to describe any gender-related differences in these patterns, and to at-
tempt to account for the presence or thc absence of such differences. Preliminary analysis
suggests that aspects of an inquiry approach to mathematics instruction may have had a
positive impact in providing gender-equitable learning opportunities for boys and girls.

Gender differences in mathematics teaching and learning have been studied
by numerous researchers over thc past twenty years (Eccles & Blumenfeld, 1985;
Fennema & Shcrman, 1978; Hart, 1989; Jungwirth, 1991; Leder, 1992). In gen-
eral, these studies have evolved from findings which indicate that males tend to
outperform females in mathematics on standardized measures, and that females
are less likely than males to take non-compulsory courses in high school math-
ematics.

In an effort to account for these phenomena, researchers have studied gender-
related differences in males and females' beliefs about their mathematics abilities,
differences in behaviors that females and males exhibit as a result of their beliefs,
the influence of social interaction on their beliefs and behaviors, and gender-re-
lated differences in classroom interaction patterns. However, the vast majority of
the studies that have noted differences in beliefs, behaviors, and/or interactions
have taken place in classrooms characterized by what Cobb, Wood, Yackel, and
McNeal (1992) call the school mathematics tradition. In this tradition, students
arc typically expected to learn and become proficient at solution methods and pro-
cedures that are presented to them by th, teacher and their textbooks.

This tradition is in contrast to the inquiry mathematics tradition advocated in

the currcnt reform movement in mathematics education. In an inquiry mathemat-
ics classroom, the emphasis is on figuring out personally meaningful solutions and
engaging in mathematical reasoning, explanation, and justification. Since the ac-
tivities of explaining and justifying are central aspects of inquiry instruction, but
not of traditional school mathematics instruction, the interaction patterns that oc-
cur in inquiry classrooms contrast dramatically with those of school mathematics
classrooms (Cobb, et al., I 992). This suggests that inquiry classrooms arc poten-
tially rich sources for studying gender-related differences in attitudes, beliefs and
motivations.

An important question that arises then is the following: I low might a qualita-
tive change in mathematics instruction influence the patterns of interaction that
arise in the classroom and thereby influence students' learning opportunities with
respect to gender? Will thc gender-related differences recorded in the past con-
tinue to perpetuate inequitable learning opportunities for males and females or
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could an inquiry mathematics classroom tradition provide a more gender-equi-
table environment? This study begins to address this question.

Theoretical Focus

The theoretical framework that guides this research stems from symbolic
interactionism (Blumer, 1969) and ethnomethodology (Garfinkel, 1967). Under
these assumptions, individuals in a group construct subjective meanings for things
by interpreting each others' actions and adjusting their interpretations in the course
of their interactions. Although meanings arc subjective, they are experienced as
universal truths by the participants within an interaction. Therefore, when applied
to the analysis of mathematics lessons in schools, this point of view assumes that
the individuals' mathematical activity is reflexively related to the classroom mi-
croculture (Voigt, 1992).

Guiding Research Questions

The research questions that guide this study are the following: 1) What are the
typical patterns of interaction that emerge during whole class mathematics instruc-
tion that follows the inquiry tradition? 2) What, if any, arc the gender-related dif-
ferences in the interaction patterns during whole class, teacher-led activities? 3a)
If there arc gender-related differences in the patterns of interaction, then how are
the gender-specific interaction patterns interactively constituted? and 3b) If there
arc no gender-related differences in the patterns of interaction, then are there as-
pects of the inquiry approach to instruction that can account for this lack of gen-
der-related differences?

Data Collection

Thc mathematics instruction in two second and two third grade classrooms
was video-recorded for two consecutive weeks during the last two months of the
1992-1993 school ycar. Thc classroom teachers conducted all the lessons using
instructional activities and strategies that had been developed by the Purdue Prob-
lem-Centered Mathematics Project. Interviews were conducted with eight chil-
dren from each of the 4 classes to gain information about their mathematical con-
ceptual understandings as well as their perceptions of classroom events, their mo-
tivation for participating in whole-class discussions, and thcir views about their
mathematics ability.

Methods of Analysis

In the first stage of thc data analysis, transcripts of the mathematics lessons
arc currently being analyzed using a constant comparative approach (Glaser and
Strauss, 1967). After transcribing each lesson, theoretical memos arc written for
each inv;raction sequence. These memos contain my interpretations and hypoth-
eses about the meaning of events to the participants and serve as thc basis for
interpretation of subsequent lessons. With each analysis of subsequent episodes,



the conjectures previously made regarding comparable sequences are tested, re-
fined or set aside. In the second stage of the analysis, thc knowledge gained from
the interviews with the target students and their teachers will be used as a means of
triangulating or refuting assertions made in thc first stage of the analysis.

Findings

I will discuss thc preliminary findings from two of the four classrooms
Mary's and Joscue's (both names are pseudonyms). The typical smooth flow of
discourse in interactions in traditional classrooms has been described by Mehan
(1979) as thc initiation-response-evaluation scheme (i.c., the teacher asks a known-
answer question, a student answers the question, and the teacher evaluates the
answer). In contrast to this pattern, the smooth discourse in Mary's class when
there was no disagreement about the answer to a task could be described as initia-
tion-responsc-evaluation-echo, response-evaluation-echo, response-evaluation-
echo, etc. Mary began by posing a task for which no precursory instruction had
been given (initiation). A student, usually a volunteer, directed his/her response in
the form of an answer to the task followed by his/her solution (response). Whereas
in traditional school mathematics instruction in which the teacher assumes thc role
of the sole evaluator of the students' 1swers, in this class the students became a
community of validators by calling out something that would suggest whether or
not they agreed with the answer/solution that was given (evaluation). The teacher
followed this by repeating the student's answer/solution back to the other mem-
bers of the class, or by helping the student express what she thought the student
was trying to say. Because the teacher only contributed to helping the student
clarify his/her solution but never intentionally altered the nature of the student's
solution, the last part of this recurring pattern is described as an "echo" of the
student's answer/solution. Following her echo, Mary called on several other stu-
dents for their responses to the original question. These were also evaluated by the
students and then echoed by the teacher. Thus, instead of the typical school math-
ematics role as trainer and evaluator, Mary's role could be likened to that of a
moderator.

When a student gave an answer or solution which was evaluated as incorrect
by his/hcr peers, the class discussion would "breakout" as students would simulta-
neously begin calling out their arguments against the answers/solutions that were
given. The breakout ended when the teacher reassumed the role of turn taking
monitor and gave the floor to a student, thus ending the simultaneous talk. Al-
though she typically would return to the student whose answer was disputed to sec
if s/he had, in Mary's words, "changed his/her mind", Mary never pressured stu-
dents into changing their answers. In fact, just the opposite situation appeared to
be thc norm in this class. Even though she allowed the breakout in thc classroom
discourse to occur (and I would argue that she needed the breakouts to occur be-
cause she would not openly evaluate the answers herself), Mary unwaveringly
upheld the students' right to state their solution without being interrupted, and to
not bc obligated to change their answer for any reason.

499 38

.-



Based on the analysis of the patterns of interaction in Mary's class and previ-
ous literature, several gender-specific questions arose. Only one will be discussed
here:

What role does gender play in teacher-male vs. teacher-female inter-
actions that involved attempts to gain the floor?

Both females and males uscd similar strategies to get a turn, such as calling
out "I got somcthing different" or "I did it a different way." Occasionally, both
males and females would call out at inappropriate times, making it difficult for
them to get a turn. However, there were a small number of incidents in the data in
which the girls, in order to provide a rationale for why they should be given a turn
to present their solution to a specific problem, would proclaim that they had "prob-
lems", it was "hard" for them to get their answer, or that their solution was "con-
fusing". What makes this interesting is that thc girls were not using this strategy as
a means of getting help to solve problems that they perceived to be too difficult for
them to solve. In other words, they were not exhibiting learned helpless behav-
iors. All of the girls who used this strategy to get a turn had invented viable solu-
tions for the problems which they subsequently presented to the class.

A few years ago, the Mattel Toy Company, makers of the Barbie doll, came
under fire when one of the phrases that their talking Barbie had been programmed
to say was that "math is hard". By saying that "math is hard", Barbie was suppos-
edly reinforcing the stereotype that for girls, math was too difficult. In the school
mathematics tradition, if onc believes that math is hard, this implies that he/she is
probably not able to easily solve school math problems. This indicates that he/she
has limited mathematical abilities. In Mary's class, it was taken-as-shared that
math was sometimes "hard". However, "hard" had a different meaning for the
students in this classroom than for those who have experienced traditional school
mathematics instruction. Whcn stirlents or Mary described a problem as "hard", it
did not mean that the participants believed that the problems were beyond their
ability to solve it. Problems that were described as being "hard", "difficult" or
"confusing" meant that students had to work harder at figuring thcm out. When
the girls in this class described a task as "hard", they were not lowering their status
by indicating a lack of competency (which might bc the case in traditional school
mathematics classrooms).

One of the reasons for the lack of gender-related differences in the patterns of
interaction in Mary's class might be hcr role as moderator rather than evaluator
and trainer. Mary did not have a mathematical agenda that she was trying to get
thc students to "see." Jungwirth (1991) found that, in traditional classrooms, boys
may be more apt than girls to play along with the teacher's agenda and thus appear
more competent. In Mary's case, her role as moderator promoted an atmosphere
of trust in which the students knew that Mary would value all of their responses.
This atmosphere corarit atcd to a situation in which thc students were not afraid to
accept the challenge of problems that they were not sure they would be able to
sol ve.



In contrast to Mary's role as moderator, Josette was not so equally accepting
of all students' answers/solutions. Less sophisticated solutions typically received
less recognition from the teiicher. Whereas Mary "echoed" all solutions, Josette
did not "echo" solutions in which students counted by ones to solve a problem.
Furthermore she often elicited solutions that students figured out "without count-
ing" and highlighted more sophisticated solutions when they appeared to fit with
her agenda for the task. Whcn students gave an answer thatJoscue considered to
be wrong, she did not directly tell them that they were "wrong", but the rising
inflection in her voice that she often used whcn shc repeated their answer/solution
was typically interpreted by students as an indicator that their answers were wrong.
Thus, the typical pattern of interaction in Joseue's class morc closely resembled
the tradition initiation-response-evaluation pattern.

Josette's subtle evaluation of students' answers was often followed by a
modification in the typical pattern of interaction that corresponded to the "breakout"
pattern in Mary's class. However, whereas the "breakout" pattern was played out
in Mary's classroom interactions when students judged an answer to be incorrect,
this open forum for calling out one's disagreement with a peer's answer/solution
was not practiced in Josette's class. In Joseue's class, if a student disagreed with
an answer/ solution given by his/her peers, norms had been established prior to the
data collection period in which the student who disagreed was under the obliga-
tion to ask the student who provided the solution questions atvut the aspects of the
answer/solution which he/she disagreed with. Unlike in Mary's class in which
students who gave a "wiong" answer were not obligated to address arguments
regarding their solutions, the students in Josette's class could not hold on to an
answer/solution without addressing these arguments.

Although no gender differences were noted ii interactions when students ques-
tioned each others' solutions, the following gemler-spec die question arose:

What role does gender play in the teacher-student interactions when
students' answers/solutions arc judged to he incorrect?

When Josette judged an answer/solution to be wrong, she was much more
directive in her interactions with some students than she was with others. How-
ever, the data analysis indicated that the differences in these interactions were not
related to the student's gender, but to Josette's perception of the different cogni-
tions of the students. Josette interacted similarly with su-ong females and strong
males. When a strong student gave an atypical answer which might have been
judged as being incorrect, Josette would indicate that .%/ie was having trouble fig-
uring out how they had solved the task and would ask the student for a clarifica-
tion. When a mathematically less able student began to present a solution that did
not fit with a solution that she expected to hear, Joseue would cut off the student's
explanation before s/he could complete it and steer her/him to what she considered
an acceptable solution for that task. There were also not any gender differences in
the ways in which males and females responded to this steering. For instance,
1)oth weak females and weak males accepted the I unneling in the same manner.
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Neither boys nor girls would contradict the teacher's negative evaluation and steer-
ing to a different solution even whcn thcir solutions were correct.

A possible reason why there were not any gender related differences in the
patterns of interaction in Joseue's class might be because Josette's focus was on
how she was supposed to "do" the instructional activities so that students would
learn. Josette seemed to have a "script" that shc followed for each activity that she
and the students engaged in. It seems possible that she was so preoccupied with
following the "script" for the instructional usk that she did not pay much attention
to the students' mathematical conceptions unless their solutions did not fit her
script. For those cases when things did not go smoothly, she had take action to get
students back on track with thc script. As noted, these actions differed according
to Josette's perception of students' abilities, but not according to their gender.
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MATHEMATICS EDUCATION RESEARCH ON MINORITIES FROM
1984 TO 1994: FOCUS ON AFRICAN AMERICAN STUDENTS

Sunday A. Ajose, East Carolina University

Judged by its results, the current system for educating African American students in math-
ematics is a distinct failure. For years, educators either ignored this problem or !imply
blamed the failure of the system on its victims. Eleven years ago, the Journal for Research
m Mathematics Education drew national atterjon to the problem by devoting an entire
issue to articles and reviews of available research on how America's ethnic minorities
learn, and perform in mathematics. Twenty-four studies involving African American stu-
dents were reviewed, and several factors that might influence performance and participa-
tion in mathematics, identified. Following up on that work, this paper reviews studies that
have been done on this subject since 1984. Most were correlational studies.

Why arc African Americans (blacks) so seriously underrepresented in math-
ematics? What causes thc persistent under-achievement of black students in this
subject? How can schools rectify the gross racial inequity in mathematics educa-
tion outcomes? These and similar questions have been begging for answers for
decades. The Journal for Research in Mathematics Education (JRME) drew atten-
tion to this neglected problem when, in 1984, it devoted an entire issue to research
on factors which influence how America's ethni minorities, including blacks, learn
and participate in mathematics (Matthews, 1984). This paper is a follow-up to that
seminal work. Its purpose was to review some of the research that had been done
on this subject since 1984, and give ideas that may guide further research in the
area. Only studies involving black students were considered.

Selection of Research Studies. Because of space limitations, studies reviewed
for this paper were identified from lists of matnematics education research which
appeared in July issues of the JRME from 1984 to 1994. Only a few of these
studies wcrc cited. Items were selected for their potential to contribute to our mea-
ger knowledge base on the subject of blacks and mathematics. Some of the studies
focused exclusively on black students; most included a significant number of
black students in their samples.

Framework for this Review

Matthews' (1984) review identified several parent-, student-, itnd school-re-
lated factors thought to influence thc quality as well as the outcomes of the math-
ematics education of minority students. These factors were classified into three
groups, and presented is in Table 1. No claim was made about the comprehen-
siveness of the list of fa( tors. At the time of this initial review, there was very little
empirical evidence linking some of the variables to the mathematics performance
of black students. However, Matthews' framework was used for the current re-
view because of its logical structure and because it was sufficient to accommodate
all the factors that were cited in the studies reviewed.



Table 1
Parent, Student, and School Factors That Affect the Performance and
Participation of African Amer:cans in Mathematics

Parent Student School

Ascribed Characteris-
tics

race, sex, age
Cognitive

past and present
education & occupa-
tion

Affective
expectations and
aspirations for child;
support for mathemat-
ics performance.

Cultural
communication style,
primary language
spoken at home

Ascribed Characteris-
tics

race, sex, age
Cognitive

past and present
mathematics perfor-
mance and enrollment

Affective
achievement orienta-
tion, self-concept,
locus of control,
stereotyping, per-
ceived utility of
mathematics

Cultural
cognitive learning
style, language
proficiency

Climate
discipline, attendance

Organization
course offerings,
sequence and
prerequisites,
curriculum placement,
class size

Resources
facilities, materials

Personnel
ascribed characteris-
tics, professionalism,
instructional methods,
attitudes and percep-
tions, student
interaction.

Parental Influences On Mathematical Achievement

A search of the literature turned up no study of the effects of parents' ascribed
or cultural characteristics on student performance in mathematics. However, the
effects of cognitive and socioeconomic factors were examined in several studies.
Most of these studies found parental occupation, income and education to be
positively correlated to children's mathematical achievement (Blackwell, 1984).
One study (Kaaya, 1989) found no such relationship.

Many mathematics educators believe that high but realistic expectations can
exert a positive influence on mathematical achievement. Researchers who ex-
plored this issue in black student populations found supporting evidence for the
belief (Kaaya, 1990; Rhone, 1990). The two studies also suggest that the educa-
tional and vocational aspirations which black parents have for their children can
predict how well these students will do in mathematics. It appears that parental
expectations communicate to children in a very powerful way how much their
parents believe in them. This, in turn, strengthens thc children's belief in them-
selves.

Other correlates of improved mathematical performance among black stu-
dents arc success-related behaviors of parents such as developing partnerships with
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their children's schools, having positive attitudes towards mathematics, engaging
in rnathematics-rc.lated activities with their children, scheduling homework rou-
tines and making sure that children get help with schoolwork when necessary.

Student Factors

It is widely accepted that the characteristics which a learner brings to any
learning situation will affect the outcome of the event. In the past, scholarly dis-
course on differential achievement in mathematics often centered on the minority
student's racc, risk factors and assumed cultural deficits. During the past ten years,
however, the research focus appears to have shifted to the student's cognitive,
affective and unique cultural characteristics.

Reyes' (1984) review of the literature on affective variables showed a consis-
tent pattern of strong, positive correlations between self concept of mathematical
ability and achievement in the subject. Similar results were obtained from studies
of black students ranging from elementary grades through college (Groman, 1989;
House, 1993). Groman's study further showed that measures of academic self-
concept could be used to predict the number of mathematics courses female black
students might take in the future. It scents that self-confidence is very influential
in decisions black students make concerning their mathematics education.

The concept of cognitive style recently emerged as a means of explaining
some of the persistent racial differences in in;tthematics performance and partici-
pation. Ha Ic-Bcnson (1986), for example, argued that most African American stu-
dents process information in ways that are very different from those of whites.
According to this perspective, black students tend to he field-dependent, intuitive
rather than analytical, holistic and people oriented: they have relational learning
styles which differ from the analytic styles that schools prize. As a result, racial
disparities in academic achievement may be partly due to the failure of schools to
appreciate and adapt to the unique characteristics of African American learners.
These claims have, so far, received only limited support from studies of attributional
and learning style preferences of African American students.

The results of some recent studies indicate that many black students have
affective profiles similar to what lb lc-Benson described (Rech, 1991) .Thc black
students in these studies tended to have an external locus of control, and he field-
dependenta trait generally associated with low mathematics achievement. How-
ever, othcr studies found no significant positive correlation between mathematics
achievement and these traits. In fact, the data from one ,,tudy flatly contradict thc
claim that black students are predominantly holistic (Roberts, 1991). There is clearly
a need for more research in this area.

School Factors

There is no question that, in general, black students under achieve in school
mathematics. They are subject to more disciplinary measures, and are labeled as
slow learners in disproportionately large numbers. What has always been at issue
is whether schools contribute to the learning problems which these students have,
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and if so, how. Findings from some studies suggest that school policies such as
tracking and grade retention are detrimental to black students. The common prac-
tice of tracking and putting acadcmic labels particularly on black students is sup-
posedly based on objective scientific measures. Yet, Johnson (1986), found that
racial and socioeconomic considerations strongly influence and contaminate the
process. Academic tracking is often denounced, with justification, because bright
black students are sometimes mislabeled, and because the classification creates
lower expectationsof the students involved. There is some indication, however,
that factors other than the mere act of tracking itself may be responsible for the
plight of academic:ally tracked black students. The results of a study involving
black students in 8th grade found no effect due to ability grouping, on the math-
ematical performance of these students (Meeks, 1994).

Like tracking, grade retention and emphasis on discipline may be counterpro-
ductive school practices. It seems quite reasonable not to promote a student until
basic essential knowledge for his or her current grade has been acquired. More-
over, school effectiveness research recommends that schools maintain safe and
orderly learning environments. Nevertheless, grade retention and an undue focus
on discipline tend to correlate with low mathematics performance by affected black
students.

School climate and social structure also seem to influence how black students
perform in mathematics. Where classroom tension is high, differential mathemat-
ics achievement between black and white students tends to be high; where cohe-
siveness and satisfaction prevail, achievement differences between the races tend
to be small (Deng, 1992) . Furthermore, hostile school environments alienate black
parents and prevent the development of beneficial parent-school partnerships.

Studies of the effect of expectations, reviewed earlier in this paper, point to a
strong link between mathematics performance and achievement-related expectan-
cies of students and parents . Teacher expectations also appear to have strong
impact on the performance and participation of black students in mathematics.

To begin with, there is some evidence that teachers' expectations are influ-
enced by student characteristics. Unfortunately, teachers seem to value qualities of
obedience, dependence, and conformity rather than assertiveness and independence
in black students. Although there is no measure of the power of teacher expecta-
tions, its strength is indicated by the finding that the mere perception of high teacher
expectations evokes in black students greater task orientation and performance.

Curriculum and Instruction also turn out to be strong factors in the math-
ematical performance of black students. Variables found to have a positive effect
on performance include early intervention with culturally relevant curriculum
materials, and the use of problem solving and constructivist instructional strate-
gies. Coomative Learning structures benefit some. but not all, black students;
Computer Assisted Instruction can improve performance by low achievers. How-
ever, remedial strategies which are used with students in lower mathematics tracks

correlate only with poor performance.
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Concluding Remarks

Research on the mathematics education of African Americans has taken a turn
for the better. For one thing, the research is being done with black children, and
increasingly by people with a direct experience of some of the issues involved. For
another, theoretical underpinnings of the studies, where they exist, are shifting
from those that view the unique characteristics of black children as deficits, disad-
vantages, and pathologies to those that see the educational problems of these chil-
dren primarily as issues of inequity. The research is clearly in its infancy, and lacks
focus for the most part. We now have some useful information in the substantial
number of positive correlations that have bcen found between various factors and
the mathematical performance of black students. However, solutions to the persis-
tent problem of under achievement have yet to be found.

To make progress on this front, researchers need to heed some recommenda-
tions of the Research Advisory Committee (RAC) of the National Council of Teach-
ers of Mathematics (RAC, 1989). The committee recommends that researchers:

I. Develop useful conceptualizations of how minority (black in this
cate) students learn mathematics.

2. Enlarge current research efforts to focus in a systematic way on the
mathematics learning of underrepresented and underserved groups.

3. Conduct school-based research that addresses teacher-minority stu-
dent interactions, and how to change the classroom teaching and learn-
ing environment.

There are several useful conceptualizations like the ones called for in item #1,
most notably a model by Reyes and Stanic (1988). These ideas have not had much
impact on current research however. When they do, research will probably begin
to yield the kind of information that will help make school matimatics work for
African Americans and other underrepresented ethnic minorities.
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AUTOBIOGRAPHIES OF WOMEN AS TEACHERS/LEARNERS IN
THE ELEMENTARY MATHEMATICS CLASSROOM

Diana Erchick, The Ohio State University

This study was conducted in an elementary school in a large urban district in
the midwest. Data collection was completed at the end of a two-year pilot in
which the researcher was the Mathematics Teacher Leader in the school. The
collected data for each of thc six female teacher participants were in the form of a
mathematical autobiography, an interview discussion of teacher instructional
choices, a videotaped mathematics lesson, and a follow-up interview reflecting
upon the videotaped lesson. The following research questions organized the study:
1) What arc the ways of knowing mathematics owned by these teachers? 2) What
role do past experiences play in the development of their ways of knowing math-
ematics? 3) What voices of authority do these women choose to inform their
instructional choices in mathematics?

Thc teachers in this study displayed evidence of a variety of perspectives of
ways of knowing mathematics. With Wornen's Vthys of Knowing (Belenky, CI inchy,
Goldberger and Tarule, 1986) as a theoretical frame, perspectives on knowing
mathematics were identified in these teachers. For instance, as one teacher de-
scribed hcr college mathematics experience, she revealed herself thcn to be a "re-
ceived knower" who expected that attendance and listening would assure that learn-
ing mathematics would happen for her.

Narratives describing past experiences included exemplars cited by the teach-
ers as singular moments having a particular impact on their perspective on the
learning of mathematics. The teachers revealed preferences for ways of knowing
mathematics. Some teachers identified what they believed to be inadequate in-
struction from their experiences as students, or methods of instruction that became
less adequate as the participant developed new perspectives on learning math-
ematics.

In making instructional Choices, the teachers chose rrom among many voices
of authority in mathematics education reform. These voices included state, local,
and university authorities; the NCTM; and the women's own internalized voices
of experience. Of the voices heard, it was the teacher's own voice of experience
that was most prevalent in the decision-making processes guiding mathematics
instruction.

In reflection upon experiences in mathematics, ways of knowing mathematics
surfaced as a part of the internal voices of authority. The experience of reflective
practice may further professional development by exploring and understanding
ways of knowing mathematics as they surface within teaching.
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GENDER AND ETHNIC DIFFERENCES ON A DIVERSE URBAN
CAMPUS LN REQUIRED MATHEMATICS COURSES

Shirley B. Gray, California State University

The presentation focuses on two research investigations conducted in math-
ematics courses required for graduation on a diverse campus. The discussion will
conclude with recommendations based on in-depth study and experience. The
subjects in these intense and on-going investigations constitute a subset of a cam-
pus population of 20,800 students that is 11% African-American, 17% White, 38%
L .01r:3, 33% Asian, and 1% Native American. These ratios change each year, with
Asian and Latino percentages increasing, and White and African-American num-
bers decreasing. Broad variability exists in the Latino subjects (e.g., Chicanos,
Mexicanos, Central and South Americans, Cubans, Puerto Ricans) and the Asians
(e.g., Taiwanese, mainland Chinese, Japanese, Thai, Vietnamese) as well as com-
binations (Japanese born and raised in Peru). In particular, 40% are residents of
the inner city. The president of our university, an African-American, has proudly
called our student body the most diverse in the United States.

Summary Data Analysis and Conclusions. Several points have come through
clearly: There is no significant difference either in mathematics achievement or
attitude between males and females ( and this finding was independent of the broad
age group examined); importantly, there was no indication that mathematics anxi-
ety is higher in preservice teachers than in other non-mathematics majors; and no
"ethnic factor- was revealed in mathematics attitudeindeed, all four ethnic groups
examined wer:. clustered closely together in mathematics self-concept scores. In
addition, results of data analyses (N 1,000) focused on the effectiveness of com-
puter aided instruction (CAI) will be summarized.

Thus, with statistically derived outcomes, which might be somewhat intu-
itively counter to the expectations of instructors on other campuses, the reader
might ask why these results should be taken seriously. The reader might also ask
what practices we, as an experienced faculty members, have found useful. Sug-
gestions have been garnered from several sources: our older graduates reflecting
on what they considered important about their campus experiences; our campus
Center for Effective Teaching; other student support services; and our faculty. Three
categories will be discussed:

Suggestions for Administrators Based on Our Expenence.

Suggestions for Research Investigations.

Suggestions for the Mathematics Classroom.
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CAT'S CRADLE: MAKING CULTURAL CONNECTIONS
IN THE MATHEMATICS CLASSROOM

Rita L. Eisele, Indiana Suite University

The mathematics classroom seems to be an unlikely place for multicultural
activities. Mathematics is usually taught without any historical framework or ap-
preciation of thc contributions made by different cultures. Many cultures do not
have professional mathematicians, but the people have clearly showna mathematical
ability in everyday activities. Somc of these activities include art, architecture,
religious rituals, and games (Ascher & Ascher, 1981).

Making string figures, or a "cat's cradle" as it is commonly known, is one of
the oldest games in existence, and is played by about every culture in the world.
Charles Moore (1988), karl Walker (1985), and other mathematicians have dis-
cussed the link between string figures and mathematical thought.

I teach a mathematics content course for preservice elementary teachers and
have developed and studied students' reactions to a unit on string figures. My
goals in teaching this unit were to develop an appreciation for the mathematical
abilities of pcople from different cultures and to provide a model for incorporating
multiculturai education into their own mathematics classrooms. Data were col-
lected primarily through surveys, student journal writing, and work samples.

In my poster session I propose to (1) demonstrate several of the string figures
from the Navap culture, (2) discuss some of the mathematical concepts involved,
and (3) share Ihe results of my investigation of student reaction to a unit on string
figures.
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STATISTICAL STORYTELLING AND ITS IMPACT ON
ADOLESCENT FEMALE STUDENTS

Susan Prion, University of San Francisco
Mathew Mitchell, University of San Francisco

Thc poor performance of adolescent girls in mathematics classes has been the

study of many interesting research studies. Theories abound to explain why the
interest or mathematics ability of female teens seems to drop so dramatically dur-
ing high school. The small number of women majoring in mathematics at the un-
dergraduate and graduate level seems to further emphasize this problem. .

We discovered an interesting and exciting effect contrary to previous studies
during the assessment and evaluation of an experimental curriculum titled Statisti-
cal Thinking. The primary tool used in the curriculum was thc leaching Sheet, a

statistical storytelling device used to helping students construct their own mean-

ings and understanding for statistical selected techniques. leaching sheets were
theorized to be effective because students learn more when they use their new

knowledge to teach others.
The teaching sheets seemed to be particularly effective for young female stu-

dents who had not been previously successful in mathemties classes. They ex-
ceeded their male contemporaries in the quality and quantity of work produced
during thc class session. Their instructors and thcir parents spontaneously com-
mented on the excitement and interest for mathematics that had been awoken in

these students. The reasons for the surprising changes in performance were un-

clear to the instructors or the researchers.
At the end of thc course, a focus group interview was conducted with seven of

these young female students to collect the students' perspectives about the suc-

cess of the teaching sheets for them. Six were students of color. This poster ses-
sion presents the major pointi of the content analysis of that focus group, and
provides an interesting insight into the problem of young girls and mathematics as

told through the words of the students themselves.
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MATHEMATICAL DISPOSITIONS OF STUDENTS ENROLLED
IN F1RST-YEAR ALGEBRA

Daniel J. Brahicr, Bowling Green State University

Dispositions of eighth graders accelerated into first-year algebra were described in this
study. Data were collected through surveys, observations, interviews, and cumulative aca-
demic files. The most frequently reported reasons for enrolling in algebra were for accel-
eration of course-taking and preparation for high school. Males demonstrated a higher
level of self-efficacy to perform in algebra and secondary mathematics. Students showed a
high level of perseverance in terms of sacrifices made to take the course, but classroom
performances indicated negative dispositions toward mathematics. Students were driven
by a desire to please the teacher and earn grades rather than out of natural curiosity and
interest. Neither studcnts nor their parents recognii.ed thc real-world applications of alge-
bra. Certain teaching methodologies appeared to evoke positive dispositions.

When students reach the eighth grade, they often either make a decision or
have a decision made for them regarding the study of mathematies--whether to
maintain a program that includes a general mathematics "survey" course or to
pursue the study of first-year algebra. Traditionally, students have enrolled in a
first-year algebra course in the ninth grade. However, over the past ten years,
there appears to be a growing interest in eighth graders studying first-year algebra.
In the 1991-1992 school year, 13% of the eighth graders in the United States were
enrolled in a first-year algebra course (Blank & Grucbel, 1993), and the percent-
age was similar in 1990 (Mullis, Dossey, Owen, & Phillips, 1991). According to
Epstein and Mac Iver (1992), 67% of all public and 47% of Catholic schools in the
U.S. reported offering a full year of algebra to eighth graders.

Being a teacher of eighth grade algebra, I became curious as to why they were
taking the course and what their attitudes and dispositions were toward the study
of mathematics in general. In the Fall of 1994, I conducted a study to address
these issues. While several research questions were pursued in the current study,
the primary focus of this paper is on the following two questions: (1) Why do the
students choose to take an algebra course, and what arc the students' attitudes and
classroom behaviors in the study of mathematics? (2) To what degree, if any, do
the student dispositions as defined by the NCTM differ from the student simply
having a "positive attitude" toward mathematics (e.g., "I like the subject," or "I
think that math is useful")?

Conceptual Framework and Definitions

When the National Council of Teachers of Mathematics released the Curricu-
lum and Evaluation Standards for School Mathematics (1989), they proposed an
Evaluation Standard which they referred to as "mathematical disposition." Dispo-
sition, they explained, has several components: (1) interest and curiosity, (2) per-
severance, (3) confidence, (4) flexibility, and (5) valuing the application of math-
ematics. The NCTM stated that "disposition refers not simply to attitudes but to a
tendency to think and to act in positive ways" (p. 233). Motivation literature typi-



cally focuses on emotions (interest and curiosity), as well as confidence and goals.
Definitions and descriptions follow

Interest: Interest, as &scribed by Dewey (1913), refers to one's desire to
pursue some object because the person recognizes that it will promote personal
growth. Research on interest that was particularly relevant to the current study
was conducted with ninth graders by Harter (1981). Shc concluded that as stu-
dents progressed through the grades, they showed more of a preference for easy
work instead of a challenge and worked more for teacher approval and grades than
out of curiosity and interest.

Perseverance: Perseverance can be described as the willingness of an indi-
vidual to remain on task until completion of a difficult problem or situation. Per-
severance has been linked to the dispositions of interest (Hidi, 1990) and self-
efficacy (Collins, cited in Bandura, 1993; Mu Iton, Brown, & Lent, 1991).

Confidence (Self-Efficacy): Personal agency beliefs have perhaps been most
fully investigated undcr Bandura's (1977) term "self-efficacy." Bandura (1986)
defined self-efficacy as "people's judgments of their capabilities to organize and
execute courses of action required to attain designated types of performances" (p.
391).

Flexibility: Flexibility was defined by the NCTM (1989) as the student's
tendency for"exploring mathematical ideas and trying alternative methods in solv-
ing problems" (p. 233). In the Standards document, they suited that classroom
discussions can reveal inforim.tion about student flexibility by the teacher reflect-
ing on questions such as, "Ilow willing arc students to explain their point of view
and defend that explanation?" (p. 234).

Research Methods

I conducted this research by using a sample of eighth grade students enrolled
in first-year algebra in Catholic schools in a Midwest state. I chose this popula-
tion, in part, because most of the students elected to take algebra instead of the
traditional eighth grade mathematics course. The reader should not assume that
any generalization of thc data to other students in another Diocese, public school
district, or state is necessarily implied.

Of the schools having eighth year classes in the Diocese studied, 45 had an
algebra course available. The schools wc re located in diverse settings. Twelve of
the classes were selected by using a stratified purposeful sample, as suggested by
Patton (1990). These 12 classes served 19 schools, since sonic classes contained
students from two or three different buildings. Participating schools were deliber-
ately chosen to ensure a mix of demographics and a reasonable sample size. A
majority of the algebra courses in the Diocese were taught in urban and suburban
settings, so most of the participants were selected from this group. A total of 107
males and 96 females were included in a survey.

After issuing a 20-item, paper-and-pencil survey to these students, four of the
schools were selected for additional study. They were purposefully selected to
include large and small classes, male and female teachers with varied experience
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levels, and a demographic mix The students from these four selected schools
were observed over a six-week period, and then six students were purposefully
selected from each class for student interview and an interview with their par-
ents. The cumulative files of each of these 24 students were also examined. Field
data were collected in the classroom and in interviews. Collection of data from
multiple sources allowed for triangulation of the data.

Results

Reasons for Taking Algebra in Eighth Grade

On the survey, respondents were asked why they took algebra as eighth grad-
ers, and this issue was pursued in interviews with students and their parcnts. The
survey responses to the question were categorized and arc summarized in Table I.
In the subsequent interviews, acceleration and preparation for high school were
also cited as primary reasons for taking algebra. Overall, students had primarily
extrinsic reasons for taking algebra. Particularly prevalent was the attitude of
interviewed student.s that failure to take the course might allow other students to
"get ahead" of thcm. This finding suggests that most of the students held what
Ames & Archer (1988) referred to as an ego goal orientation, in which individuals
arc motivated by their desire to outperform thcir peers.

Table I.
Rank-ordered survey responses on why eighth graders took algebra.

Reason Responses
Male Female Total

(n = 107) (n = 96) (n = 203)

Acceleration of High School Mathematics 73 71 144
High School Preparation 19 19 38
Perceived Ability 6 13 19
Challenge 10 8 18
Like/Enjoy Mathematics 6 7 13
Coerced/Forced to Take the Course 7 3 10
Opportunity or Desire to Learn More 5 5 10

Note. Students frequently provided multiple reasons for taking algebra.

Dispositions

Some of the most interesting results of the study were in the area of self-
efficacy of students. The respondents were asked to report past grades in math-
ematics and to project grades in algebra and beyond on the survey. The survey
results arc reported in Table 2.
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Table 2.
Survey responses to 7th grade mathematics grades and predicted algebra grades

Course Male
(n . 106)

Responses
Female
(n = 96)

7th ;7%rade (Reported)
11.47 (A-/A) 11.65 (NA-) 1.00

SD 1.34 1.19
Algebra (Projected)

10.43 (B+/A-) 9.83 (B/B+) 2.61'
SD 1.55 1.71

Repeated Measures 6.16' 8.48'

Note. In computing the mean, an F = 1 point, D- = 2 points, D = 3 points, ... ,

and A+ = 13 points. Therefore, the higher the mean score, the higher the
reported or projected grade in that course. * p < .05.

Overall, females in the survey reported slightly higher grades in seventh grade
mathematics than their male peers, but they predicted significantly lower grades in
algebra. Likewise, both males and females predict d that their algebra perfor-
mances would bc at least one letter grade lower than their previous mathematics
grades. Successful past performances in mathematics did not generally result in a
high level of self-efficacy to perform in algebra and high school mathematics courses
in general. Phillips (1984) and Dweck (1986) reached similar conclusions in their
research. In the interviews for the current study, students described their percep-
tions of algebra and high school mathematics as being "different" and more di ffi-
cult, citing cases of friends and siblings who struggled with these advanced courses
as influencing their attitudes.

Sincc most of the students took the a!gebra course by choice, they described
the types of sacrifices that they were making to accommodate the course. Some
students were taking two mathematics courses at once, while others were involved
in athletics, activities, and part-time jobs that kept them up late at night to com-
plete homework, which concerned their parents. However, classroom observa-
tions showed that students showed little signs of perseverance on day-to-day tasks.
When confronted with a difficult task in class, they tended to become quickly
frustrated and immediately sought assistance from the teacher.

Interviews with students about their classroom behaviors indicated that most
eighth graders found it extremely important to please the teacher by following
classroom rituals, such as properly correcting errors on papers and writing solu-
tions the way that the teacher had modeled. They appeared much more interested
in impressing the teachers and earning high grads than learning for the sake of
learning.

Many classroom observations in this study were disappointing in terms of
collecting data on dispositions because of the nature of the lessons being taught.
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Since most of the lessons followed a traditional path of checking homework, "show-
ing" new sample problems, and allowing students to begin their homework, there
was little opportunity for students to demonstrate positive dispositions. A prob-
lem posed in the classroom needs to be rich enough to evoke curiosity or to make
the students feel that it is "worth" pursuing. Though very infrequent in my obser-
vations, the classroom experiences that involved teamwork, calculators, and "real-
life" problems appeared to evoke positive dispositions.

Finally, students and their parents saw little use or real-world applications for
algebra. They felt that the course was important, but only as a prerequisite ior
other classes. Studcnts felt that the individuals who most needed an algebra course
were future algebra teachers. This is similar to the circular argument that the
reason we study algebra is to prepare for geometry, which prepares us for more
algebra and so forth. Misconceptions about the nature of algebra appeared to stem
from teacher-directed classroom experiences that emphasized rote, mechanical
symbol manipulation over problem solving.

Discusskin

Prior to an algebra course, it appears that a student's dispositions are affected
by experiences and perceived ability, as suggested by Schunk (1991). In addition,
a model such as a peer or sibling may affect an initial disposition. After the class
begins, however, feedback and modeling from the teacher, as well as peer models
and parents begin to interact on the student. When faced with peers, siblings,
parent.s, and even teachers who have poor dispositions in algebra, the student be-
comes part of a recurring cycle of negativism toward mathematics. The only way
that a student can get out of this cycle and develop a positive disposition, there-
fore, is for thc teacher to instruct in a way that would assist the student in appreci-
ating that algebra is worth knowing in and of itself. This type of instruction, how-
ever, depends upon a strong curriculum and relevant curricular materials, and it
assumes that the teacher understands the relevance of algebra and uses effective
instructional techniques.

The NCTM (1991) established a teaching Standard that educators should "pro-
mote mathematical disposition." They stated that it is the teacher's role to model
positive disposition. The assumption is that the classroom environment estab-
lished by the teacher will affect student dispositions and general beliefs about
mathematics, similar to Schunk's (1991) assertion that positive classroom models
have a direct effect on student self-efficacy and persistence. When teachers model
positive attitudes, they have the potential to create a learning environment that
fosters inquisitiveness and curiosity.

Additional research is needed on the development of student dispositions to-
ward mathematics. For example, theory-driven issues such as the relationship
between self-efficacy and persistence of eighth graders could be pursued, as well
as a comparison of goal orientations by gender. In addition, longitudinal work
with students involved in the survey and interviews described in this study could
shed light on how many of these students actually move on to take four more years



of high school mathematics, as well as how and why their dispositions toward
mathematics evolve over the next several years.
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ALGEBRA FOR ALL IN A CULTURALLY DIVERSE SETTING:
ATTITUDES OF THE PARENTS AND STUDENTS

Billie F. Risachcr, San Jose State University

Insufficient mathematics preparation is widely citcd as a factor contributing
to under-representation of non-Asian minorities in scientific and engineering fields
(Everybody Counts, 1989). This concern is reflected by recommendations that all
students study a core curriculum of mathematics sufficient to enable all to pursue
higher education (NCTM Standards, 1989), and by Equity 2000 sites requiring all
high school students to study Algebra and Geometry. However, numerous studies
indicate that beliefs and attitudes of students and parents arc contributing factors
to student achievement and career paths. This paper examines the beliefs and
attitudes of the parents and students in an "Algebra for All" program aiming to
increase student success by using an innovative curriculum and providing addi-
tional support services. The program is supported by a state grant and includes a
local university, a community college, business partners, and thc high school. The
location is a large inner-city California high school with a diverse ethnic student
population of which 60% arc Hispanic and African American, the target students.

Methodology & Results

All students entering the program responded to a written survey on attitudes
and beliefs about mathematics and family background. A written survey in the
second year was distributed to all parents and students. Personal interviews and
school records document other factors of interest, i.e., career goals, attendance,
number of extra tutoring sessions attended, and parental involvement.

Results indicate that students feel that succeeding in mathematics is impor-
tant; intend to go to college; and cite career goals of dmtor, lawyer, engineer, and
scientist. Few target students voluntarily usc the after school tutoring service and
their school attendance was very poor. Parents and students in the second year
reported they were satisfied with the student's mathematics class, despite the high
failure rate, which was worse for the target students. Parents indicate frequent
interaction with their children about their mathematics work, but have little con-
tact with thc teacher or school personnel and have little knowledge about colleges
or entrance requirements. Inconsistencies between goals, beliefs, effort and suc-
cess appear to be exacerbated by language differences between the students and
teachers and between school personnel and parents. It appears that the students
and parents value mathematics hut have a naive optimism about achieving in math-
ematics and career goals.



DEVELOPMENTAL STUDENTS' CONNECTIONS: INTERPERSONAL,
MATHEMATICAL, AND PERSONAL

Sue Tinsley Mau, Indiana University Purdue University Indianapolis

Attribution theory suggests that students answer current questions based on
their past experiences. The beliefs and attituOes literature suggests that students
operate under a set of beliefs that motivates their current behavior. Within the
mathematics classroom, constructivists suggest that students have reasons for their
answers that make sense to them. Bruner (1990) suggests that people develop
their own stories as agents that help reconcile outcomes with expectations. It is in
the examination of individuals' storics that we can begin to understand concerns
that strongly influence individuals' actions.

This study examined the stories of nine students enrolled in a no-credit math-
ematics course at Indiana University Bloomington (IUB) in an effort to under-
stand the personal histories of students and how that influenced their current math-
ematical experience. Women's Ways of Knowing: The Development of Self, Voice,
and Mind (Belenky, Clinchy, Goldberger, & Tarulc, 19i4p) provided a framework
for analysis. Key results indicated that students desire at ieast three types of con-
nections: interpersonal, mathematical, and personal. Students desiring interper-
sonal connections cited the importance of developing a relationship with the teacher.
Students voiced a very real need to have the mathematics they were learning somc-
how connected to previous topics from other classes. Finally, students wanted a
personal connection; they wanted mathematics connected to their lives.

The paper concludes with an examination of current calls for reform and how
pedagogical strategics may influence change.
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ENHANCING STUDENT INTEREST IN STATISTICS

Susan Prion, University of San Francisco
Mathcw Mitchell, University of San Francisco

This paper reports on the effects of an innovative statistics curriculum on
student attitudes towards mathematics. The purpose of the study was twofold. First,
it represented an attempt to test the plausibility of systematically enhancing stu-
dent interest within the mathematics classroom. Second, it sought to better explain
the relationship between personal interest in mathematics, situational interest in
the classroom, mathematical anxiety, and student achievement within the context
of an experimental statistics curricula.

The essential problem necessitating this study is poor student motivation to
learn in the mathematics classroom. Perhaps the most direct variable for explain-
ing student motivation may be the construct of "interest" (Hidi, 1990). One of the
fundarnenuil distinctions made in interest research is the difference between per-
sonal and situational interest. Personal interest refers to an interest that people
bring to a situation. It is considered fairly stable and difficult to influence in the

short-term. Situational interest refers to an interest that people have when partici-
pating in a situation. It can vary often and dramatically in a short period of time. A
mathematics classroom that is consistently high in situational interest may signifi-
cantly alter an individual's personal interest towards mathematics.

The authors investigated the possibility of enhancing situational interest by
systematically designing instruction that would have a high level of student in-
volvement and meaningfulness (Mitchell, 1993). The statistics curriculum was
primarily designed around the use of Microsoft EXCEL®. For each key statistical
concept, students created "teaching sheets," a worksheet that would teach a "nov-
ice" about the data analysis technique under study. Students needed to include
three kcy ingredients in their teaching sheets: (1 a storyline which explained the
purpose and importance of the statistical concept, (2) a well organized number

playground where the user could try out various combinations of data, and (3) a
visual representation (or graph) of the statistical concept.

Thc survey results and student products from this curriculum were used to
understand how, and how well, the curriculum enhanced student interest in math-
ematics. This report will present Our initial analyses of the data collected.
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STUDENTS' CONCEPTIONS OF MATHEMATICS,
LEARNING, KNOWING, AND SELF

Lionel N. LaCroix, John Fraser Secondary School

This study examined conceptions relating to the learning of mathematics held
by two typical students in an in situ Algebra 12 class. Their learning of logarithms
served as the context for this inquiry.

The students' conceptions were integrated, containing both similarities and
differences. The following views were similarities: mathematics was a set of
truths, handed down to them by their teachers, in the form of rules and procedures
to get answers for the questions encountered in class; views about knowing and
learning in mathematics, i.e. the memorization of unrelated facts, were undiffer-
entiated from those in other subjects at school: it was the teacher's job to make
learning easy for students by presenting new material slowly and in a step-by-step
manner; students played a passive role in the learning process; and students "un-
derstood" mathematics when they got the right answers for the questions encoun-
tered in class. Thc students also lacked confidence in themselves in mathematics
and believed that their learning and success depended upon factors which were
largely beyond their control.

The following conclusions were drawn from this analysis:

students' views On the nature of mathematics and on learning and
knowing mathematics shape the learning obje,.tives that they sct for
themselves;

subtle but profound failures in communication can occur between
teachers and students in mathematics;

students' views about mathematics, learning and knowing limit or
enhance their participation within the classroom, thereby affecting
their success;

unresolved conflicts in students' conceptions may he a detriment to
their learning; and

students may hold views about knowing and learning, constructed
outside of the mathematics classroom, which they apply inappropri-
ately within it.

These results indicate that educators must address the full range of concep-
tions which students construct and apply within the classroom to affect significant
improvement in students' learning of mathematics.



A STUDENT'S PERSPECTIVE ON TWO MATHEMATICS
CLASSROOMS: PROBLEM CENTERED VS. LECTURE

Sandra Davis Trowell, Thc University of Alabama

The focus of this study is one student in a college mathematics problem solv-
ing course in which a problem centered learning environment (Wheatley, 1991)
was established. By examining from an interactionist and constructivist perspec-
the (Blumer, 1969; Bauersfeld, 1988; von Glasersfeld, 1989) this mathematics
classroom in which making sense of mathematics was expected and encouraged
and listening to students in such classrooms, we can begin to establish frameworks
for creating such environments.

Joy, a student who was interviewed throughout this problem solving course,
describes her experiences in this course. Throughout her interviews, Joy proved to
be extremely reflective as she discussed hcr problem solving class as well as her
experiences in other mathematics classes. She described problem solving as a
personal sense making activity and valued her classmates mathematical idcas. Joy
frequently discussed the differences between hcr problem solving class and her
other mathematics class. She described hcr other mathcmatics class as teacher
centered and intimidating and one in which the teacher always remained in "con-
trol." Joy was not judgmental as she painted contrasting pictures of her mathemat-
ics classes.

Joy was able to function autonomously in this mathematics classroom. She
made powerful mathematical constructions and became a part of an intellectual
community. Given Joy's experiences, we can assert in a problem centered math-
ematics classroom, students have more potential to function autonomously while
engaging in rich mathematical activities.
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ASSESSING STUDENTS' CONNECTIONS BETWEEN
MATHEMATICS AND OTHER DISCIPLINES

Angeles Dominguez, Syracuse University

This study examines students' connections between mathematics and other
disciplines. Further, it analyzes how students' attitudes toward mathematics and
their beliefs about this subject arc related to those connections.

Recent research on mathematical connections to other disciplines focuses on
curriculum activities for students and teaching changes to promote the integration
of mathematics and other areas (Roth, 1993; Sambs, 1991). However, so far I
have not found research that relates students' mathematical connections to their
affective domain toward the subject.

This study used (a) an ethnomathernatics approach as defined by Pompeu
(1994) to analyze students' connections, and (b) McLeod's (1992) affect frame-
work as the basis for the analysis of students' beliefs and attitudes toward math-
ematics. This study attempts to relate the affective factors to students' mathemati-
cal connection to other subjects.

Fifteen undergraduates and two graduate students, all of whom were enrolled
in a mathematics course participated in this study. Thcy were all nonmathematics
majors. Data collection consisted of a sequence of two interviews. The data col-
lected from the first interview was reviewed and served as a basis to look through
students' textbooks. Specific situations from the textbooks-including graphs, func-
tions, tables, content of a paragraph, and pictures-were selected and presented to
the students in thc second interviews.

The analysis focused on (a) students' disposition toward mathematics, (b)
students' conception of mathematics and the kind of mathematical ideas they re-
late to their disciplines, and (c) how students visualize the need and usc of math-
ematics in their majors. Preliminary data analysis suggests that students' percep-
tion of mathematics is limited to its computational aspect, reducing the visualiza-
tion of mathematical ideas in other subjects. Also, students' attitude influences
their recognition of mathematical ideas in other areas.
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COLLEGE STUDENTS' EARLY IDEAS ABOUT
MATHEMATICAL PROOF

William E. Geeslin, University of New Hampshire

Learning to construct a mathematical proof is an important goal for students
majoring in mathematics, mathematics education, and related disciplines. The
University of New Hampshire attempts to achieve this goal in part by enrolling
students in a sophomore level course aimed at teaching students how to read, com-
prehend and write proofs appropriate for that level. With the exception of the
statement/reason type proof in the typical high school geometry course, students
at this level have had little or no experience with proof. Mathematicians often
state that the particular mathematical topics in this course can vary widely as long
as students practice writing proofs. Proof is seen as a critical skill that can be
applied equally across mathematical topics given the appropriate prerequisite con-
tent knowledge (axioms, postulates, definitions, etc.) in that arca. Students on the
other hand view proof as a difficult and perhaps useless activity not connected
directly to understanding mathematics. Selden and Selden(in press) provide a
technical analysis of students proofs and conclude that student.s understand even
less than expected .

Student writings concerning mathematics often provide insight into student
conceptual development that is not revealed in achievement tests (Geeslin, 1977).

Twenty-five students enrolled in a sophomore course on proof were asked to pro-
vide written answers concerning what they thought mathematics was, what they

thought mathematical proof was, and related questions at the beginning of, during,
and at thc end of thc semester. These written responses were not used as part of the
course grade. Traditional tests and homework were used to determine students'
grades. Summary teacher evaluation data was available as well. Following the

course, four graduate student.s in mathematics education were asked to view se-
lected responses and identify which students received a high, average or low grade

in the course. Qualitative differences in students' responses related to achieve-

ment do exist, but are difficult to describe quantitatively.
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COMPUTATIONAL PREFERENCES: FIFTH & SIXTH
GRADE STUDENTS

Mary Ellen Schmidt, The Ohio State University

Ninety-nine fifth and sixth grade students from a suburban school district in North Central
Ohio participated in a study to assess how they selected a mettoxi of computation using
a calculator, paper and pencil, or mental math. After completing a questionnaire which
probed their beliefs about calculators and their choice of computational methodon various
types of problems, students were interviewed to gain additional information about their
thinking. The results suggested that 1.) students hold positive beliefs about calculators and
2.) use primitive visual level reasoning when selecting a computational method.

In 1989, NCTM's Standards recommended a refocus in K-8 mathematics away
from the paper and pencil computation which had dominated the mathematics
curriculum in the early grades. Consequently, students' computational experi-
ences needed to focus less on practicing algorithms and .focus more on mental
mathematics, calculators, and other related skills such as estimating and judging
the reasonableness of answers. This paper will present the results of a study de-
signed to assess students' computational preferences.

Materials and Research Methods. Fifth grade (n=49) and sixth grade (n=50)
students from a suburban school in North Central Ohio completed a three part
questionnaire and were interviewed. The assessment instrument was developed
using questions from research (Reys, Reys, & Hope, 1993), questions adapted
from other research studies, and content questions pertinent to what was taught in
the students' classroom. Students were asked to (a) provide demographic data, (b)
respond to open ended questions concerning their beliefs about calculators, (c)
respond to questions (both equation and word problem formats) by selecting their
computational preference and, (d) write a word problem that they would use a
calculator to solve. Thc interview further probed selected student responses.

Responses to open ended questions were categorized. Data from Likcrt type
questions were entered into a statistics program and analyzed.

Results. Students selected paper and pencil calculations based on the algo-
rithm they worked on most recently. Little attention was given to mental math
computation. Calculators were selected based on the number of digits in the num-
bers to be operated on.

Conclusion. While students tended to have positise beliefs about calculators,
their selection of computational method was often at a more primitive visual level.
The results suggest that more attention needs to be given to selecting computa-
tional methods in the elementary and middle grade course-of-study.
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LEARNED HELPLESSNESS: AN EXPLANATION FOR AFRICAN
AMERICAN ACHIEVEMENT IN MATHEMATICS?

Vincent T. Snipes, Florida State University
Bradford F. Lcwis, Florida State University

In this research study wc investigated the mathematics achievement of five
African American female college students and its relationship to attribution theo-
ries. After reviewing reports on the mathematics achievement of African Ameri-
cans in mathcmatics, learned helplessness became the area of focus for further
investigation.

The purpose of the study was to determine whether or not African American
female college students exhibited symptoms of learned helplessness in mathematical
achievement. According to their "like" or "dislike" of mathematics, five partici-
pants were chosen for their proximity and availability to the researchers. Only
females wcrc chosen, so we would not have to account for gender diffcrcnces in
our study. Each student was interviewed for approximately one hour. All inter-
views were videotaped by the researchers. After data analysis, follow up ques-
tions were asked for clarification if necessary. The data from thc interviews were
analyzed from thc framework of attribution theory.

Patterns that emerged from thc data indicate that students who did not like
mathematics, who were not motivated to study mathematics, or who actively
avoided mathematics all had negative experiences in mathematics. Additionally,
students' motivation was increased by the presence of incentives. According to
our data, learned helplessness is not a viable theory for explaining why African
Americans avoid mathematics related careers.

69



STUDENT PERCEPTION OF THE AUTHORITY OF THE COMPUTER/
CALCULATOR IN THE CURVE FITTING OF DATA

Douglas A. Lapp, Morehead State University

The study examined the perception of student.s with regard to the authority of
technology in the practice of data analysis through curve fitting. Thc psychologi-
cal basis for the study was cognitive conflict theory. The study was qualitative, in
nature and sought to describe the students' reaction to the nature of technological
authority. Conflict was introduced through multiple representations and student
reactions were observed as they sought to make sense of the conflicting and unex-
pected results.

Five students involved in a beginning statistics course at a liberal arts univer-
sity during Autumn Quarter 1994 were selected from a class of 33 students. Ten
students volunteered to participate and selection was based on observations by the
researcher and consultation with the course prolessor to obtain a varied range of
achievement for thc 5 students based on grades from the first week and a half of
the course.

Data were collected through observations in both the classroom and computer
laboratory. In addition to student observations, the students wcrc interviewed four
times with the exception of one student who was interviewed three times.

The interviews included both philosophical and task-oriented questions. Dur-
ing the final interview, the researcher programmed the calculator to shift the re-
gression linc for each of the four task-oriented questions by increasing factors as
the students worked through the problems. The purpose for the regression line
shifting was to see when the students would first doubt the solutions being given
by the machine. Thc interviews were audiotaped and videotaped, and then tran-
scribed and analyzed for content using a coding scheme.

Several factors with respect to the authority of the machine were discovered.
(1) The calculator's authority seemed to be heightened when thc students had re-
peatedly solved similar problems using the technology. (2) The ability of students
to match answcrs given by the machine in several different representational forms
lent a greater credibility to the calculator. (3) A connection was present between
the authority of the instructor and thc authority of the calculator. (4) A higher
mathematics background played a role in the increased willingness to challenge
the authority of the machine. (5) Students assessed their perception of the author-
ity of thc machine based on their perception of the authority of the people who
created the technology.
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ACHIEVING COGNITIVE EQUITY IN THE
MATHEMATICS CLASSROOM

Marcia L. Tharp , Old Dominion University
Chris Lovell, Old Dominion University

A preliminary investigation of patterns of teacher thought about student reasoning and learn-
ing involved presenting 23 preservice teachers with a "dilemma of practice about equity."
Resulting stages of teacher development concerning equity in reasoning were found to cor-
relate significantly with Perry's scheme (L=.39, is.10). However for those who hold the
view that mathematics learning is mostly rule-based no significant correlation was found
with these stages of teacher thought about reasoning and equity. Yet, holding a rule-based
viewpoint of mathematics learning was found to correlate significantly in the expected
direction with Perry's scheme (r=-43, LIK.05).

In an effort to achieve equity, the Professional Standards For Teaching Math-
ematics (NCTM, 1991) call for math=aties teachers to develop an extensive
multicultural knowledge base and especially to know how students' linguistic,
ethnic, racial, gender, and socioeconomic backgrounds influence learning of math-
ematics. As a result, researchers have begun to examine how teachers' concep-
tions of equity influence pedagogical practice. Most school-based conceptions of
equity (Secada, 1994) focus on how teachers work with differences among stu-
dents such as gender, race, ethnicity, and class. In the everyday classroom, these
differences recurrently manifest themselves as differences in reasoning, and
preservice teachers are enjoined to attend to such differences by honoring each
child's reasoning process through careful probing and non-negative critical ques-
tioning (NCTM, 1991). What is missing in this general research line on cognition
in the classroom, however, is a description of differences among the teachers, them-

selves, in their beliefs about learning and equity and how such beliefs might be, in
turn. related to the cognitive developmental levels of the teachers.

Since it has been recognized that how teachers view reasoning and mathemat-
ics is a key determinant of how they teach mathematics (Simon and Schifter. 199 I ),
it is imperative that educators examine how equity inay be engaged in the class-
room by teachers who hold varying conceptions of reasoning and learning math-
ematics. Thus the question arises: do differences among teachers on the dimen-
sion of cognitive development relate to how they reason about student differences
in reasoning? When teachers invoke "equity- as a basis for instructional moves.
does such an equity position relate to cognitive stage? The purpose of this re-
search was to answer these questions and to investigate more generally teacher
thinking about instruction, mathematics learning, and equity.

Method

A preliminary investigation ot patterns of teacher thought about student rea-
soning and learning involved presenting 23 graduate-level. preservice teachers
with a "dilemma of practice about equity- (Table I ), a dilemma which was se-
lected to elicit strategic instructional thinking along with reasoning about possible
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ethical action. Respondents were asked to give their reasoning on the dilemma in
the form of a short essay protocol. The resulting projective protocols were then
subjected to a process Qi content analysis (Miles and Huberman, 1994) where
certain qualitative themes, or "structures of knowing" relating to adult develop-
ment were identified. Theories of increased sophistication in perspective taking
(Selman, 1980; Commons, & Richards, 1984), of moral and ethical development
(Kohlberg, 1984; Gilligan, Ward, Taylor, & Bardige, 1988), and of intellectual
development (Perry, 1970; Belenky, Clinchy, Goldberger, & Tam le, 1986) guided
the classification of the 23 master's level preservice teachers into stages of cogni-
tive development.

Table 1. A Dilemma Of Equity In Practice

The following is a description of a challenge encountered in the life of a teacher.
Please take time to give your reasoning on this incident.

A white female elementary school teacher in the United
States posed a math problem to her class one day. "Suppose there
are four blackbirds sitting in a tree. You take a sling shot and
shoot one of them. How many are left?" A white student an-
swered quickly, "That's easy. One subtracted from four is three."
An African immigrant youth then answered with equal confi-
dence, "Zero." The teacher chuckled at the latter response and
stated that the first student was right and that, perhaps, the sec-
ond student should study more math. From that day forth, the
African student seemed to withdraw from class activities and
seldom spoke to other students or the teacher.

What are your thoughts on this matter?

Results

Four patterns of response were discerned, each corresponding to a theoretical
stage of teacher development (Stage I, a hypothesized level "silent knowing," was
not evident in the sample.):

Stage 2 (authority centered/self-protective). The preservice teacher-re-
spondent gives or implies "higher authority" as a motive for probing stu-
dent reasoning. Equity issues are either omitted or couched in reactive
terms. Example: "The teacher should have asked the African youth what
her reasoning was. We have been learning how important it is for teach-
ers to do this." Furthcr, the respondent, projecting hurself or himself into
the dilemma, often stresses themes of defensiveness. Equity action is
sometimes seen as a punitive move. Example: "The negative response
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to the child's answer was insensitive to say the least. She should have
asked him why he gave that answer. He, I'm sure, had his own logical
reasons for his conclusion, but due to her prejudice he was not able to
explain. She should be relieved of her job."

Stage 3 (mutualism). Equity action is viewed as an extensive, distribu-
tive process; undifferentiated equity ("fairness") demands that all stu-
dents' reasoning be valued equally. Example: "The teacher seems to con-
sider there is only one answer to the question. She/he didn't think there
might be more than one answer to the question. From my point of view,
the second child is equally correct. Perhaps that is not relevant to what
the teacher had in mind, but nonetheless, the second child should not be
put down for his line of thinking."

Stage 4 (autonomy/proceduralism). Stress is given to the teacher's au-
tonomous ability to select and teach procedures for knowing and valuing
(mathematical operations, ethical guidelines, and so forth). Equity is dif-
ferentiated along lines more complex than simple nile-based heuristics;
comparison of reasoning methods is emphasized. Equity is viewed as
instrumental to instructional ends. Example: "What a great answer from
that child! Of course it would be zero because all the birds would have
flown away! His answer was based on real-world experience. The other,
'one subtracted from four' was textbook in nature. I would show the

class both points of view."

Stage 5 (contextual relativism/constructivism). The teacher at this stage
sees that instruction is a complex process, full of contingencies and reso-
nating with many voices constructing knowledge together. Opportuni-
ties to capitalize onthe found curriculum," the "teachable moment,"
and classroom co-constructive possibilities are emphasized. Likewise,
equity decisions are viewed as complex, principled, and interactive pro-
cesses. An example: "The African was talking about his real life observa-
tion of birds. The other was answering a math question, thinking of a
mathematical operation. The teacher's thinking was narrow in scope.
She should have not done any comparing of students answers. She could
have had success with including the African by simply asking, 'Why do
you say that is the answer?' Then the African, still confident, would have
enlightened her and the rest of the class."

Two respondents showed evidence of stage five (9%) thinking in which class-
room co-construction and non-judgmental comparison of reasoning are empha-
sized. The remaining 91(.4 were categorized in lower stages of autonomy/
proceduralism (22%), mutualism (39%), and authority centered/self protection
(30%). This distribution of respondents accords with research investigations where
cognitive developmental schemes were applied to higher education (Pascarella &
Terenzini. 1991). As a check on this classification, a quantitative measure accord-
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ing to the Perry Scheme (Moore, 1989) was administereJ to the respondents, re-
vealing a moderate correlation to a general index of cognitive development (r =
.39, g < .10). As a further check on the validity of the classification, correlation
waS sought with a measure ot teacher perspective on mathematics learning. the
View of Learning Math as a Rule-Based Subjcct (VLMRBS). This instrument
(Tharp, 1992), assesses the degree to which a teacher adheres to the view that
mathematics learning is mostly oriented toward processes which involve the ma-
nipulation of symbols and memorization of facts as opposed to the view that learn-
ing mathematics is based on reasoning about relationships and patterns. Since the
differences measured by the VLRMBS strongly suggest a cognitive developmen-
tal sequence, the reseal chers turned to this "rule-based" measure. Correlation with
the hypothesized teacher stages did not reach significance, although the VLRMBS
did itself correlate significantly in the expected direction with the general index on
the Perry measure ( : = -.43, < .05). Correlations between the "rule-based" mea-
sure (VLMRBS) and the four Perry levels again confirmed the inverse relation-
ship between teacher view of mathematics teaming as a rule-based process and
teacher level of cognitive development (Table 2).

Table 2
Pearson Correlations Between Proervice Teacher View of Mathematics as a Rule-
Based Subject (VLRMBS) and Level of Cognitive Development According to the
Perry Scheme (N=23)

Correlation to VLRMBS
Perry Level
Position 2 .30 .17
Position 3 .37 .09*
Position 4 -.46 .03**
Position 5 -.19 .40

Bartlett _2 = 141.973, p < .01, df = 10
*Significant at the .10 level or better. **Significant at the .05 level or better.

Conclusions

According to Secada (1991. p. 49) an equitable mathematics education would
include, "real contexts that reflect the lived realities of people who are members of
equity groups." While Secada (1991) has argued that all children sheuld see
themselves as part of a mathematics curriculum regardless of their background,
these results show that preservice teachers are not always ready to provide
instruction that fully honors th.11 background. Only nine percent of the preservice
teachers at stage five hold a radically different view from those at lower stages that
allows for the practice of 'active equity", where individual reasoning is sought out
to magnify the growth in understanding of an entire group. Since this sample is
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representative of other research on cognitive development in higher education
(Pascarella & Terenzini, 1991), one may expect similar results would be reflected
in classroom practice. Though researchers have begun to recognize learning as a
process of "shared knowings" that involves an entire mathematics community
(Simmon, 1995). the present study calls into question the easy assumption that
most teachers are cognitively disposed to facilitate mathematics community
learning. Because NCTM reforms call for teachers to succeed in reaching all
learners. the researchers conclude teachers will need to be assisted in moving to a
stage of cognitive development that allows them to i.ecognize the value of fully
honoring diverse perspectives in the classroom as a tool for learning.

While this stage model can serve as a way of conceptualizing how teachers
view their role in regard to reasoning about honoring the expression of student
thinking and equity, interplay with specific student and teacher beliefs about math-
ematics learning that may run counter to constructing "shared knowings" cannot
be ignored. Approximately 50 percent of students hold a view that learning math-
ematics is rule-based, i.e. mostly process-oriented and memorization (Kouba et.
al., 1988). Thompson (1992) has suggested that some communication is effected
between the beliefs of students and those of teachers. Given that preservice teach-
ers' view of learning mathematics as "rule-based" is correlated positively with
Perry stages 2 and 3 and negatively with higher stages, connections to this view-
point should be investigated further and considered by educators who desire to
move teachers to a stage where "active equity" is practiced and "shared commu-
nity knowing" is sought.
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EVOLUTION OF A MATHEMATICAL PHILOSOPHY: THE STORY OF
ONE SECONDARY MATHEMATICS PRESERVICE TEACHER

Patrick J. Eggleton, Berry College

As mathematics teacher education promotes the mathematics and pedagogical practices of
the Standards, most mathematics preservice teachers confront philosophies of mathematics
significantly different from their personal mathematical philosophy. The espoused
constructivistiquasi-empincist mathematical philosophy promoted by the NCTM Standards
as opposed to the traditional absolutist philosophy of mathematics as a set of rules and facts
characterizes the conflict in philosophies of mathematics. This report shares the findings
from an in-depth case study of a preservice secondary mathematics teacher. Ken, by follow-
ing the subtle evolution of his philosophy of mathematics, as characterized by Ernest's
"Mathematics-Related Belief Systems," and the experiences influential to the philosophi-
cal evolution over a year of his preservice mathematics teacher education.

Changes in the teaching of mathematics such as those suggested by the NCTM
Standards will be slow in coming and difficult to achieve because of the basic
beliefs teachers hold about the nature of tnathematics (Cooney, 1987). Studies in
both mathematics education and science education argue that the issue of such
change goes further than the beliefs of the teachers, but to the core of those beliefs,
the teacher's philosophy (Ernest. 1991a; Schmittau, 1991). The conflict in phi-
losophies of mathematics is characterized by the espoused constructivist/quasi-
empiricist mathematical philosophy promoted by the NCTM Standards as opposed
to the traditional absolutist philosophy of mathematics as a set of rules and facts.
In an effort to improve the teaching of secondary school mathematics and second-
ary mathematics teacher education, the RADIATE' research program has focused
on the view of mathematics emphasized in the NCTM Standards in its experimen-
tal secondary mathematics education courses. This research report shares the re-
sults of an in-depth case study of Ken, onc of the participants of this program. by
following the subtle evolution of his philosophy of mathematics, as characterized
by Ernest's (1991a) -Mathematics-Related Belief Systems." The documented in-
fluences on the adaptations within Ken's philosophy of mathematics provide in-
sight into the psychological aspects of educating teachers.

Methodology

Ken's case study is part of a longitudinal study of preservice teachers that
began in April 1994 and will continue into his first few years of teaching. In April
1994 Ken enrolled in the first of a four quarter sequence of secondary mathematics

' RADIATE (Research and Development Initiatives Applied to Teacher Educa-
tion) was directed by Dr. Thomas J. Cooney and Dr. Patricia S. Wilson and funded
by the National Science Foundation (#DUE 9254475) and thc Georgia Research
Alliance. Any opinions or conclusions expressed by this report are those of the
author and do not necessarily reflect the views of the funding agencies.
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education classes being conducted by the RADIATE staff. A survey and follow up
interview during the first two weeks of class elicited initial documentation of Ken's
view of mathematics, teaching !,.arning, and becoming a teacher. He then partici-
pated in a curriculum which integrated mathematics content and pedagogy, em-
phasizing reflection of current and past experiences. The present analysis consid-
ers the first year of Ken's preservice experience that includes two mathematics
methods courses and his student teaching. Field notes record 44 of the 57 class
experiences, one full day of his student teaching, and one full week of his teaching
a geometry class during his student teaching. Ken participated in eight guided
interviews at regular three to four week intervals and 16 weekly informal inter-
views developed from the ongoing data. Ken also wrote 25 journal entries to add
to the artifacts of tests, reports, and other written class work. Ernest's (1991a) five
belief clusters concerning mathematics guided the categorization of statements
and dialogue from the data. In the clustered data, interpreted themes and changes
within a theme characterized Ken's evolving mathematical philosophy. In addi-
tion, literature on teacher change and mathematics teacher education informed the
analysis of experiences related to evolution in Ken's mathematical philosophy (e.g..
Ball, 1990; Cooney, 1994).

Ken's Philosophy of Mathematics

Upon entering the mathematics education program. Ken's view of mathemat-
ics as a set of rules and guidelines that he often referred to as "number crunthing"
grounded his other mathematics-related beliefs. "Applications, that's for someone
else. That's for the engineer, that's for the physicist, and the chemist and things
like that But me personally, I just like number crunching. Bottom line" (1st
Interview, 4/ 7/94). Ken's view of mathematics as "number crunching," of teach-
ing mathematics as "telling" and "lecture," of learning mathematics as "practice.
discipline, and memorization," and of assessing mathematics as "objective mea-
sures of skill proficiency" reflected what Ken valued from his history of math-
ematical experiences. Looking for a common thread in Ken's different belief clus-
ters, I interpreted Ken's philosophy of mathematics as "Dualistic Absolutist" (Ernest,
1991b). Ken considered mathematics as certain, made up of absolute truths, and
he saw the role of the teacher as an authority on the mathematics for his or her
students. Ken's beliefs about mathematics were unquestioned, held without rea-
son or evidence. "Math is what it is." Ken justified his beliefs regarding teaching
mathematics, learning mathematics, and assessing mathematics based on the evi-
dence of his experiences in learning mathematics.

Ken's initial philosophy of mathematics is not uncommon among preservice
teachers. Like many others, Ken was highly successful with the traditional math-
ematics he encountered in high school and college. This success with a traditional
and dominant absolutist philosophy of mathematics made it difficult for Ken to
consider an alternative approach to the mathematics. For instance, when consider-
ing approaching basic operations with fractions by using a representation with
pattern blocks, Ken commented, "Learning math 'not so good', although I can't
say it's had because this is how I learned it, and I thought it went pretty good, but
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learning 'not so good' is to say Nell if you have two-thirds tunes one-fourth,
what's the answer." (Interview, 10/14/94) As illustrated in this excerpt, even
when Ken tried to be cntical of his algorithmic learning of mathematics he could
not discredit the success he enjoyed from learning mathematics from that perspec-
tive.

During the 1994 spring quarter, the methods course provided mathematical
experiences in a unit on functions that allowed students to explore functions and
abstract from the activities patterns or regularities regarding the content as well as
the methods. Ken initially responded negatively to the experiences, often reject-
ing activities shared in the class as unrealistic. Along with the class activities, Ken
participated in a high school classroom one hour a week. By the end of the quarter
Ken acknowledged a difference between "merely memorizing formulas and defi-
nitions and learning algebraic manirulations" and "a quality, in-depth understand-
ing of math concepts" (Report, 5/12/94). An assignment related to reading a sec-
tion of the NCTM (1989) Curriculbm and Evaluation Standards for School Math-
ematics at the end of the quarter provided Ken an opportunity to reflect over his
experiences in relation to a culturally accepted alternative. This assignment pro-
vided a stimulus for emerging changes in several of Ken's mathematics-related
beliefs.

Classes in the fall quarter included four areas of focus: mathematics and
culture, geometric constructions, assessment, and transformational geometry. Fall
quarter classes also presented a process view of mathematics while attending to
more specific pedagogical issues such as equity, group work, assessment, and les-
son preparation. Ken worked in a family group with three other preservice teach-
ers to develop lessons and teach on three occasions in the local high school. Of all
of the fall quarter experiences, Ken most strongly responded to the assessment
unit that emphasized creating problems that tested a deeper understanding of the
content.

Ken entered his winter quarter of student teaching with a view of a "deeper
understanding" in mathematics that focused on problem solving, reasoning, and
meaning to append to his original "Theory of Mathematics." Likewise Ken ap-
pended other key components of his "Mathematics-Related Belief System" (Ernest,
1991a) so that (1) learning mathematics now included self-discovery and connect-
ing knowledge, (2) teaching mathematics required investigations for self-discov-
ery in addition to lecture and telling, and (3) assessing mathematics added a need
to explain meaning and became a regular part of instruction. Tymoczko's (1986)
description of a quasi-empiricist philosophy of mathematics related well to Ken's
evolved philosophy of mathematics. Ken's "Theory of Mathematics" reflected a
strongly held belief in the absolute existence of an objective mathematics, while
his evolved view of a "deeper understanding" of mathematics, which connected to
his evolved theories of teaching, learning, and assessing mathematics, focused on
the meaning of mathematics develope,' .y mathematical processes of reasoning
and problem solving. Without denying a reality in mathematics, Ken began to
value the processes of mathematics such as the reasoning and problem solving.
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Experiences Related to Evolution in Ken's
Philosophy of Mathematics

Green (1971) suggested that the difference between instruction and indoctri-
nation was the provision of opportunities for the individual to radically examine
his/her belief systems. This idea of self-examination or reflection became a con-
sistent theme in the experiences related to evolution in Ken's philosophy of math-
ematics. It was important for Ken to pause in his current experiences to reflect
back on both his immediate and past experiences. In so doing, he communicated
his examination of his beliefs and the influence his experiences had on those be-
liefs. Looking at those experiences that were most influential to an evolution in
Ken's philosophy of mathematics as communicated in his reflections, two issues
arose: the context of the reflection and the effect of the reflection.

Cooney (1994) suggested five contexts that should be a part of mathematics
teacher education programs. Of those contexts, four described influential experi-
ences to Ken's evolved mathematical philosophy. First, the influence of Ken's
involvement in the mathematical investigations in the spring quarter became a
stimulus for Ken's view of a "deeper understanding" of mathematics. These expe-
riences not only provided Ken with a context for learning mathematics from a
constructivist perspective, but it also provided him with an occasion to reflect on
his experience as a learner of mathematics, the second important context. Al-
though Ken began to consider the importance of a "deeper understanding" of math-
ematics, it is important to realize that Ken viewed the "deeper understanding" as
an addition to the essential rules and procedures of mathematics. Ken's response
to learning mathematics from a constructivist perspective is in contrast to what
Ball (1990) described in her work with elementary preservice teachers. Ball's
preservice teachers often approached mathematics with anxiety and feelings of
incompetency. Their experiences with mathematics in the methods class provoked
some to reinterpret their past mathematical experiences, gaining new lenses. new
assumptions. and new ideas to pursue in mathematics. Ken's self-perceived con-
fidence with mathematics, even calling himself a "math god," inhibited him from
considering a reinterpretation of his understanding of mathematics, insisting rather
on viewing the "deeper understanding" of mathematics as an addition to tradi-
tional mathematics,

In contrast to his reflections of the mathematical experiences throughout the
1994 spring quarter. Ken's reflections stimulated by a reading assisfnment in the
NCTM Standards at the end of that quarter provided him with a new lens to view
his recent experiences that reflected views accepted by many professional math-
ematics educators. This new lens allowed Ken to see that there were viable ap-
proaches to mathematics that differed from what he understood as the only appro-
priate approach to mathematics. Although he did not reinterpret grade school ex-
periences with mathematics as Ball's (1990) preservice teachers had, Ken reinter-
preted his experiences with mathematics in both the methods class and the high
school class in which he worked weekly. Using the context of the Standards
(NCTM. 1989) to reflect on his recent experiences with a constructivist approach
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to mathematics in the methods class and the traditional approach to mathematics
in the local high school provided Ken with a perturbation or dissatisfaction in his
beliefs regarding teaching and learning mathematics. As documented in other
research studies (e.g., Wilson, 1994; Zilliox 1990), the effect of perturbation or
dissatisfaction with current beliefs became an important stimulus for change in
Ken's philosophy of mathematics.

In addition to (1) the context that allowed a development of a knowledge of
mathematics that permits the teaching of mathematics from a constructivist per-
spective, and (2) the context of reflecting on his experiences as a learner of math-
ematics. experiences related to evolution in Ken's mathematical philosophy in-
cluded (1) contexts of gaining experience in assessing students' understandings of
mathematics, and (2) contexts that allowed him to translate his knowledge and
beliefs about mathematics into viable teaching strategies. From his experiences in
the local high schools, his group work within the courses, and the explicit attention
given to culture in the fall quarter, Ken began to acknowledge that different learn-
ers will learn and understand mathematics in different ways. This acknowledg-
ment was an evolution from his initial view that all students learned the same
mathematics through practice, discipline, and memorization. Ken also found tech-
nology and assessment as viable teaching strategies that allowed him to bring his
evolving beliefs in exploration and deeper meaning in mathematics into action.

Conclusions

The context of Ken's teacher education program combined with the extra op-
portunities to reflect on the program through thc frequent interviews provided Ken
with a very conducive environment for change in his mathematical philosophy.
Nonetheless, the evolution noted often seemed insignificant. When asked in a
later interview if his student teaching would have been different if he had not had
the mathematics education classes he said that it would not have been very differ-
ent. The evolution in his philosophy had been subtle and Ken did not recognize
that there were alternative philosophical views of mathematics from which he could
choose. Cobb (1994) states that, "the teacher's role is characterized as that of
mediating between students' personal meanings and culturally established math-
ematical meanings of wider society" (p. 15). Ken developed personal meanings
for a "deeper understanding" of mathematics through his experiences and he ben-
efited from the culturally established mathematical meanings presented in the Stan-
dards (NCTM, 1989), yet he possibly could have benefited from more explicit
attention to other culturally established choices for viewing mathematics and its
teaching. Such explicit attention would have provided what Ernest (1991a) re-
ferred to as "higher levels of reflection and self-awareness" (p. 61) as Ken com-
pared alternative philosophical positions with his beliefs. Neither acknowledging
choices among culturally established pedagogical perspectives nor experiencing
alternative pedagogical practices is enough for providing a rich context that allows
preservice teachers to examine their mathematical philosophies. Rather. thc me-
diation of both the culturally established choices in mathematics education and the
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personal meanings attributed to alternative perspectives through experience pro-
vides a powerful context for instructing preservice teachers.
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AN INVESTIGATION OF TEACHER REFLECTION: FOUR
MATHEMATICS TEACHERS REFLECT ON EDUCATION

Sacra N. Nicholas, University of Oklahoma

What is the nature and role of reflection for teachers? How is teacher reflection influenced
by environmental/situational factors? Examination of stated thoughts and observed prac-
tices of four 7th and 8th grade mathematics classroom teachers were used as evidential
sources to help answer these questions in this interpretative investigation. Multiple data
sources revealed classroom settings elicited mostly spontaneous, technically oriented re-
flections, while reflections in the interview setting were more personally focused. An analysis
of the teachers' metaphorical language indicated that reflections could be increased through
the influences of a conflicted educational context and inhibited by deep level belief struc-
tures that limited the scope of reflections.

/MEMO.

How can mathematics teachers promote professional growth through educa-
tional experiences and at the same time address a changing world? Wheatley
(1992) suggests learning organizations that respond effectively to changing condi-
tions are comprised of members who constantly process new information "with
high levels of self-awareness, plentiful sensing devices, and a strong capacity for
reflection" (p. 91). For schools to be true learning organizations, they not only
need access to new information but they also need to be comprised of individuals
with a particular propensity toward shared reflection based on action and a dy-
namic view of learning.

The investigation reported in this article was conducted during the 1993-1995
school years. The focus of the study was the nature, role. and relationship to exter-
nal contexts of teacher reflection. Reflection was defined to be a self-informative
analytic process which involves active, persistent and careful consideration of be-
liefs or 'knowledge.' Through reflection, one holds images and ideas in conscious
awareness so they can be interconnected or transformed. Not only does reflection
make possible the biological survival of mankind by making possible the adapta-
tion to external changes but it aids in the construction of ideas out of an unlimited
supply of potentials.

The importance of teacher reflection is not a new concept in education. Dewey,
in 1933, wrote that teachers must avoid acting purcly according to impulse. tradi-
tion, and authority by becoming reflective inquirers. In the past 10 to 15 years,
however, the number of research projects concerning teachers' reflections has
steadily increased. This may be pally due to the acceptance of interpretative re-
search as a legitimate research approach thus making the study of complex phe-
nomena, such as reflection, possible. Other factors contributing to the increased
interest in teacher reflection include the emphasis placed on the role of reflection
according to constructivist theory.

Observations of and interviews with tour mathematics teachers (Rose. Belle,
('hristy, and Joan*) were the primary sources used in the data analysis. These

denotes pseudonym
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teachers taught at Central City Junior High, a traditional midwestem school with
many common constraints on reflection including isolationism and limited built-
in time for teacher reflection.

Theoretical Framework

The theoretical framework used to guide this exploration was based on the
work of numerous constructivist theorists. primarily Piaget (1971), O'Loughlin
(1992), and Prawat (1993) and the work of philosophers Lakoff and Johnson (1980),

Johnson (1987,1993), and Habennas (1971). Analyses of the role and nature of
teacher reflection relied heavily on Habennas' threc fundamental human interests:
technical, practical, and emancipatory. Habermas believed that individuals relate
to the world from oae of these interesis and that much of their thoughts and actions
are directed from one of these underlying world views. Teacher participants' state-
ments and actions were considered with respect to their focus on control (central
to the technical interest), clarification and understanding (practical interest). or
challenging the assumptions of existing systems and the status quo (emancipatory
interest).

Research Questions

The guiding questions in this investigation were: ( I) What is the nature of the
teacher participants' reflections? (2) What role does reflection play for the teach-
ers as they deal with the complexity of teaching?. and (3) What are the environ-
mental/situational factors which influence the teachers' stated reflections, and ob-
served decisions and practices?

Procedures

Multiple data sources were acquired through five months of hi-weekly class-
room observations and a weekly individual interview. Five reflective strategies:
researcher observation feedback, oral autobiography, personal journals, audio tapes,
and video tapes were used during this time as tools to aid teacher reflection. Ap-
proximately one year after the study was completed, the researcher conducted a
follow-up telephone interview with the four teacher participants to ascertain which
educational experiences following the study had provided additional opportunities
tor reflection.

Applying a constant comparative method (Glaser & Strauss. 1967), catego-
ries from the data were developed with respect to the research question concerning
the role of teacher reflections. Three other analyses aimed at clarifying the nature
of teacher reflections were made. Researcher tools were developed for these analy-
ses based on the work of Louden (1992). Van Manen (19911 and a synthesis of
metaphorical research based primarily on work reported by Lakoff and Johnson
(1980) and Johnson ( 1987, 1993).



Conclusions and implications

The Nature of Teacher Reflections

Multiple data sources revealed classroom settings .elicited primarily sponta-
neous, technically oriented reflections. Teachers used reflection in three ways: to
make instructional adjustments, conduct on-the-spot assessments of their instruc-
tion, and make classroom management decisions.

Teacher reflections in the interview setting were more recollective and per-
sonally focused. They helped the teachers analyze themselves, make assessments,
process their pasts and anticipate the future.

Contrary to beliefs held by Van Manen and Habermas, it appeared that teacher
interests (philosophical orientations) were not solely internal phenomenon but were
interactive, dynamic, and sensitive to external circumstances. For example, Joan's
intention to represent mathematics not only as a set of rules but also as a discipline
that dealt with non-routine, open-ended problems called for both technical and
practical interests to be expressed at various times. Belle also expressed a combi-
nation of interests in the classroom. At the beginning of her classes she would
often display a practical interest as she chatted with her students about their per-
sonal concerns, however, when she instructed the students on mathematical con-
cepts and procedures a more technical interest was evident.

Critical theorists have expressed concern that teachers' intentional reflections
are too often focused on issues that relate to the immediate demands of their class-
rooms rather than to external contexts or visions of possibilities of educational
alternatives (Grundy, 1987. Smyth, 1992: Zeichner, 1993). These concerns seemed
to be legitimized by findings in this study which revealed the teacher participants
were too close to their students and instructional situations to be able to be actively
introspecti ve.

The Role of Teacher Reflections

The role reflection played for the participants was found to be strongly af-
fected by individual reflection tendencies. Personal philosophy, goals, int.erests,
beliefs, concerns, personal teaching style and environmental influences were some
of the factors that influenced these individual differences.

The role of reflection in the interview sessions functioned differently than
ongoing reflection in the classroom. In the interview setting teachers used reflec-.
tions to help them deal with more internal issues. For instance, it was not uncom-
mon for the teachers to discuss conflicted feelings they had about the lack of sup-
port from parents and school board members. Opportunities for inward focused
reflections were rare in the classroom because the participants had not structured
their classes in ways that would allow them to stand outside the action.
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Environmental/Situational Factors

The metaphorical analysis of interview data provided insights with respect to
focus and increased activity of reflections. The metaphorical language used by the
teachers not only demonstrated their concerns hut magnified issues that for them
were emotionally charged. For example. the emotional reactions to the conflicts
experienced within the Central City community over OBE resulted in increased
teacher reflective activity and was revealed through the war metaphors they used.
The teachers made comments like: "We're fighting this survival battle." "I was
just being shot down all over the place." "Sound practices are being challenged."

An additional benefit gained from the metaphorical analysis was an indica-
tion of teacher beliefs that might suggest "blind spots" to teacher reflection. Teach-
ing metaphors like: "mathematics is a building-type skill" that has to be "gotten
across" to students who may turn into "spoon-fed robots" helped to illustrate how
the scope of teacher reflections can become limited due to deep-level belief struc-
tures.

Summary

Reflective practice is not a panacea that will solve all the problems of educa-
tion. However, it is key to most processes and programs designed to meet educa-
tional challenges and chatme. The systematic use of reflection helps teachers com-
bine and integrate their past experiences with current knowledge and information
enabling them to respond more effectively to current educational demands. By
making explicit those personal theories of knowledge and actions that have been
implicit, teachers may confront practice on their own terms and confirm strengths
and weaknesses. Appreciating the complexity of teaching and gaining a clearer
understanding of their own immework through reflective thought may enable teach-
ers to discuss with others what they believe and explain why they are doing what
they are doing in the classroom (Cornet. et al., 1992).

Bureau (1993) argues that for a radical refmn of contexts and school struc-
tures three issues must he addressed: time, social structures, and social contexts.
However. Grant and Zeichner's (1984) findings suggest setting aside time for teach-
ers to reflect does not guarantee productive reflective activity will occur. Those
interested in supporting teacher growth through reflective means should be aware
that the outcomes of reflective activity may not always be perceived as positive.
Teachers may become dissatisfied with current teaching conditions, challenge tra-
ditional structures. seek more power and demand a voice in important issues. What
this investigation does not intend to suggest is that reflective teachers working
alone can tackle the complexities of teaching single-handedly.

Reflection appears to he a key process in promoting the kinds of change in
mathematics teaching being promoted by organiiations like the National Council
of Teachers of Mathematics. What has been learned from this investigation is that
any effort to promote reflection needs to (a) be non-coercive, (b) offer a variety
of opportunities for reflection. (c) involve social interactions, and (d) be respon-
sive and flexible. By helping mathematics teachers stay open to new information
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and, at times, off balance (disequilibrium), and by encouraging them to reflect on

new information, positive change in mathematics instruction becomes possible.

With growth comes the incread likelihood that teachers will be able to think and

teach in ways that appropriately meet the needs of a changing world (Wheatley,

1992). Future research goals include exploring some of the more exciting poten-

tials offered 5y various forms of reflective communities.
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ON THE NOTION OF SECONDARY PRESERVICE TEACHERS'
WAYS OF KNOWING MATHEMATICS

Thomas J. Cooney. University of Georgia
Patricia S. Wilson University of Georgia

This study investigated the beliefs about mathematics held by two secondary preservice
teachers as they participated in a teacher education program that promoted the NCTM Stan-
dards and the use of technology. Of particular interest was what the teachers believed and
how those beliefs were structured. Theoretical perspectives developed by Green (1971),
Perry (1970), and Belenky, Clinchy, Goldberger, and Tarule (1986) were particularly help-
ful in this analysis. Analyses of data taken over a 15 month period of time indicated that
both the teachers' beliefs and the structures of their beliefs differed. Recognition of these
various structures is of considerable importance when developing teacher education pro-
grains that promote reflection and adaptive teaching.

This study focuses on prospective secondary teachers' abilities and confidence
to do mathematics and the beliefs they express about mathematics as they progress
through a four quarter sequence in mathematics education. The sequence consists
of two courses in mathematics education, followed by a quarter of student teach-
ing, and concluding with a post student teaching seminar. This study was con-
ducted in the context of the NSF supported project Research and Development
Initiatives Applied to Teacher Education (RADIATE).' We will explicate three
different aspects of knowing I ) what the teachus seem to be able to do mathemati-
cally, 2) what beliefs they seem to hold about mathematics and how those beliefs
are structured, and 3) the implications of their knowledge and beliefs about math-
ematics for the teaching of mathematics. To illustrate these different aspects of
knowing, we will concentrate on two informants. Harriet and Kyle, who were two
of the students who participated in the teacher education program. Data for the
study consisted of an initial survey that included mathematical tasks, questions
about the teaching of mathematics, and the selection of similes that reflected their
views about mathematics and its teaching; eight interviews including a card sort of
participant-identified statements from previous interviews; four tests adminis-
tered during the first two courses; numerous journal entrees in which the infor-
mants responded to specific questions related to course activities; and observa-
tions of their field experiences including student teaching. The teacher education
program placed considerable emphasis on alternate teaching methods, including
an extensive use of technology, and daily opportunities for the teachers to engage
in various reflective activities.

' Project RADIATE is direct:A by Thomas J. Cooney and Patricia S. Wilson and is
funded by the National Scic9ce Foundation (DUE9254475) and the Georgia Re-
search Alliance. Any opinions or conclusions expressed herein are those of the
authors and do not necessarily represent the views of thc funding agencies.
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Theoretical Perspectives

It is our intent to study what the preservice teachers knew and thought about
mathematics and also to consider various theoretical perspectives for describing
the ways in which the teachers held their knowledge and beliefs. To guide our
analysis, a variety of theoretical perspectives were used. Ernest (1991) identified
five different belief systems that included theories of mathematics, learning math-
ematics, teaching mathematics, assessment in mathematics, and aims of mathemat-
ics education. We were primarily interested in our informants' theories of math-
ematics and the teaching of mathematics as we found the line between these theo-
ries to be quite blurred in the reality of studying their beliefs. We considered schemes
created by Perry (1970) and Belenky, Clinchy, Goldberger, and Tarule's (1986) for
considering the way that the teachers' knowledge was held. In particular we were
interested in the question of whether the teachers see mathematics from a dualistic
perspective where there is some sort of absolute system and the learner is either
right or wrong, or whether they see mathematics from a more relativistic perspec-
tive where mathematics is dynamic and the learner is influenced by personal as
well as community constructions (Cobb, 1994). To provide further dimensionality
to the understandina of teachers' beliefs, wc considered Green's (1971) meta-
phorical analysis of the structure of beliefs. In particular, we were interested in the
intensity or centrality of the teachers' beliefs (Green's notion of psychologically
central beliefs versus peripheral beliefs), possible logical connections among be-
liefs (Green's notion of primary beliefs versus derivative beliefs). ahd finally how
various beliefs are clustered, noting :n particular which beliefs seem isolated from
others. By considering the structure of beliefs as well as the substance of beliefs,
we can better understand possible entree points for influencing the teachers' be-
liefs and how those beliefs potentially influence classroom practice. Such an un-
derstanding is fundamental to developing teacher education programs that enable
teachers to realise constructivist orientations which serve as foundations for in the
NCTM Standards.

The Substance of Harriet and Kyle's Beliefs and
Knowledge of Mathematics

Harriet and Kyle entered their mathematics education sequence with consid-
erable similarity in their mathematical backgrounds as determined by courses taken
and grades earned. They both maintained B+ averages in collegiate work. Al-
though they differed in gender and ethnicity, they were both from middle class
families and each had a mother who was a school teacher. Harriet frequently
spoke with authority in class offering hcr perspective, occasionally challenging
other view points, and sharing her experiences as an African American female.
Kyle rarely initiated responses in class but spoke freely when asked for a response
or when he worked in his family group. In one interview he commented on his
privileged position as a White student.



On the surface, both students seemed to have comparable ideas about math-
ematics. They each spoke of learning mathematical concepts and the importance
of establishing mathematical relationships. However further analysis of interviews,
surveys, and class products suggested that Harriet and Kyle held different views
about the nature of mathematics and understood mathematics differently. Kyle
valued mathematics that could be applied. "I think real world is very important
because it's hard to learn something that you can't apply.... it's got to seem useful
in order to learn it." He could easily give examples of applications of mathemat-
ics. He enjoyed problem solving and working challenging problems, often draw-
ing from a variety of applications including woodworking, sports, and physics.
Harriet also spoke of the importance of applications but when asked for examples
she repeatedly referred to the same examples of using knowledge about percents
to calculate the price of an item on sale or a gratuity. Harriet explained that she
enjoyed mathematics because it was easy and did not involve reading. She spoke
of mathematics as being right or wrong and argued that it was important for the
teacher to tell students if they are correct or incorrect. She chose an assembly line
metaphor for mathematics (written survey, 3/29/94) explaining that, "You start out
with a problem, certain parts of your brain perform certain functions and you pro-
duce a product of 'answer'." Kyle saw learning mathematics as building a house,
where "everything must be thought in advance or else you may have to build and
tear down over and over. Same is true for math, one needs to learn it well the first
time." Harriet seemed to restrict her view of mathematics to mathematics that she
understood and considered appropriate content for high school students. Harriet
explained that she wanted "to make sure that I help those [students] and teach as
much as I can correctly to young adolescents." Kyle seemed to have two distinct
kinds of mathematics. Like Harriet. Kyle believed school mathematics should be
primarily rules, formulas, abstractions, and well-defined concepts. However, Kyle
also enjoyed a rich mathematics outside of school that helped him solve problems
from a variety of perspectives. He struggled with these two different types of
mathematics in the classroom. "I think that applications and real world will be
real good in high school, but in this sense, they were real good and helped me to
learn a lot, but they weren't preparatory for those higher abstract levels of math."

Harriet and Kyle seemed to have different competencies in mathematics.
Harriet responded to mathematical questions with vague language, sometimes
misinterpreting the question or providing an unusual or incorrect response. Kyle
used standard mathematical vocabulary and often provided specific examples to
support his answers. The initial survey (3-29-94) posed a question about how to
respond to a student who claimed that the arca of a rectangle increases as the
perimeter increases and provided examples to support this contention. Harriet
accepted the student's generalization as correct, but objected to the student's use
of a square as an example of a rectangle . Kyle offered a counteremnple that
disproved the student's geaeralization. In a later survey (11-4-94) we again see
marked differences in how Harriet and Kyle discuss mathematics. ;n response to
the question, "When someone says 'Geometry' what comes to your mind?" Harriet
replied by listing names of geometric figures whereas Kyle talked abot. t "finding
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surface area, volume, and perimeter of shapes", noting that "geometry is extremely
useful in the real world." When asked. on another survey (10-26-94), what "trans-
formation" means and what, if any, experiences contributed to your understanding
of "transformation", Harriet's answer was briet: "The word transformation means
change to ine. Vocabulary in my high school English classes contributed to my
understanding of transformations." Kyle's responses, however, were more de-
tailed as he talked explicitly about mathematical reflections and rotations, and
briefly connected these notions to an experience in his calculus class involving
vectors. This pattern of Harriet being vague and general when given the opportu-
nity to talk about mathematics, and Kyle being quite specific and contextual when
provided such opportunities prevailed throughout the interviews.

Harriet and Kyle both agreed that a good mathematics teacher should be at-
tentive to the needs of all students. Harriet emphasized "adapting pace of skills to
student ability", and Kyle emphasized "teaching a class to understand [emphasis
his] math, not just memorize ideas" (initial survey. 3-29-94). Harriet seemed to be
much more confident in her ability to teach mathematics than was Kyle. Despite
the fact that Harriet did not exhibit a strong knowledge of mathematics on tests,
projects, interviews, or in her journal discussions, she expressed confidence in her
ability to teach it. She was confident that shc could relate to students and under-
stand their needs. She was confident that she had command of the mathematics
she anticipated teaching. Kyle was concerned about his mathematical content
knowledge and how it might affect his teaching of mathematics. He frequently
referred to the importance of developing a mathematical foundation which seemed
to consist of important rules and facts. Since he could not recall all the rules and
facts, he anticipated problems in his teaching. Kyle was confident in his problem-
solving ability, but he seemed unsure about how this would help him teach.

Considering the Structure of Harriet and Kyle's
Beliefs and Knowledge

We can see similarities in what beliefs Harriet and Kyle share about math-
ematics and its teaching (e.g., placing an emphasis on relating mathematics to the
real world) and also how their beliefs differ (e.g., the way that mathematics should
be related to the real world). We can gain further insight into their beliefs about
mathematics and mathematics teaching by examining the structure of thcir beliefs.
Of the two. Harriet held a more dualistic orientation. Initially she was critical of
opportunities to engage in reflective activities. While she later expressed the view
that she enjoyed sharing ideas with others, her orientation was more multiplistic
than relativistic. In the main, she relished certainty. Her mother was perhaps the
most significant factor in influencing hcr beliefs about teaching. Indeed, across
more than six hours of interviews, Harriet only identified four statements (during
the card sort interview) that she thought represented what she tylieved to he par-
ticularly important; two of these involved testimonies about her mother. In some
sense her beliefs were held non-evidentially in that she tended to accept as evi-
dence those things that conformed to her perceptions about how mathematics should
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be taught. This circularity tends to preclude reflection. A possible counterpoint to

this orientation was Harriet's perceptions about technology. Initially, she posited

the view that it was foolish to spend time using the computers given that comput-

ers generally were not available for classroom use. But toward the end of her pro-

gram, she took quite a different perspective, claiming that technology was going to

fundamentally change the teaching of mathematics. Indeed, in her card sort inter-

view, she rejected the notion that students couldn't learn mathematics if they
hadn't learned the basic skills because of the availability of technology. This shift

may suggest the beginnings of a more relativistic orientation, but one has to won-

der about the psychological strength of this belief given that it appears isolated

from her other belief structures.
Kyle seemed to appreciate contextuality as suggested by the following state-

ments he identified during the card sort interview: "I would use cooperative learn-

ing, but not all the time. Don't make all your examples from the book. You can

tell a lot about way they know about a problem by the mathematical terminology
they're using. The stuff that I thought was important I would stress and the stuff

that I thought was unimportant, would kinda go through quickly." In-a summary

statement during the card sort interview, he emphasized the importance of learning

in groups, receiving ideas from class, and criticism. Kyle's experiences were "con-

nected" in that they fit, generally speaking, into a core belief that mathematics

should be made interesting for students by enabling them to see connections be-

tween mathematics and the real world. While Kyle felt some tension between the

importance he placed on basic skills and his orientation toward real world connec-

tions, the fact remains that these two views were not totally isolated. This sense of

connectedness suggests a relativistic orientation that may account for why Kyle

seemed to prosper from the reflective class activities in a way that Harriet did not.

Since it appears that Kyle's beliefs were held evidentially, there is reason to

believe that his beliefs will likely be modified over time. The fact that he was

concerned about "holes" in his mathematical background was actually predicated

on a more pluralistic or relativistic perspective. That is, he saw mathematics from

a broader perspective than did Harriet and consequently was more keenly aware of

what he didn't know. The fact that he was better able to integrate various voices

(e.g., his two different views of mathematics) about mathematics provides a con-

text in which he both enjoyed and profited from the reflective journal entrees he

was asked to write. While Harriet may not have been a received knower, neither

was she an integrated knower. Her "filtering system" for what she accepted as

evidence for believing what shc did was much less permeable than Kyle's. Her

apparent confidence in teaching mathematics was likely predicated on her under-

standing of students rather than her formal mathematics as she tended to shy away

from unfamiliar mathematics. Thus her "glitches in mathematical knowledge" did

not seem to concern her tbr she did not see them as impeding her ability to teach

the mathematics she anticipated teaching. This isolation helps explain her resis-

tance to engage in reflective activities involving her understanding of mathemat-

ics.



We can see that Harriet and Kyle not only hold different beliefs about math-
ematics and vary in their ability to do mathematics, but the structure of their be-
liefs varies as well. This difference in structure has considerable implications for
their ability to realize the NCTM Standards. Harriet's isolation of beliefs, her
reliance on authority (e.g., her mother's voice), and her non-relativistic conception
of mathematics tend to isolate her from the reflection needed for an adaptive means
of teaching. Our evidence indicates that she may be moving toward a more rela-
tivistic perspective, as suggested by her views on technology. For Kyle, who be-
lieves as does Harriet in the importance of emphasizing basic skills, we see a teacher
who appreciates contextuality, thereby suggesting a potential exists for changing
and reforming his teaching over time.

A Concluding Remark

By considering both the substance and structure of teachers' beliefs, we pro-
vide a certain dimensionality that captures the intensity and interconnections among
beliefs. While it is well established that teachers' beliefs influence practice, it may
be even more important to consider the means by which those beliefs are struc-
tured. Recognition of the way beliefs are structured provides us with the potential
for seeing how isolated beliefs can be related to beliefs more strongly heldthus
ensuring their endurance when buffeted by the usual obstacles teachers face. By
considering both the substance and structure of beliefs, we have the potential for
eliminating the random effectiveness often associated with our attempt to reform
the teaching of mathematics.
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SCIENCE AS BACKDROP FOR REFLECTING ON MATHEMATICS
WITH PRESERVICE TEACHERS

Rebecca B. Lorwin, TERC and Lesley College
Susan .1. Doubler, TERC and Lesley College

This study identifies some of the questions mathematics educators must address in design-
ing methods courses for preservice graduate students. The questions emerge from a pilot
study of preservice early childhood graduate students' beliefs about the nature of math-
emai.. and science. In a combined mathematics and science methods course students used
each subject as a backdrop for considering the nature of the other.

Mathematics and science are the focus of much new curriculum and course
development in preservice education. Combining these with other subjects is ncl.
generally new practice in preservice teacher education programs in early child-
hood, yet few course instructors have developed purposeful strategies for design-
ing and facilitating learning experiences to deepen preservice students' knowl-
edge and understanding of content as well as methods in both science and math-
ematics. It is important that preservice teachers at all levels develop a personal
understanding of the nature of both mathematics and science in order to represent
these disciplines with integrity (Steen, 1991).,

Background

While co-teaching a mathematics and science methods class for graduate school
preservice teachers in autumn. 1994, the authors were surprised to find what ap-
peared to be deeper resistance to mathematics than to science. Subsequently, we
studied those differences and their implications for preservice students' teaching
and for ours. In the spring science and mathematics methods course we did not
want to teach the subjects separately, nor could we justify complete integration of
the two. Because of the dual focus we felt the course provided a rich opportunity
for reflection on the nature of mathematics and science.

Graduate students in preservice courses bring with them already-established
perspectives on content areas, and their stances toward mathematics and/or sci .

ence often vary. We set out to understand the range of those perspectives, to char-
acterize them, and to develop some notions of how those perspectives might in-
form the design and implementation of a methods course that dealt with both math-
ematics and science. We were also concerned to determine the relative flexibility
of those perspectives so that we could think realistically about what is possible in
early childhood methods courso combining mathematics and science.

It has long been held that what teachers believe about learning is influenced in
substantial ways by experiences long before they begin to teach and these beliefs
may not change without some significant intervention. Cooney supgests (1993)
that it is crucial to "develop a way of thinking about how teachers orient them-
selves to their students, to the mathematics they arc teaching and to the way that
they sec themselves teaching."



These three elementsorientation to students, view of mathematics and sci-
ence, and their vision of themselves as teachersunderlay the design of our com-
bined mathematics and science methods course for early childhood students.

Orientation to students: Wc required graduate students to observe and
interview children four times to analyze understanding of scientific and
mathematical concepts (Harlen. in press). Students also viewed, discussed,
and analyzed selected videotapes of children engaged in mathematics or
science.

View of mathematics and science: Central to the course were scientific
and mathematical investigations designed to enhance graduate students'
content knowledge and their views of how science and mathematics are
conducted (Shulman, 1990). We believe our students must themselves
participate in such investigations, with all the false starts, uneven results,
and excitement of real mathematics and science.

Vision of self as teacher: The learning environment in the course em-
phasized discourse, question-asking, reflection, and listening.

The Study

In this study, we characterize preservice teachers' beliefs and sketch some
apparent changes in beliefs about mathematics and science. The questions that
guided our research were:

How do preservice students understand the nature of mathematics
and science and the connection between mathematics and science?

How do graduate students orient themselves to young children's un-
derstanding?

How do they see themselves as teachers of young children?

For this presentation, we emphasize the first question: the nature of math-
ematics and science as fields of knowledge. In this report we will focus in depth on
three graduate students (a reasonably adequate representative sample of the eleven-
woman class). These three were interviewed following the first class session and
again following the last class session by an interviewer who did not teach the
course. Interviews and writing were primary data sources. Written materials in-

cluded mathematics and science autobiographies, course assignments, responses
to course readings, reflections on their own learning, and structured reflections on
science and mathematics.

Profiles

These short profiles present three students' contrasting stances toward sci-
ence and mathematics. Each of the three is a woman between 24 and 34: each
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intends to teach children who range in age from 3 to 9 years. Their positions and
beliefs are different, yet some of the themes are troubling to us. After the profiles
are presented, we discuss some of those questions.

Profile #1: Diane: I was always in that "other group-

My math and science education from Nursery School through
Third Grade is very faint to me with a few exceptions. My first
recollections begin in Fourth Grade when I remember being in
the "other" math group. which continued right through High
School.

When first interviewed, Diane secs mathematics as quite different from sci-
ence. She describes science as philosophicalalthough there may be established
theories, those are debatable and allow choices of what to believe. In contrast,
mathematics is quite different.

I see math as concrete because I see math as adding and sub-
tracting and multiplying and there being one definite answer;
whereas in science, theories arc always being re-tested and re-
tested and sometimes re-evaluated and new answers.

Diane feels mathematics is more bounded; it is computational, focused on one
right answer. Mathematics exists as an external body of knowledge, necessary to
master by hard work, because "those basic skills will be needed to survive."

Diane's views of science are set in the context of the natural world. In elemen-
tary school shc stored "precious [rock] samples in my very own egg carton" in
fourth grade, and her sixth grade teacher's enthusiasm about birds dominates her
memory of that year.

Finding contexts for mathematics is more difficult; Diane's context for math-
ematics is computationalbalancing checkbooks and cooking"those sort of
basic. everyday, need-to-know, help you get through the day kinds of things". Other
aspects of mathematics she labels "abstract".

Diane's view of learning seems to focus on hard work, discipline, and control.
The teacher needs to he in charge so that knowledge can be passed on to the chil-
dren. During the course this appears to soften somewhat, as this reflection hints:

Obviously, the basic mathematicsaddition, subtraction, mul-
tiplication, and divisionthose are obviously things that can be
applied to everyday life. But I think sort of the process of dis-
covering and of understanding them and asking questions and
getting wrong answers and this goes for both math and sci-
encetesting them out and learning through mistakes and try-
ing and trying again until you figure it out really to understand
it. I think those arc really important skills that come from learn-
ing math and science, that can be applied to lots of other things.
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Profile #2: Sophia: "Counting spots on lions, tigers, and giraffes"

I remember as a kid just sitting there and going through the
multiplication tables across the classroom or doing "one plus
one is two" and l mean without music behind it. Not having to
do with art. It was really boring. It was the class time that I

dreaded most. It was cold. I mean, there's nothing creative about
it, nothing fun about it. Tedious work.

This somewhat dismal view of her childhood mathematics is Sophia's first
statement about the nature of mathematics. She goes on to say.

You don't study math, you just get at different answers ... There's
not different ways to go about it. Like inl a science project you
can go about different ways to get to the same answer. You can
answer your own diffcrent questions. But in math, it seems like
there's one correct way to do it and that's it.

For Sophia, science asks questions, that embraces curiosity and creativity,
"the study of ways. things, life, people. bugs." In her first interview, Sophia sees
mathematics as separated from the world:

But I think a lot of students end up learning by rote and end up
just hating math because of that. Because there's no actual tie-in
to everyday life. I mean, there's nothin4 fun about it.

This separation between mathematics and life is not evident at the end of thc
course, when she says. "all real things have to do with math and science- and talks
about the mathematical opportunities she finds in her garden. Newly aware of
connections among science, math, and art, she thinks about how observations made
in her garden and her art work include mathematicsproportions of paint colors,
percent yield from seeds plantedand says, "Math is also really intricately in-
volved with science...it's not just balancing a checkbook-.

Sophia appropriates mathematical ideas becuum, she can think of them in fa-
miliar artistic contexts. There is evidence that in her own classrixnn she will bring
mathematics and science to her students in informal. everyday contexts.

Just so it makes sense. And it's not this weird idea out there that
you have to inemoriie. But it actually does make sense. And it
has to do with everyday life.

Profile #3: Sandi: No, no, no! Give me the answer. because I have to
have the answer!!!

Until the age of eight Sandi descrilvs herself as fascinated by insects and
intrigued by life in the wcxxls on her way to school. She says she always wanted to
find out more. Sandi considers science a process of investigation:
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Science is finding out about the things around the world. It's
also increasing knowledge. It's finding out why something works
the way it works. Or does something the way it does.

She describes mathematics as other course members do:

Mathematics to me would be all about numbers. Givens About
something that is arguable. Some memorization. Hard. Diffi-
cult. Can I say boring?

During the semester, though, there is evidence that she wonders about her
view of mathematics. Sandi seems to wrestle with her own ideas. It is as if she
argues with herself all semester about mathematics. It is in the context of its rela-
tionship to science that she questions whether mathematics can really be that cut
and dried. She explains that during the course,

I started to think of math more, instead of automatically writing
down a problem. I could sort of round it off in my head and not
worry that it needs to be exact.

Later she mentions what she wants children to gain from doing mathematics:

Seeing relationships, I guess. Like the example with the baby
chick and the Unifix cubes. Seeing how two different things can
weigh the same. Or figuring out that a certain number of cubes
would increase with the weight increase of a baby chick. It's
like that relationship and understanding it as a whole thing.

She seems to move away from a static view of mathematics as finding the
right answer:

I started to think about the whole learning process.... There's no
challenge in the answer. There's challengc in the investigations
and the inquiries into how things happen or why.

Puzzling out what she sees as a contradictionher belief that science is never-
ending yet mathematics is limitedSandi takes Fibonacci and his number sequence
as evidence that new knowledge may be possible in mathematics:

For me, science is never ending. There's always something else
to learn. For math it seems like once you know all there is to
know about math, that that's it. I mean, even though there are
other things like the snail and (the Fibonacci series]...How things
have a sort of a pattern. And he came up with that and saw that
in things. But then again I guess that's notyou could always
maybe find something new. Or a new pattern. Or new sets of
numbers that might equal something that people may have never
even thought of before, or seen.
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Troubling questions

As we focused closely on each of the graduate students' views of the nature of
mathematics and science, their views about children, and their views about teach-
ing and learning, the patterns we noticed have left us with questions.

I ) What mathematical contexts are most appropriate?

Although students talked about science they placed their talk in familiar con-
texts, their comments about mathematics were almost entirely context-free. In the
few instances where students set mathematics into contexts associated with their
own lives, it seemed to have more meaning. This was illustrated as Sophia began
to see mathematics in the art and gardening she loved.

How do we help our graduate students begin to look at their world with a
mathematical eye? How can we contextualize the mathematics to support students'
developing awareness of a mathematical perspective?

2) How can we present mathematics as a growing, changing field
that, like science, invents new knowledge?

Popular American culture incorporates scientific questions. These may be pre-
sented in newspaper reports and on television, and lay people are even encouraged
to develop explanations, conjectures and theories. By contrast, there is little evi-
dence of current advances in mathematics. Our students have little sense that math-
ematics has its own compelling questions. In what may be characterized as a deeply
anti-mathematical culture in the United States, how can we make mathematics
more visible?

3) How can we make it possible for students to learn to ask their
own mathematical questions and pursue their own mathematical
investigations?

All three students we reported on held rigid and limited notions of mathemat-
ics. They felt that they had access to some computational algorithms. but little
more. This made it nearly impossible for them to ask their Own interesting math-
ematical questions, since they had no context for understanding the nature of math-
ematical questions.

How can we learn to parallel science education's ability to engage students by
helping students pose their own mathematical questions and develop their own
mathematical investigations designed to answer those questions? In short, how
can we help students to think and act mathematically?

Recommendations: These questions leave us with the recommendation that
mathematics educators must acknowledge the narrow, decontextualized view our
preservice methods students often hold about the nature of mathematics, and de-
velop some thoughtful responses to begin to counteract it. If we do not, we will not
be able to move the field forward as quickly as we would like.
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We also have a renewed confidence in the promise of ombined mathematics
and science methods courses for providing new models to stalents whose math-
ematics experiences have been limited. Some aspects of science (investigations,
developing questions) seem to help students continue to Yonder about the nature
of mathematics. We suspect it works both ways.
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A STUDY OF PRESERVICE TEACHERS' METAPHORS FOR THE
DIFFERENT ROLES OF THE MATHEMATICS TEACHER

M. Jayne rleeneL University of Oklahoma
Roland G. Pourdavo(xl, University of Oklahoma

Pamela G. Fry. University of Oklahoma

This study examines preservice teachers' metaphors for describing roles of the mathemat-
ics teacher. Previous research (Tobin, I 9)0: Tobin & LaMaster, 1992) sugeested meta-
phors for teaching typically describe three distinct roles of the teacher: teaching, assessing,
and classroom management. and consistency of metaphor is important for classroom effec-
tiveness. The findings of this study reveal student metaphors were not systematic among
the three roles. Actuali/ing visions of mathematics learning consistent with constructivist
pedagogy will require teachers and pre-teachers to reconcile beliefs with personal interac-
tions and roles in the classroom b!, engaging in critical reflection of teacher roles

From a feminist epistemologic perspective, there is an inherent conflict be-
tween the hermeneutic idealism and moral imperative of preservice elementary
education majors, (a largely female population), and the policies and techniques of
public schools, with an emphasis on "functional efficiency and social control"
(Goodman, 1992, 181). If we adopt Dewey's vision of teacher preparation (Dewey.
1933). focusing on reflective practice, an important goal for teacher education
programs is to encourage critical, deliberative, reflection-in-action on what being
a teacher means.

Tobin's work with practicing science teachers suggests the power of having
teachers construct and explore their own metaphors for the various roles of the
teacher (Tobin. 1990; Tobin & LaMaster. 1992). Reflecting on her metaphors
describing th,: roles of the teacher for managing. assessing. and facilitating learn-
ing of science students, one novice teacher was able to discern inconsistencies in
her metaphors and classroom practices and modify her vision of classroom inter-
actions to fundamentally change her approach to teaching (Tobin & LaMaster.
1992. ) What happens when preservice teachers construct and examine thcir own
metaphors for thc various roles of the mathematics teacher'? Can exploring the
systematicity of metaphor help preservice teachers gain a clearer picture of what it
means to be a teacher?

The current study adopts the view that metaphorical language orders indi-
vidual personal realities (Lakoff & Johnson, 1980) and can be examined to reveal
philosophical orientations to knowing (Fleener & Fry. 1994). The role of meta-
phor for organizing and communicating thoughts about one's personal reality is
central to a constructivist approach to language which views individual construc-
tions of personalized realities as limited by individual knowledge and language.

Fundamental human interests arc reflected by systematic orientations to prob-
lem situations (Habcrmas, 1971). These fundamental interests intercede and con-
dition human experience and action. Fundamental human interests are affected by
cognitive as well as experiential characteristics of the individual. Three funda-
mental human interests (technical, practical, emancipatory) arc described by
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Habermas and consistent with theoretical orientations toward knowing (empiri-
cal-analytic, historical-hermeneutic, and critical) (Grundy, 1987). In this study,
analysis and interpretation of student metaphors use Habermasian categories to
orient student perspectives.

Guiding Questions

This investigation considers the systematicity of beliefs about mathematics
teaching revealed through metaphor analysis of joumal entries of preservice teach-
ers.

Guiding questions for this study are:

1. Within a Habermasian framework, what is the relationship among
students' conceptualizations of different roles of teaching as expressed
through metaphorical language?

2. What does students' examining the systematicity of their own meta-
phors reveal about their understanding of the complexity of the class-
room and what it means to be a teacher?

Procedures

Participants

Sixty-five preserv ice elementary education majors in two sections of an inter-
mediate-middle school mathematics methods class participated in this study. All
students were in their last semester of coursework before student teaching. All but
four were women; 80% were under the age of 25; and 90% were Caucasian.

Data Sources

The primary data source was student journals which included reflections on
student logs, class discussions, and written assignments. Previous research (Tobin,
1990; Tobin & LaMaster, 1992) suggested metaphors for teaching typically de-
scribe thrcc distinct roles of the teacher: teaching, assessing, and classroom man-
agement. Because 'classroom management' is itself a dead metaphor (Fry &
Fleener, under review), we asked students to construct metaphors desaibing the
role of the mathematics teacher for a) enhancing learning (teaching), b) assessing
learning, and c) performing other duties (which might include but need not be
limited to classroom management). Students shared their writings in class and
discussed the metaphors for teaching expressed by their writings in small groups.
Further assigned journal entries during midterm and finals summarized group dis-
cussions and assessed individual changes in metaphors for the roles of the teacher.

Analyses

A matrix of metaphors tbr the three roles of mathematics teaching was con-
structed from student journal reflections three times throughout thc semester.
Metaphors were independently grouped according to Habermasian interest eat-
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egones of CONTROL and HERMENEUTIC/EMANCIPATORY by each ot the
investigators Because the hermeneutic and emancipatory categories seem to over-
lap (see Fleener & Fry, 1994; Fry, in press), these categories were collapsed tor all
analyses. Any disparities in categorization were discussed among the researchers
until a consensus was reached.

To determine whether Habermasian interests as expressed through metaphor
were systematic, patterns of responses across teaching roles were examined. Three
separate Chi-square tests of pair-by-pair comparisons of metaphors for the three
roles of the teacher were performed to examine whether student metaphors across
roles were systematic. A model of expected frequencies for metaphors in each
pair-by-pair comparison was determined by prior research (Fleener & Fry, 1994).
In order to address the second question, student interpretations of the consistency
of their own metaphors and reflections on how their metaphors changed were ex-
amined. Students' beliefs about the syst _maticity of their own metaphors to de-
scribe the various roles of the inathetnatics teacher were examined to assess under-
standing of the complexity of the .natheinatics classroom and determine what stu-
dents believed about what it means to be a teacher.

Findings

Student metaphors for each of the three roles of the mathematics teacher were
categorized according to Habennasian interest expressed by the metaphor. For
example, the metaphor "Teacher as Guide" was categoriz.edas expressing an inter-
est in hermeneutics if the student description included a focus on understanding
and/or consensual agreement of class content. The same metaphor, however, was
categorized as expressing controlling interest if the student described a pre-exist-
ing path and/or direction down which the teacher guided and the students fol-
lowed.

A Chi-square test of group differences was performed on categorical data to
determine whether student responses across teaching roles were consistent, from a
Habermasian perspective. Three analyses were performed, comparing metaphors
for enhancing and assessing learning (TEACH x ASSESS), enhancing learning
and performing other duties (TEACH x MANAGE), and assessing learning and
performing other duties (ASSESS x MANAGE). Significant differences between
categorization of metaphors for the various roles of teaching were found by all
three analyses: TEACH x ASSESS (X2 = 5.34, p<.05). TEACH x MANAGE (X2
= 9.55, p<M1), and ASSESS x MANAGE (X2 = 13.14, p<.(11), suggesting, as a
group, these students did not use metaphors for describing the various roles of the
mathematics teacher that were consistent across roles from a Habermisian frame-
work.

When asked to evaluate their metaphors tor consistencr, students provided
three specific explanations of how their metaphors for the roles of the mathemat-
ics teacher were related. Twenty-five of the sixty-four students felt their meta-
phors were consistent even though, they admitted, the metaphors were quite dif-
ferent. Eighteen students felt their metaphors were consistent and similar: thirteen
expressed the opinion their metaphors were consistent and expressing authority or
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control relationships; and eight felt their metaphors were inconsistent hut offered
no clear explanation of how their metaphors were inconsistent.

Even though 56 students felt their metaphors were consistent, only 20 were
able to explain the coherence among the roles of the mathematics teachers by
expressing a root metaphor connecting the three metaphors for those roles. Those
who did indicate a systematicity oftnetaphor often were not able to articulate the
relationship but were able to describe how the metaphors were related. For ex-
ample, one student implied the root metaphor "Teacher as Role Model" to system-
atize her metaphors "Teacher as Mentor: "Teacher as Manager," and "Teacher as
Mother." Another student described how her metaphors expressed aspects of pro-
fessionalism. The root metaphor "Teacher as Professional" seemed to tie for her
the roles of the teacher as Magician, Electrician, and City Planner.

Eight of the thirteen students who expressed the belief their metaphors were
consistent based on the authority relationship the teacher had with the students,
were able to provide root metaphors. For example, one student reasoned the meta-
phors were consistent because they all put the teacher in control, "like a Queen
Bee." For her, the root metaphor Teacher as Queen Bee systematized her meta-
phors Teacher as Guide, Teacher as Coach, and Teacher as Telephone Operator
and, from a Habermasian perspective, these metaphors did all reveal an interest in
control. Another student explained the common feature of her three metaphors
was encompassed by the metaphor Teacher as Authority. Her metaphors were
Teacher as Coach, Teacher as Principal, and Teacher as Parent.

Discussion and Implications

By generating metaphors for the various roles of teaching and examinirg their
metaphors for consistency, preservice teachers engaged in opportunities for criti-
cal personal reflection and individual meaning-making. This study examined their
beliefs and the consistency of those beliefs about the various roles of the teacher as
expressed through metaphor.

The findings of this study suggest, from a Habermasian perspective, student
metaphors were inconsistent across teaching roles. When faced with the realities
of teaching, the idealism and theory of the methods class may be called into ques-
tion as students' hermeneutical tendencies are conflicted with controlling para-
digms for teaching.

Because only one in three students was able to critically examine and assess
personal metaphors, providing a root metaphor to explain 'what teaching is all
about' and systematize the metaphors for teaching, it does not appear opportuni-
ties for critical personal reflection are sufficient fot students to become aware of
their own systematicity of thought, a prerequisite for critical consciousness which
may lead to emancipatory transformation. Furthermore, that almost half of the
audents who were able to express the roles of the mathematics teacher using a root
metaphor implying an authority or controlling relationship is distressing since it
conveys the Factory model of education (Fry, in press). The Factory model of
education, with the implicit role ot students as raw pi ()ducts to be molded by the
teachers, is precisely the technocratic model most teacher preparation programs
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are trying to eliminate. As an essential component of praxis, methods class reflec-
tions need an emancipatory stance most of these students could not adopt on their
own. In order for experiences in methods classes to have meaning for preservice
teachers, that is. in order for students to be able to critically examine their own
thinking and the function or purpose of schooling, methods instructors must pro-
vide more opportunities for examining ideas about teaching from a critical per-
spective. Actualizing visions of mathematics teaching and learning consistent with
constructivist pedagogy will require teachers and pre-teachers to reconcile beliefs
with regard to what. teaching is about.
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TEACHERS' THINKING AND RETHINKING
ASSESSMENT PRACTICES

Thomas.). Cooney, Univeisity of Georgia
Barry E. Shealy, University at Buffalo, SUNY

Five secondary school teachers participated in a three-year project to support the rethinking
of their assessment practices. The teachers met regularly to share ideas, otbmitted assess-
ment tasks and their assessments of students, and received feedback. All of the keiichers
professed significant changes in their understanding of assessment arid tour chaetl their
teaching significantly. The teachers' written contributions to the project, interviews v, ith
the teachers and their students, and observations of the teachers' teaching v.ere anal; zed.
Key factors from the nature of the teachers' beliefs and their social situations were identi-
fied that facilitated and/or inhibiuyi change.

The mathematics education community currently reflects a significant con-
sensus on broadening student outcomes. We have moved from sole emphasis on
computational skills to including problem solving, communication, and reason-
ing. Teachers tend to agree that this shift is important and many are now able to
find curricular materials that reflect the current emphases, if not becoming more
adept at developing their own student activities. Teachers are, however, much less
comfortable with assessing broader outcomes in student performance (Romberg,
1992), seeing these assessments as less objective than those calling for production
of single number answers. This discomfort is troubling as assessment plays an
integral role in shaping students' expectations and deterui;ning what gets valued
a:id learned (Crooks, 1988). Based on these concerns, it seems important to better
understand where teachers are in their capability to utilize a broader view and
practice of assessment. A teacher education issue is, then, to understand the pro-
cess by which teachers grow il; confidence and ability to make assessments re-
flecting broader student outcomes, a process deeply conni.cted to the nature of
beliefs and social contexts.

Theoretical Considerations

The belief systems of teachers and the social contexts th.y find themselves in
are crucial interacting agents within a teacher's growth process (Brown & Borko.
1992; Thompson, 1992). Several key ideas assisted us in thinking about the teach-
ers' thinking and practice, particularly changes in thinking and pi actice. First, be-
liefs that arc central (Green. 1971) to one's belief system, that is, strongly con-
nected to other beliefs, would be more difficult to change than those held peripher-
ally in belief systems and also have greater impact on one's practice. Second, some-
one who is open to the incorporation ol new ideas. who's beliel stri..;:tine is perme-
able (Kelly, 1955), is also more likely 'a change his or her beliefs and practice.
Furthermore, a person's expressed beliefs and practices will be affected by social
supfxrts and constraints, perceived or actual Brown & Borko. 19921.
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Partnership with Five Teachers

A group of grade 7-12 mathematics teachers participated in a study of their
evaluation practices (Cooney, Badger, & Wilson. 1993). Following this study, five
of the teachers volunteered to join a project to receive support for rethinking their
assessment practices over three years. The project included quarterly workshops
to help the teachers formulate plans for assessment and to share materials and
experiences from their classrooms. The study that follows describes their process
of growth over the three years. Data included written responses to surveys, indi-
vidual and group interviews, and workshop field notes. The teachers regularly
submitted copies of their assessment tasks, sample student work with the teachers'
assessments, and written rationales for their practices. Each teacher's students re-
sponded to a survey and participated in group interviews. Project staff also made
classroom observations early in the project. We looked for evidence of the teach-
ers' understanding of mathematics and assessment and the practice of teaching
mathematics. We focused on the nature of these beliefs in terms of Green's (1971)
central-Nripheral organization and the permeability (Kelly. 1955) of the teachers'
belief systems. We also looked for social aspects of the teachers' situations which
supported or inhibited change.

The Case Studies

Carol

Carol has taught nine years in a middle school where students have not expe-
rienced a great deal of academic success. Recognized as an outstanding teacher,
she is deeply concerned about her students and, as a consequence, is quite de-
manding of them. Her principal was very supportive of any innovation she wished
to try. Early in the project. Carol's belief that "mathematics consists of computa-
tioas. concepts. problems, and skills- was central (Green. 1971) to her understand-
ing what studems were to learn. Thus, her tests were almost exclusively computa-
tional in nature. In interviews, her students also reflected this view of mathemat-
ics, no doubt a reflection of their mathematical experiences.

Eventually. Carol modified her orientation toward assessment. While cling-
ing to the notion that learning mathematics consisted primarily of acquiring basic
skills, she allowed that the acquisition of basic skills could include experiences
with more open-ended items. Consequently, her tests became less computational
as she began to pose such questions as. -Terry thinks that 24.36 - 3.6 = 24.(X).
Where did Terry make his mistake?" Carol also began engaging the students in
projects with real world data and requiring her students to keep daily journals. Her
students indicated she always asked them to explain their work. Recognizing her
earlier computational orientation, she attributed her change to seeing other teach-
ers in the project successfully try new practices and incorporating ideas from the
project into her teaching. While she continued to hold a perhaps more computa-
tional orientation than other teachers on the project, she reflected progress and
change.
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David

David had seven years of experience teaching in a private school in which
parental expectations were high and the teachers were encouraged to be innova-
tive. He had a kecn interest in mathematics and used the following adjectives to
describe mathematics: puzzle, game. challenging, logical, and analytical. His stated
characteristics of good teaching (being energetic, knowing the content, challeng-
ing students, being adaptive, and helping students think analytically) character-
ized his teaching as well. His emphasis on being adaptive reflects his value of self-
improvement and is indicative of a petmeable belief system (Kelly, 1955).

It was readily apparent that David concentrated on process with his students
and not just procedures. He saw "alternate assessment as a means of [getting] a
better understanding of how my students think." What changed over the course of
the project was his ability to create open-ended items and an acquired expertise in
analyzing students' responses to more process-oriented questions. According to
one of his students, "His questions arc a lot different than some of my other math
teachers. It makes you think," As strong a teacher as David is, however, a caveat is
in order. His last few tests regressed slightly in that they did not have the creative
items evident on his earlier tests. When questioned about this, David indicated that
this was his first year of teaching trigonometry and he was a little anxious about
the material. Thus, lack of comfort with the content had a greater effect on his
teaching than his commitment to alternate assessment.

Karen

Karen has taught middle and high school mathematics and is currently in a
urban/ suburban public school district. Early in the project, like Carol, Karen ex-
hibited a computational view of mathematics and her tests tfmded to be compu-
tational in nature. At one point she said, "I finally decided that testing for deep and
thorough understanding was wing to be [the students' I total undoing." Later, after
giving a test with more open-ended questions. she said "although i liked the re-
sults. it took me more than three times as long to grade [the tests] than usual." The
issues of what the students could handle and the time required to develop and
grade tests were significant concerns for Karen.

Eventually, Karen became more comfortable with creating and using open-
ended items and was even an outspoken proponent of the techniques. sharing with
her colleagues and other teachers. Karen's instructional practice, however, was
slower to change. Several of her colleagues. including her department chair be-
came interested in the project and began to try new approaches to assessment in

their Own classrooms. This opportunity for support in changing instruction and
sharing efforts was important for Karen's development.

Esther

Esther is a high school teacher in an urban school district and has taught for
twelve years. Like Carol and Karen, Esther expressed computational and proce-
dural views of mathematics early in the project. She said she enjoyed the project
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because, in teaching, "you seldom get to interact with other teachers, .. . you are
sort of on your own." She appreciated the challenge to think about her tests and the
"nudge to do more problem solving activities." Over the first two years of the
project, Esther added more open-ended items to her primarily computational tests
and used activities she received through the project as "warm-ups" in her class.

Later in the project, Esther showed little evidence of trying alternate assess-
ment activities with her students. For example, one idea emphasized in the project
was valuing multiple solutions of problems. When asked about alternate ways of
doing a problem a student said. "She says 'yeah. you could do it that way, but this
is the way we want you to do it because this ik the way we teach you.'" A change
in teaching assignments may have precluded much progress in using alternate as-

sessment practices. Esther's concern for losing control of the classroom when us-
ing more open activitieslosing control both of classroom discipline and of the
direction of the mathematicsseems to have been a more significant factor. This
concern was evident in observations and intervicws with Esther and explicitly
expressed by her to the group.

Linda

Linda is a middle school teacher in the same private school as David. She has
taught for ten years. When she describes mathematics she uses words like "real
life," patterns, and colorful. She regularly involves her students in open-ended
projects. In education, she tends to focus on a holistic view of the child, emphasiz-
ing life skills and conceptual understanding. She sees assessment as determining
"what goes on in [the students') heads. From the beginning of the project, her
written tests could range from 10% to 70% open-ended in nature With such ques-
tions as, "Write a problem where the commutative property can he used to make it
enier to solve and explain why the commutative property is helpful in your prob-
lem." From the student interviews, it is clear these types of question are represen-
tative of the tasks she provides for her students.

While Linda's tests did not change significantly ova the course of the project,
she was more open to trying new practices than the other teachers. Linda was the
first of the teachers to use portfolios, student interviews, and student-generated
tasks in hcr assessments. Clearly. the support of a colleague. David, and the sup-
portive administration contributed to Linda's freedom to innovate. The project
provided Linda with ideas and people to "bounce ideas off of."

Reflecting on the Case Studies

Several clear strugglo arose as the teachers tried to use nev, assessment tech-
niques. They found that ha ing a process-oriented classy( tom is a challenge tor
both students and teachers. It takcs more time, seems to makes life in the class-
room more complicated, ano surely !ess certain. Teachers have to revise the nature
of their roles as teachers and studrnts have to assume greater responsibility for
their own learning. The project teachers held these concerns. but intereqingly.
these teachers saw the rewards as clearly worth the extra effort. They could not
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envision returning to teaching in which assessment consisted solely of students

performing algorithmic tasks.
Key aspects of the project and the teachers' own circumstances contributed to

their growth or lack of growth. The initial support of the project staff, the collegial

support of the teachers and later peers in their own schools were important ele-

ments for change for the teachers. The on-going encouragement over an extended

length of time was another aspect of the project the teachers felt contributed to

their development. Linda. David, and Carol had interested and supportive princi-

pals who provided freedom and encouragement for innovation. Esther, in contrast,

was in a situation where her teaching was strictly prescribed inhibiting, if not rul-

ing out, trying new practices. Thus, local and external support and perceived free-

dom within the teaching situation are important change agents.

Investigating the teachers' belief systems provides further insight into the dif-

fering nature of the changes and struggles they experienced. One difference among

the group of teachers is the central beliefs (Green, 1971) relating to the nature of

mathematics. Carol's view of mathematics as a set of rules by being central is less

amenable to change. This impermeability may explain her initial reluctance to try

new practices and her reticence to share within the group; although by the end of

the project she was involving students in extended open-ended projects. Karen's

view of mathematics, while similar to Carol's, was more open to broader process-

oriented student outcomes. Thus, she was able to assimilate many ideas of alter-

nate assessment and be an outspoken advocate while initially changing little in her

classroom. Over the course of the project she was able to accommodate alternate

assessment into her instructional prow for no other reason than to train the

Icids to do open-ended items. Thus, we see a case where peripheral beliefs about

classroom practice change allowing alternate assessment in without changing her

basic notion of the nature of mathematics. For David, however, using such prac-

tices as open-ended tasks is at the core of what he believef., hut his peripheral fear

of teaching new content temporarily requires him to bad., off his commitment to

alternate assessment.
The foregoing analysis raises a "chicken-and-egg- question. The teachers who

were most innovative had the most supportive tuching coniexts, appeared to have

the most permeable belief systems. and held central beliefs about mathematics

most in line with current reform ideas. It would he interesting to see the result of

Linda and David changing places with Carol, Karen. and Esther. Would permeable

belief systems and open views of mathematics and teaching withstand restrictive,

unsupportive teaching environments? The nature of belief systems--central be-

liefs about mathematics and teaching and the openness to new ideasand the

social situation of teachingsupport of peersand administrators, time for interac-

tion with peers, supporti ve curricular materials, and freedom to innovatehave

critical effects on the ability of teachers to rethink and Lhange their practices.
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TEACHING WITH TECHNOLOGY: TWO
PRESERVICE TEACHERS' BELIEFS'

Pamela Turner, The University of Georgia
Jennifer Chauvot, The University of Georgia

The goal of this longitudinal study was to conceptualize the belief structures of preservice
teachers with regard to whnology. We were concerned with what beliefs were held, how
those beliefs were held, and to what extent those beliefs influenced the teacher's use of
technology. We followed two preservice teachers through four quarters of a secondary
mathematics education sequence. We analyzed their beliefs and found that prerNuisite
mathematical knowledge and the role of the teacher played a major part in the structure of
their beliefs toward technology. We plan to continue working with these teachers as they
move into their first year of teaching to see if these belief stnictures change.

Much research has highlighted the importance of beliefs of preservice math-
ematics teachers and the way beliefs affect the teaching of mathematics (Cooney.
1994; Thompson, 1992). In terms of the use of technology, we need to be aware
that the purposes for which the computers are used. the software used, the ratio of
students to computers, the location of the computers. available time, and the cur-
riculum are all likely to influence these beliefs (Kaput, 1992; Schofield & Verban,
1988). Our longitudinal study investigated the beliefs that preservice secondary
mathematics teachers held toward technology and its use in the secondary math-
ematics classroom. Accordingly, we focused on the following questions:

What beliefs did the preservice teachers hold about the use of tech-
nology?

How are the preservice teachers' beliefs about technology structured'?

How did their belk fs seem to promote or impede their use of tech-
nology?

We plan to continue working with these teachers into thcir first year of teaching.
One way of conceptualizing belief structures is through the work of Green

(1971). Green's theory on beliefs allowed us to consider not only what beliefs
teachers held, but also the way in which those beliefs were structured. We were
concerned with many dimensions of the belief structure. How the beliefs were
held could be discussed through the use of quasi-logically held primary and de-
rivative beliefs. The strength at which the beliefs were held could be considered
through the use of psychologically central and peripheral beliefs. The reasons for

'RADIATE (Research and Development Initiatives Applied to Teacher Educa-
tion) is directed by Thomas J. Cooney and Patricia S. Wilson and is funded by the
National Science Foundation (DUE9254475) and the Georgia Research Alliance.
Any opinions or conclusions expressed herein are those of the author and do not
necessarily represent positions of thc funding agencies.
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holding these beliefs could be determined by considering whether the beliefs were
held evidentially or nonevidentially.

Primary beliefs form the basis for derivative beliefs. There is a quasi-logical
relation between primary and derivative beliefs, though there may be no empirical
basis for the primary belief itself. In the absence of empirical evidence, the pri-
mary belief may be based on proclamations from authority. For example, if a
person held a primary belief that he would use technology in his teaching, perhaps
only because the NCTM Standards promote this, then a derivative belief would be
that he would be willing to use graphing calculators, though the commitment to
use such calculators may be questionable. Psychologically central beliefs are those
which are held very strongly. These beliefs arc less open to rational criticism or
change compared to psychologically peripheral beliefs which are more open to
examination and possible change. Evidentially held beliefs are those that are held
with regard to evidence. They arc beliefs that may change in light of further evi-
dence. Nonevidentially held beliefs cannot he changed by the introduction of
evidence. They are those beliefs which when challenged cause a person to re-
spond. "Don't bother me with facts. I have made up my mind" (Green, 1971, p.
48).

Methods

Over the course of a four quarter sequence in secondary mathematics educa-
tion we studied the beliefs of Christine and Liz, two of 15 participants in the Re-
search and Development Initiatives Applied to Teacher Education (RADIATE)
project. The four quarter sequence consisted of two courses in mathematics edu-
cation, student teaching. and a post student teaching seminar. All 15 of the partici-
pants were followed, but for the purpose of this study wc chose to focus on Chris-
tine and Liz. They were chosen because of their willingness to share their thoughts
and ideas.

Data for this study consisted of an initial survey that involved mathematical
tasks and questions about the teaching and learning of mathematics; three inter-
views during the first quarter. two interviews during the second quarter, one for-
mal observation and interview during student teaching, and three interviews, one
of which was a card sort interview, during the post student teaching seminar (all of
the interviews ranged from 45 to 90 minutes); four exams administered during the
first two quarters; weekly journals in which the participants were asked to respond
to questions related to course activities; and observations of their work on campus
as well as their field experiences.

Analysis of Beliefs

Through experiences in the mathematics education courses both Christine and
Liz were exposed to situations where graphing calculators and computers were
used regularly as investigative tools. These experiences involved the use of tech-
nology as an integrated approach to learning mathematics. During the first math-
ematics education course the students I.vere able to spend time in a computer lab.



One activity involved the use of Algebra Xpresser, a graphing program. Liz ex-
plained,

We graphed y = x then we graphed y = ax Then we compared
the graphs. It took a lot of time, hut it helped me to see the
effects of each part of the function. (Journal, 5/12/94)

The srxond mathematics education course was taught in an enhanced classroom
which contained 17 Power Macintosh computers. During the course of the activi-
ties the students could turn their chairs so they would be at a computer. It was a
powerful situation especially when the students cciild move between using tech-
nology and using a paper and pencil. We hoped that wc were creating an atmo-
sphere where technology was a tool to be used in an interactive process of learning
mathematics.

As we began to analyze the beliefs of Christine and Liz. it was clear that as
they became proficient in and confident toward their use of technology, they were
forming similar beliefs. One of these beliefs was that their success with technol-
ogy resulted from the fact that they already knew the mathematics involved in the
activity. Thus it was their mathematical knowledge that helped them understand
the use of technology, hence the technology was simply "icing on the cake." Both
Christine and Liz held this belief as primary in the sense that it drove other beliefs,
and further, this belief was psychologically peripheral. It was also evidentially
held and was open to rational criticism and possibly change in light of new evi-
dence. For example, during a unit on transformational geometry. Liz had an expe-
rience which provided an opportunity for her to examine her belief.

Throughout the week, I learned to use my available materials
(computers, MIRAs, paper. etc.) and try to visualize the trans-
formations of a figure. .. I never knew that formulas stood be-
hind each of these transformations. I think it helped to fist work
on the computer and experience the transformations, and then
discover how the computer followed our commands. (Journal,
I 1(4/94)

Her bc lief that success with technology comes after the mathematical knowledge
was a :quired was peripheral and amenable to change. She was willing to consider
a new belief which was contradictory to her primary belief. Though this episode
challenged her belief, the evidence was not significant enough to cause her belief
to change. Perhaps more such challenging episodes would promote a change.

Bo ) Christine and Liz extended this primary belief of a prerequisite math-
einatic;.i knowledge to many derivative beliefs. One of these derivative oeliefs
was that once the mathematical knowledge. "paper and pencil skill", as thi- both
called it, was obtained, then and only then could technology he used for i ther
mathematical investigation. The graphing calculator or computer could he used,
as Liz explains, to "speed up the busy work" so the teacher "can get to the real gut
of the lesson" (Interview, 5/24/94). Christine added.
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so. if let's say 1 had an algebra 3 trig class, and 1 knew that they
had learned or were supposed to have gotten something and we
reviewed, then we could go on into the computer looking at
graphs and trig functions and things like that. (Interview, 5/17/

94)

Christine extended this belief about a prerequisite knowledge of mathematics

to include other derivative beliefs. For example, she held a belief that technology

is to be used only in the upper level classes.

If you have a class that has number one a problem with getting it

on paper...you might run into some problems...If I was trying
to teach functions [in an algebra 3 or trigonometry classi I would
love to have a computer in my classroom. But if was teaching

general math and...1 was teaching basic skills and what you're
going to need to graduate...1 would probably do things that were

outside...[likel balancing a checkbook. (Interview, 5/17/95)

Liz extended this belief of a prerequisite knowledge of mathematics to de-

rivative beliefs which were different from those of ( liristine. Liz was concerned

with her students using the calculator or computer as a crutch.

[I would use] computers maybe once every two weeks...I don't
think 1 would rely on it and I don't think I would want the kids to

rely on it because...I would want them to understand it. (Inter-

view, 5/24/94)

Later she stated that the students:

Trust the calculator way more than their confidence...cause they

haven't been taught it [mathematics] without the calculator. (In-

terview. 5/30/95)

In addition to sharing the primary belief of prerequisite mathematical knowl-

edge, both Christine and Liz shared a belief that they would use technology in

their teaching. This belief tended toward psychologically central. It was a di Tiva-

tive belief which was based on their primary beliefs of teaching. Throughout their

field experience it became apparent that this belief had an entirely different mean-

ing for each of them.
Christine saw technology as an alternative method of teaching. This stemmed

from Christine's primary and psychologically central belief that she wanted to

reach every student and. in order to do this. alternative methods of teaching needed

to be used.

It Itechnologyl is a different way to teach. It's a different way

that a student tnight understand something. Somebody might

not get it hEking at it on the overhead. ..but if they werc put in
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front of a computer maybe they'd have a whole lot to say. (Card
Sort Interview, 5/30/95)

Christine's field experience in the second mathematics education course offered
an opportunity to use technology with an algebra 3 class that was currently work-- ing on the law of sines. At first she chose not to use technology.

I felt like we had so much we needed to cover that any struc-
tured use of technology would be a hindrance. (Journal, 11/11/
94)

Once she was "coerced to use something" she realized that:

Not only were our students given an opportunity through us, but
they also benefited from the exploration of right triangles on
GSP. (Journal, 11/11/94)

With such positive experiences such as this, it seemed that Christine would use
technology in her student teaching.

Her student teaching took place in a small city high school with a traditional
teacher who, in Christine's words,

Doesn't have a clue about technology, but she's really excited
about using it. (Interview, 11/29/94)

Christine had possession of a powerbook and an overhead projection panel, but
she rarely used them. Most of her classes were introductory geometry with the
exception of one algebra 2 class. On the surface it seemed as though her belief in
using technology was in conflict with the fact that she did not use technology in
her student teaching. In fact, a deeper analysis revealed that her beliefs were not in
conflict. She believed technology to be an alternative method of teaching, so she
replaced it with other alternative methods such as group work, manipulatives, and
peer teaching.

Christine also believed that using technology in her classroom would give
students much needed skills since "our world is becoming more of a technological
focus in general" (Card Sort Interview, 5/30195). It is interesting to note that this
belief was contradictory to her belief that technology was to be used only in the
upper level classes. One might wonder, if our world is becoming technological
and it is important to terch these skills, then why should we only use technology in
the upper level courses? For Christine, the answer to this question may be rooted
in the belief she held about a prerequisite mathematical knowledge. Perhaps the
lower level students have not yet acquired that knowledge and therefore using
technology would not be worthwhile.

Liz, on the oth( r hand, was primarily concerned with using technology as a
demonstrative tool. Liz's primary belief was that the role of the teacher was that of
an authority figure. She believed that her tudents should be exploring mathemat-
ics with technology, but at the same time she saw her role as controlling the direc-
tion and substance of the activity. Her teaching was basically teacher-centered in
nature. She was not ready to give up or even share the authority in thc classroom.
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Liz's student teaching took place in a large suburban high scho% 1 with a teacher
who was well versed in computerS and computer software. The classroom itself
had only one computer with a television monitor but there was a lab directly across
the hallway that contained 15 Macintosh and 15 IBM computers. Also, the stu-
dents were familiar with the TI graphing calculators since there was a classrcoin
set that was available daily. Throughout her student teaching Liz constantly used
technology in a very structured, demonstrative way. When she was encouraged by
her cooperating teacher to let the students explore on their own, she was frustrated.
She wanted to be the one to give them guidance. Nevertheless, she heeded the
advice of her cooperating teacher, even if reluctantly. At the end of the lesson she
felt that it had been unsuccessful and next time she would be sure to give the
students more direction (Interview, 4/20/95). In another student teaching episode,
a student who was absent the previous day was asking about the assignment. Liz
responded, "It's real easy, the calculator will do it all for you." Liz then handed a
piece of paper to the student and stated, that "[the handout] is to tell you all that
you need to put in the calculator" (Student Teaching Observation, 2/23/95). It was
a summary sheet of all the keystrokes. It is interesting to note that even though Liz
had access to computers and graphing calculators on a daily basis, she used them
only after the students had learned the mathematics and even then she would tell
the students what they needed to be doing. On a positive note. she did use them!

Conclusion

Green's (1971) theory on beliefs has given us a framework to examine thc
belief structures of these preservice teachers. Analyzing their belief structures has
helped us to determine how and when these teachers would use technology in their
classrooms. For example, Christine's belief that she would only use technology in
the upper level classes was derived from the primary belief that success in technol-
ogy resulted from a prerequisite knowledge of mathematics. In order to challenge
Christine's belief that technology was to be used only in the upper level classes,
we could challenge her belief of a prerequisite mathematical knowledge. Since
this belief was peripheral, it would be open to examination. This in turn may cause
her to examine her belief of technology in the upper level classes. With Liz., her
belief that she needed to provide .direction in the usc of technology was derived
from two primary beliefs-success in technology resulted from a prerequisite knowl-
edge of mathematics and the role of the teacher is onc of authority. To challenge
Liz's belief that she needed to provide direction, it might be beneficial to challenge
her belief that success in technology resulted from a prerequisite knowledge of
mathematics. Her belief that thc teacher's role is one of authority is centrally held
and is therefore less open to rational criticism than her belief of a prerequisite
mathematics.

Awareness of these preservice teacher's belief structures has given us insight
into possible changes in our preservice secondary mathematics education program.
As teacher educators, we need to be aware of our prescrvicc teacher's beliefs and
we need to offer opportunities to challenge those beliefs. We intend to continue
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following both Christine and Liz into their first year of teaching to determine if

their present belief structures about technology change and if so, what caused the

change. Through continuation with the RADIATE project and others like it, we

hope to continue to gain an understanding of the beliefs of preservice teachers as

they continue through the mathematicseducation program and into their first year

of teaching.
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TWO PROSPECTIVE TEACHERS STRUGGLE WITH THE
TEACHING-IS-NOT-TELLING DILEMMA

Randolph A. Philipp, San Diego State University

This study is onc of a set designed to investigate how preservice teachers' understanding of
mathematics and views of teaching are affected by working with children. In the study, two
preservice secondary school teachers tutored an eleventh grade student over a period of two
sessions. The student teachers were surprised that the student was not considering fractions
as involving equal areas, and they spent 45 minutes unsuccessfully attempting to induce
disequilibrium in the student. The author viewed the videotape with the student teachers,
during which time it became clear that the student teachers were struggling with the notion
that teaching means not telling students anything. Implications of this view are discussed.

Lampert (1985) proposed a provocative view of teaching when she sug-
gested that the teacher manages dilemmas. These dilemmas differ from problems
because they do not lend themselves to solutions, and therefore, rather than being
viewed as obstacles to be eliminated, dilemmas instead should be viewed as en-
demic conflicts that teachers learn to work with and even find useful (Lampert.
1985). Four examples of dilemmas faced by teachers attempting to transform the
way they teach mathematics include "telling" students vs. students constructing
knowledge; fostering unconventional and meaningful strategies vs. being social-
ized into the broader mathematical community: achieving immediate success vs.
long term development qf ideas: and fostering diversity vs. having convergence of
ideas as a goal (Hard et al.. 1995). This paper will address the first dilemma listed
above, which Romagnano (1994) referred to as the ask them or tell them dilemma.
Romagnano (1994) described an incident whereby a lesson he taught to a ninth
grade general mathematics class did not go as well as the same lesson taught by a
first-year teacher using a more direct teaching approach. Romagnano wondered
where one could draw the line with respect to the ask them or tell them dilemma:

Perhaps the most subtle and important aspect of this black-and-
white dilemma is the apparent absence of any shades of gray.
Can you tell the students some things so you can move on to the
more important goak of the lesson? Is it possible to wean stu-
dents away from being told what to do all the time by telling
them less and less and asking more and more as the school year
progresses? Or does any telling to students of this age reinforce
their expectation that thcy will be told what to do? (Romagnano,
1994, p. 101)

This paper will highlight this dilemma by sharing the difficulty experienced
by two student teachers who had adopted the view that teaching means not telling.

Method

Louis and Ethan were two prospective secondary school mathematics teach-
ers who undertook an assignment that called for them to meet with a student at
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least two times and work with the student on a mathematical topic of their choos-
ing. They were to assess the student and then, based on the assessment, plan a
follow-up lesson that they might teach to the student. The sessions were video-
taped. Louis and Ethan worked with an I Ith grade student named Donald, an
average student in Ethan's geometry class. Louis and Ethan chose to assess Donald's
understanding of division of fractions, because it was only in the previous semester's
methods course that they themselves had come to conceptually understand this
idea.

Following the sessions with Donald, Louis and Ethan entered a student-teach-
ing seminar excited and eager to share with their peers what they had teamed.
During their interview with Donald on the first day, Louis and Ethan planned on
developing the idea of fraction division by working up to asking how this pic-

tur
.4,000WI/ could be used to show why I+ 3/5 = 5/3. To develop this idea, Louis and

Ethan first asked Donald to draw a picture of fifths, which Donald drew:

Donald explained that he could draw fifths, but not equal fifths. Louis and Ethan
were quite surprised by Donald's response, and they began their second session by
again asking Donald to draw fifths, which Donald drew the same way he had the
previous day. Louis and Ethan had expected that, and they had altered their plan
so that they might work with thirds, which they expected Donald to be able to

construct. When asked to draw one-third. Donald drew: (6. The student *.each-

ers spent the duration of the tutoring session, over 45 minutes, trying to induce
disequilibrium in the student so that he would come to recognize that the thirds
must be equal. At one point they asked the student to draw one-fourth, and he

drew: 5). When they asked Donald how was it that the shaded region in the

first circle was one-third whereas the same sized shaded region in the second circle
was one-fourth, he responded that in the first case the region was one out of three
whereas in the second case it was one out of four. Ethan and Louis expressed
surprise that an average eleventh grade student would think in this manner. They
also explained that they found the experience to be difficult because they did not
want to "tell" Donald. Intrigued by what Louis and Ethan seemed to have learned
from their experience, I invited them to view their videotape with inc. Drior to the
meeting. I arranged to have the videotape transcribed and I sent Lou;.. Ind Ethan
each one copy of the transcription. I then met with Louis and Ethan to discuss the
videotape. This session was also videotaped, and the videotape was transcribed
and served as the primary source of data for this report.

Results

During the session it became clear that not only had the student teachers read
the 26-page transcript of their sessions with Donald. but they talked to each other

on the telephone about it. Their session with me began with me asking the student
teachers to comment on the transcript. They explained their surprise that Donald
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did not draw equal fifths or thirds. They said that although they knew where they
wanted to go with Donald, they were not sure how to get him there. Louis said.
"There was still this mystical magic land we wanted him to get to you know, the
equal parts."

After Louis and Ethan shared their thoughts about the transcript, 1 asked them
whether there were portions of the tape they wanted to watch. Louis responded.
"No, not really. (but) there are portions I'd rather skip." He and Ethan described
how they were disappointed with how much they thought they had led Donald. As
Ethan and Louis reflected upon the "telling" they did with Ethan, they wondered
how much telling they did in their own classrooms:

E: I just wonder how much I do that in my own class.

And I do it in my class, too Now since doing this...

R: Is this bad to do?

E: I think sometimes it is. And sometimes..

R: What are the implications for doing it, and what are the implications for
not doing it?

E: The implications for doing it is that you're telling the student maybe
what to think. And you're perhaps telling them, maybe not literally, hut
figuratively telling them that their thinking should be the same as yours.

I think maybe you're also telling them they don't have to think

E: Yeah. You're also telling them, "Well, you're going to give us the an-
swer anyway.-

Ethan and Louis spent 40 minutes trying to induce disequilibrium in Donald. Fol-
lowing is a portion of their attempt, transcribed from their interview with Donald.
It begins with them asking Donald to draw one-third.

Donald draws:

E. That's 1/3? Are all those pieces equal'?

No

So is that a third')

1) I guess (Inaudible)

You guess? .. Don't he nervous, ss e' Te trying to figure out how y OW re
thinking So you're saying a third because it's one of three pieces?
(Donald agrees) This third right there-- if I take a third of something, it
doesn't matter what it is, whether it's a pie or something else, it's lust
one piece out of three'?
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D: Yeah.

L: Do the pieces have to be equal sizes?

D: Yes. No.

L: What happens if we have three 3rds?

D: All three of them make I.

L: Okay so, they don't actually have to be exactly the same size as long as

three of them add up to the whole.

(Pause)

E: When you were dividing it (the circle) into half, did you have two equal
halves?

D: When I divided it in haif?

Yeah. When you divided it in half the first timethose two pieces. So
each of those pieces represented what?

One half of the whole.

E: So both of them were equal"

D: Yeah.

E: Okay. What about here (Donald's representation of 1/3)? You divided
it into 3 parts. Are the 3 parts equal?

D: No.

E: So is that one-third of the whole?

D: I guess not.

L: Carl you show me one-fourth?

Donald adds a line to his previous drawing: 14,

L: So now the same thing you called a third is a fourth now. Does that
make sense to you?

I): I added another piece.

You added another piece.

Even though Ethan and Louis understood that Donald was seeing one-third as
one-out-of-three, they continued to struggle 'vith why their attempts at inducing
disequilibrium failed. I finally suggested we role play, with one of them playing
the role of Donak

R: Okay, let's do it again. "So both of them were equal; they were halves."
Okay" "You divided the two pieces in a whole. Were they both equal'?"
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E: (as Donald) Yes.

R: What about here-4? You divided Into three pazts. Are the three

parts equal? How much is this?"

E: (as Donald) One third.

R: Why did you answer one third? Now we're popping out lof the roll
playing]. Why do you think that he would have answered that that's
one third?

E: Because it's one out of three pieces. I see what you're talking about.

L: I see what you're saying now. Yeah. To us there is a connection be-
tween three equal parts and a third, but not to Donald!

To him... We have to get inside his brain, so to speak, and try to ques-
tion it so that we don't give away that maybe he's wrong or he's right....

L: That's interesting. Even talking as much as we did, we didn't even
come close to seeing that one.

Ethan and Louis talked about how they felt they had been going around in circles.
I suggested that at times the best thing to do is to back off:

R: Sometimes the best thing to do is just to back up ten yards and punt
when you're in a posiuon like this, because you're really sort of stuck.
You don't really know where to go with it.

E: And I really didn't know where I was going with this.

L: We're not very adept at puntwg yet.

R: I realize that.

Punting is a hard thing to do ..

E We go for it on fourth down still.

Fourth and ten, we're runningup the middle!

E. Up the middle (laughing)

That's gocld. That's funny

L.: No, it's not

No, it's not funny

Well, look You know, one of the points of being here is io sit back and
reflect upon stuff that you probabh don't often have a chalice to reflect
upon.

E: And this is only five minutes into the tape. And our frustration level...
If you could hase been in that roomand you know Louis and I and
our mannerisms--you could tell just by looking at us that we were
frustrated.
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I asked them to describe the source of their frustration. Ethan responded, "The
frustration was because we didn't know what to do next. We didn't know what to
do with his responses. Later during the discussion they again came back to the
difficulty they had helping Donald see that thirds were supposed to be equal.

L: Uggh! It's frustrating because / see this, and I want him to see it.

R: What would you like to tell him right now?

I don't know.

R: Forget about all this constructivist stuff, and my methods class. Forget
about all the stuff that's in your head. What would you like to tell him
right now?

L: Damn you, child. Thirds are equal!

R: So what would happen if you told him that?

L: I don't know.

E: I don't think he wculd necessarily take that to heart.

L: I don't know.

R: Pat and I talked about this quite a bit. And he suggested that what
you're trying to do is have him discover a convention.

L: Ouch! I didn't think of that.

E: That's exactly what it is. Ahh, man. That's exactly what it is.

Do you want to slap me now or later?

E: Slap me. man! I said they had to be equal. That's the convention, right
there. His thirds don't have to be equal.

L: Ohhhh, man! But why are thirds equal? Why did we decide that they
should be equal? Aah. Okay. Excuse me for a moment.

E: Can we hide our faces?

Note how fragile Louis and Ethan's understanding was. They were grasping
for straws, ready to jump on any suggestions I made. They were stuck, with no
idea how to proceed. Albert Einstein once said, "The world we have made as a
result of the level of thinking we have done thus far creates problems we can not
solve at the same level as that which they were created at." Ethan and Louis chose
not to tell Donald, but in so choosing, they were left with a problem they could not
solve. How could they facilitate Donald seeing what they wanted him to see?

Discussion

Was the previous situation an artificial result of not wanting to "tell" in order
to be "constructivists"? Is the condition of equal area a convention, in the sense of
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an arbitrarily socially-agreed-upon condition? Should Louis and Ethan have sim-
ply told Donald that the fractional parts must have the same area?

My answer to all these questions is yes and no. On the one hand, yes. Louis
and Ethan felt that telling Donald how to split the circle into equal areas would be
inconsistent with a constructivist approach, a thesis that can arguably be consid-
ered naive and impractical; but, on the other hand, by restraining themselves from
explaining how-to-do-it they created an opportunity to be surprised by how Donald
conceptualized the idea of "thirds." This was not only a source of insights for
Donald's view of fractional splits, but also for Louis' and Ethan's own questioning
of the nature of fractional quantities.

It was important to the student teachers that they not tell Donald the "solu-
tion," and yet. at certain points, it might have been useful to talk with Donald
about the "convention." Donald's ideas could have provided a background of rel-
evance to the "convention." That is, by noticing how the convention is different
from what he had done, the whole conversation might have made the issue more
salient for Donald.

Is the condition of equal area a convention, in the sense of an arbitrarily so-
cially-agreed-upon condition? Yes and no. Taken in isolation it can be thought of
as a convention, but from a broader perspective it is not just a convention. For
example, 1/2+1/2 would not necessarily be equal to one if each 1/2 could be a
"different" half. So, should we tell the student that this is a convention? Well,
slmetimes. Telling Donald the condition of equal areas might have been useful to
start hiin on a shared-upon activity. But there is something shallow in just thinking
of it as an arbitrary norm.

Whether something is a convention or not is context dependent. For someone
viewing fractions as ratios, equal areas may appear to be a convention. However,
for Louis am. Ethan, the condition that equal fractions must involve equal areas
was an unquestioned principle of mathematics. Which raises another dilemma:
Just when and how do conventions become principles, and for whom? At what
point should teachers tell students conventions? There are no general rules for this.
Furthermore, if Louis and Ethan decide when it would have been appropriate to
tell Donald. that does not prescribe when "to tell" another student.

The current reform movement calls for teachers to move from the role of the
"sage on the stage" to the "guide on the side." Romagnano (1994) suggests that
the dilemma introduced here is black-or-white, with no shades of gray. For some,
this black-or-white view is reflected in the notion that "constructivism means never
having to tell anyone anything." The study reported in this paper suggests that
there are shades of gray.

In order to help teachers work with these shades of gray, we must provide
them ways to think about such questions as: Are there some things teachers can
tell students? Are there some things teachers must tell students? What are the
implications for either telling or not telling in each of these cases'? What is the
difference between the roles played by convention and principle in mathematics,
and how do each of these play out in a classroom committed to constructivist
principles'? If it is true that there is some knowledge students can not be expected
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to construct (Williams & Baxter, 1994), then which knowledge is constructible by
whom, and how do teachers provide supportive learning environments?
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THE FOCUS OF PRESERVICE SECONDARY SCHOOL
MATHEMATICS TEACHERS' OBSERVATIONS OF

CLASSROOM MATHEMATICS INSTRUCTION

Laura R. Van Zoest, Western Michigan UniVersity

As part of their teacher education program. prospective secondary school
mathematics teachers spend a significant amount of time observing classroom
mathematics instruction. The purpose of this study was to investigate the focus of
these observations.

The participants in this study were three volunteer preservice secondary school
mathematics teachers. They were enrolled in coPrses towards the beginning of
their teacher education program. prior to any subject-specific methods course. The
time the participants spent in this study was credited towards the observational
clock-hours required by their courses and the state board of certification.

The researcher accompanied each preserv ice teacher to observations of two
secondary school mathematics classes. Immediately after each session each par-
ticipant was interviewed for appmximately fifty-five minutes about what he or she
had noticed while observing. During the interviews the participants were encour-
aged to "think out loud" about their observations. Questions building on the
participant's previous comments and of an open-ended nature were asked only
when a preservice teacher seemed to have run out of things to talk about. Tran-
scripts of the tape-recorded interviews were analyzed using grounded theory pro-
cedures and techniques.

The preservice teachers observations and suggestions for improvement were
filtered through their sometimes contradictory beliefs about mathematics teaching
and learning. These beliefs, in turn, were affected by their experiences as both
students and teachers. The experiences could be vicarious as well as actual and
included such things as being an undergraduate teaching assistant, tutoring, imag-
ing their future, and empathy with other teachers. The focus of the preservice teach-
ers' observations fell into five major categories. In decreasing order of time and
attention that the preservice teachers allocated to them, thQse categories were: 1)

classroom management strategies, 2) instructional strategic', 3) teaching style.
4) student behaviors, and 5) mathematics content.

The fact thit the preservice teachers filtered their observations through their
past experienc, , and beliefs suggests that observations may reinforce the status
quo. In a timc of major reform in mathematics education, this raises questions
about the effectiveness of the observation component of early field experience.
The preservice teachers' failure to focus on the mathematics is especially trou-
bling as the reforms require teachers to have a flexible and far-reaching grasp of
the mathematics they teach. Further research is needed to assess various means of
increasing preservice teachers' concentration on the mathematics in the mathematics
lessons.
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PERSONALITY TYPE AS A FACTOR IN THE MATHEMATICS
ANXIETY OF PRESERVICE ELEMENTARY TEACHERS

Oakley D. Hadfield, New Mexico State University

Numerous research studies have indicated that a large percentage Of elemen-
tary school teachers possess a level of mathematics anxiety that interferes with
their teaching effectiveness. Many mathematics educators suggest that uncom-
fortable and unsuccessful experiences with mathematics during the teachers' pre-vious schooling is the chief cause. Others suggest that the majority of elementaryteachers are simply not cognitively inclined towards analytical thinking. Their
cognitive styles (or even personality types) may consist of factors that contribute
more interest and skill in global thinking and interpersonal relations. The purpose
of this study was to investigate the possible relationship of personality type, as
measured by the Myers-Briggs 7twe Indicator IMBTII, to mathematics anxiety
among preservice elementary teachers.

The MBTI is comprised of four pairs of dichotomous personality categories:
introversion-extroversion, sensing-intuition, thinking-feeling, and judgment-per-
ception. The combined scores of the four subscales result in the delineation of 16
specific personality types. Each of the four subscales was tested for possible rela-
tionship to scores on the Revised Mathematics Anxiety Rating Scale. Main effects
were found on the "thinking-fei:ling" scale only, with those scoring at or near the"feeling" end of the continuum registering significantly higher levels of math-
emafrcs anxiety. This implies that those elementary teachers who are more con-
cerned with the human as opposed to the technical aspects of problems (as is the
case with two-thirds of the sample in this study) will be more predisposed to math-
ematics anxiety.

Two first-order interactions were also indicated. Those subjects who relied
more on their senses to establish meaning in the world ("sensing types-) tended to
be more affected by the "thinking-feeling" variable than those who relied more on
meanings and insights ("intuitive types"). Also, those scoring higher on the "ex-
trovert" subscale tended to be more influenced by the "thinking-feeling" variable
than were the "introverts". These interactions indicate that if a "feeling" personal-
ity type were to be an "extrovert" or "sensing" type (or both), it could perhaps
compound any mathematics anxiety problem that may be present. These resulth
agree with the additional finding that there was a prevalence of high levels of
mathematics anxiety among 4 of the specific 16 personality types within the sample
of 206 preservice elementary teachers. The most math anxious groups were pri-
marily combinations of "feeling", "extrovert", and "sensing" types.

The results suggest that perhaps educators should accept the theory that a
majority of elementary teachers are of the "feeling" personality type. Consequently,
they are not interested in focusing on the underlying concepts involved in teaching
mathematics from a constructivist approach. The most popular solution to this
problem would be to continue to improve the quantity and effectiveness of profes-
sional development opportunities for elementary teachers in the arca of matheinat-
ics. An alternative and probably more effective solution would be to employ and
rely upon mathematics specialists in the elementary grades to administer the bulk
of the conceptual learning experiences of children.
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PRE-SERVICE TEACHERS' ATTITUDES TOWARD FEMALES AND

MALES, AND THEIR BELIEFS ABOUT MATHEMATICS

Victoria Boller La Berge, Northern Illinois University

Compared with males, females have experienced lower levels of achievement

and participation in mathematics and related fields. Among the factors associated

with differences in students' performances in mathematics are teachers' attitudes

and beliefs. This study examined pre-scrvice teachers' [PST] attitudes with regard

to gender roles and mathematics.
Data for this study were collected using a five-part questionnaire. Ninety-two

PST, representing certification levels from elementary to secondary, participated

in the study. In the first section of the questionnaire, the PST were given a list of

adjectives and were asked to indicate whether each adjective was associated with

males, females, or both. The PST were given the same list of adjectives in the third

section of the questionnaire; this time they were asked to indicate whether or not

they associated the adjectives with mathematicians.
For the second portion of the questionnaire the PST used a five part Liken-

type scale to respond to a series of statements relating to the roles of females and

males. Responses for each item were scored according to the idea expressed in the

statement. A higher score on this portion of the questionnaire indicated a more

egalitarian attitude concerning acceptable behaviors for females and males. The

fourth section of the questionnaire was similar in construction and scoring method

to the second, except that the items included were related to mathematics and not

gender roles. A more positive view of mathematics was reflected by a higher score

on this section. The final section of the survey instrument collected demographic

data from the PST.
AnaJysis of the data indicated the PST held generally egalitarian attitudes

towards roles of females and males (mean = 4.2900), and generally positive (mean

= 3.5931) views of mathematics. "Male" adjectives, i.e., those associated with

males more often than with females, tended to be associated with mathematicians

to a greater extent than "female" adjectives. No "female" adjectives were in-

cluded among those most frequently selectiA by the PST as associated with math-

ematicians. The correlation between the PST's mean scores On the second and

fourth sections of the questionnaire, r 0.2673, was significant (t = 2.587, a =

0.05); PST with more egalitarian attitudes toward gender roles also tended to hold

more positive views of mathematics.
Responses to specific items from the questionnaire will be presented and the

implications of these results relative to teacher development and students' math-

ematical understandings will bc discussed.
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TRANSITION FROM TRAMTIONAL HIGH SCHOOL
MATHEMATICS TEACHERS TO INNOVATIVE

MULTI-DISCIPLINARY TEACHERS

Kenneth L. Shaw, Florida State University
David Ashley, Florida State University

Purpose

The purpose of the paper is to share some of the psychological components of
how two self-proclaimed. traditional high school mathematics teachers have modi-
fied their beliefs and practices as a result of teaming with two science teachers,
two language arts teachers, and a technology/vocational teacher. Our aim was to
explore and understand the internal struggles thc mathematics teachers were expe-
riencing.

Setting

The team of seven teachers has established a school within a school, called
the Master Academy, where 9th and 10th graders form one group and 1 lth and
12th graders form another. The purpose of the Master Academy is assisting the
"average- students to better understand the world around them by having them
experience a dynamic interdisciplinary approach to learning.

Methods

In-depth interviews with the mathematics teachers over the colliNe, of 1.5 years
accompanied with classroom observations were analyzed to determine what fac-
tors sustained or constrained their daily routines. Extensive observations and in-
terviews during a one-week planning session in the summer of 1995 were triangu-
lated with the preliminary findings of classroom observations and teacher inter-
views.

Summary Of Results

Both teachers strongly believe that students learn best when they arc "doing-
and that by integrating the curriculum, they enrich the students' learning. The
internal struggles have come from many sources including: (a) their colleagues in
the mathematics department who feel they are not teaching to the state standards;
(b) standardized test scores which they felt would be low, and thus used to evalu-
ate them negatively: (e) their lack of knowledge about mathematics applications;
and (d) their customary routine of teaching by lecturing. These struggles were
somewhat offset by the county's enthusiasm for thcir project, and their learning as
a team of interdisciplinary teachers. A more detailed paper will be shared after the
presentation.
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DIFFERENCES IN THE CALCULATOR TASKS
ASSIGNED IN A VOCATIONAL PREPARATORY
AND IN A COLLEGE PREPARATORY CULTURE

Todd M. Johnson, Illinois State University

In this study. differences in the calculator tasks that a teacher assigned in Tech-
nical Mathematics and Precalculus were investigated. Differences were investi-
gated in relation to the teacher's conceptions of his roles in cach course. His roles
were described in terms of his goals for himself in each course, his conceptions of
the expectations of individuals and institutions he identified as important, and his
conceptions of the situations in which he performed his roses. Symbolic
interactionism was used as the conceptual framework to integrate key concepts
and data gathering procedures used in this study.

Method

Interviewing the teacher, collecting artifacts, and observing classes were the
primary methods used to collect data. Interviews were conducted to: (a) collect
i Ft^ teacher's descriptive accounts concerning how and why he used calculators in
his classes and (b) confirm conceptual categories generated from data collected
during the study. Artifacts collected during the study included calculator tasks
assigned by the teacher and documents that represented the expectations of indi-
viduals and institutions the teacher identified as important. Classroom observa-
tions focused on calculator tasks assigned by the teacher. Data were analyzed
throughout the study. The analyses involved the classification and organization of
data to identify categories to describe the teacher's conceptions of his roles and
calculator tasks he assigned, descriptors for these categories, examples of elements
of these categories, and relationships among categories. After a category was iden-
tified, existing data were re-examined and additional data were collected that might
indicate the usefulness of the category.

Results

The calculator tasks assigned in Technical Mathematics and Precalculus dif-
fered in terms of: the purposes of using calculators, the types of calculators avail-
able. how often calculator tasks were assigned, the physical locations students
were to work on tasks, the grouping of students during tasks, and the mathematical
topics of tasks. These differences were linked to the social norm that the teacher
should prepare students for post-secondary education and the different expecta-
tions of a university and a technical college.
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THE INFLUENCE OF A PROBLEM-SOLVING APPROACH TO
TEACHING MATHEMATICS ON PRESERVICE

TEACHERS' MATHEMATICAL BELIEFS

Charles E. Emenaker, University Of Cincinnati

This study examines the impact that TI 34, a problem-solving based math-
ematics content course for preservice elementary education teachers (PSTs), has
on challenging the beliefs PSTs hold with respect to mathematics and themselves
as doers of mathematics. The study also addresses the influence the course has on
challenging the mathematical beliefs of PSTs by achievement level. T104 em-
ploys cooperative learning, alternative assessment, and reflective writing to help
the PSTs develop a conceptually based understanding of mathematics.

The research literature indicates that the beliefs teachers hold with respect to
mathematics have a major influence on their mathematical performance and their
presentation of mathematics in the classroom. These beliefs can be passed on to
students thereby limiting the students' mathematical abilities as well. Improving
student performance requires, in part, improving their mathematical beliefs which
in turn requires helping teachers develop positive mathematical beliefs.

Five specific mathematical beliefs were considered in this study. The beliefs
are step-by-step procedures and are needed to do mathematics (STEP), memoriza-
tion is essential to success in mathematics (MEMORY), only very intelligent people
are able to understand mathematical concepts (UNDERSTAND), there is only one
way to correctly solve any mathematics problem (SEVERAL), and problems tak-
ing more than five to ten minutes to solve arc impossible (TIME). The impact of
the course on these beliefs was studied using both surveys and PST interviews.
The surveys were used to provided insight into the degree to which these beliefs
were influenced while enrolled in T104. The interviews focused on verifying
changes that were identified by the surveys and identifying specific aspects of
T104 that were instrumental in producing these changes.

Statistically significant (p<.01) positive changes were observed for STEP,
MEMORY, UNDERSTAND, and SEVERAL (N = 137). When changes in beliefs
were studied by achievement level, students with a final 2rades of A in T1( 4 showed
statistically significant changes (p.c.Ol ) in STEP. MEMORY, UNDERSTAND, and
SEVERAL. Students with a final grade of B showed statistically significant changes
(p<.01) in STEP. MEMORY, and UNDERSTAND. No statistically significant
changes in beliefs were observed in those groups of students scoring a C, D. or F
for the course. PSTs who were interviewed consistently reported increased confi-
dence in their mathematical abilities as a result of T104. Most of these PSTs also
reported an increased likelihood of using the innovative instructional approaches
from T104 in their own classrooms.
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THE INTERACTION OF PRESERVICE TEACHERS'
MATHEMATICAL BELIEFS AND AN

EARLY FIELD EXPERIENCE

Ronald M. Benbow, Taylor Univers:Ay

Recent research on teachers' instructional practices and on the process of learn-
ing to teach has sometimes focused on the issue of teacher beliefs and conceptions.
Research is still needed to help us better understand how and under what circum-
stances beliefs change and for whom or in what situations mathematical beliefs
will influence behavior. The research in this presentation explores the possibilities
of challenging Preservice teachers' mathematical beliefs through a specifically
designed early field experience intended to encourage both reflective analysis and
instructional skill acquisition. The subjects in this 1-semester study were 25
preservice elementary teachers in a liberal arts university teacher education pro-
gram, who were enrolled in an early field experience connected to a Mathematics
for Teachers course. This experience presented the first opportunity for the PSTs
to plan weekly mathematics lessons, teach in elementary school classrooms, and
evaluate their Own efforts in a systematic manner. The study, utilizing both quan-
titative and qualitative methods, involved collecting data by administering 3 math-
ematical beliefs inventories, observing classroom teaching episodes. analyzing stu-
dents' written lesson plans and reflective evaluation reports, and conducting inter-
views with 8 selected PSTs and their respective supervising classroom teachers.

The theoretical framework of this research was based on the premise that
beliefs and practices are not linear-causal but are more interactive in nature. There-
fore, subjects' beliefs about 1) the nature of mathematics, 2) the learning and teach-
ing of mathematics, and 3) self as a learner/teacher of mathematics. were investi-
gated in terms of their influence in shaping classroom instructional practices hut
also, how classroom experiences may help strengthen or modify those beliefs.

Results indicate that key beliefs do influence choices of content and methods
in instructional settings and that particular aspects of a first teaching experience
have differential effects on beliefs relating to personal teaching efficacy, curricu-
bim content, roles of teacher and student. and appropriate learning tasks. Conclu-
sions from this research include a discussion of various factors relating mathematical
beliefs to classroom practices and suggested guidelines for the structure of early
field experiences in teacher preparation programs.
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INVESTIGATING UNIVERSITY FACULTY MEMBERS' BELIEFS
ABOUT INTEGRATED MATHEMATICS AND SCIENCE IN THE

MARYLAND COLLABORATIVE FOR TEACHER PREPARATION

Mary Ann Huntley, University of Maryland at College Park
Tad Watanabe, Towson State College (Towson, Maryland)

J. Randy McGinnis, University of Maryland at College Park

"The Maryland Collaborative for Teacher Preparation (MCTP) is a statewide
NSF-funded innovative interdisciplinary program to prepare teachers who can pro-
vide exemplary instniction in upper elementary and middle school grades in Mary-
land. These teacher candidates have special course and field experiences in math-
ematics and science content and teaching methods with the goal of making them
exceptionally qualified for teaching mathematics and science in ways that empha-
size the connections between these disciplines.

One facet of research on the MCTP project involves an investigation of uni-
versity faculty members' beliefs about mathematics, science, and the connections
between these disciplines, and how these beliefs are played out in their instruc-
tional practice. This research is consistent with current research on teaching, which
indicates that teachers' beliefs about the discipline(s) they teach affect what and
how they teach (Thompson, 1992; Tobin, Tippins, & Gal lard, 1994). This research
also investigates university faculty members' perceptions of the factors that have
facilitated and the factors that have been barriers in their teaching mathematics
and science in an integrated fashion to the teacher candidates. The term integrated
mathematics and science is ill-defined (Berlin, 1991). To what does integration
referan infusion of content, or an infusion of methods from one discipline into the
other? Furthermore, does teaching integrated mathematics and science necessi-
tate a particular model of instruction? Data has been collected from participating
faculty members across the state in the form of interviews, classroom observa-
tions, and faculty journals. This poster presentation will present preliminary analy-
ses of this data.
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PRESERVICE ELEMENTARY TEACHERS' BELIEFS:
A ROLLER COASTER RIDE

Annette kicks Leitze, Ball State University

This longitudinal study examined preservice elementary teachers' beliefs about
mathematics and mathematics teaching and learning as they progressed through
three required mathematics courses at a mid-sized public university. The five-
point Likert type beliefs inventory used in the study included the following eight
scales:

I can solve time-consuming mathematics problems. (Difficult prob-
lems)

There ar; word problems that cannot be solved with simple, step-by-
step pro.:sedures. (Steps)

Understanding concepts is important in mathematics. (Understand-
ing)

Effort can increase mathematical ability. (Effort)

Mathematics, in general, is useful. (Useful)

The mathematics I'm studying this semester is useful to inc. (Useful
course)

Mathematics is enjoyable to me. (Enjoy)

I am confident that I can teach elementary school mathematics.
(Teaching confidence)

The beliefs inventory was admimstered a' the beginning and end of each of' the
three mathematics courses. Paired sampl.! 1-tests were used to check for changes
in beliefs over the duration of each course: ( I ) a manipulative-based content course
focusing largely on number concepts. (2) a manipulative-based content course fo-
cusing primarily on geometry/measurement concepts. and (3) a mathematics meth-
ods course including a field experience.

The preservice teachers' beliefs exhibited a roller-coaster-like behaviorsome
beliefs oscillating from significant positive changes to significant negative changes
and back to significant positive changes. Beliefs represented by the Useful scale,
for instance, were enhanced during the first content course, deteriorated during the
second content course, and were enhanced again during the methods course ulti-
mately ending up at a level significantly higher than that at which thcy began.
Beliefs represented by the Enjoy scale showed a similar roller coir,ter pattern.

The research reported here was supported in part by a grant from Ball State Uni-
versity. Any opinions expresseir herein arc those of the author and (10 not necessar-
ily reflect the views of Ball State University.



It is particularly worthwhile to mention that significant changes during the
mathematics methods course were found on five of the scales: Useful (p<.01),
Teaching confidence (p<.001), Useful course (p<.0l), Steps, (p<.00I ), and Under-
standing (p<.0l). Each of these changes was in a direction indicating enhanced
beliefs, reversing in part the trend of deteriorating beliefs that began during the
second mathematics content course. While it is comforting to know that the
preservice teachers' beliefs are, overall, enhanced by the time they finish their
three-course sequence, it remains disturbing that their beliefs significantly dete-
riorate during the geometry and measurement course.
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CONTENT KNOWLEDGE, BELIEFS, AND PRACTICES: A
COMPARISON AMONG SIX PRESERVICE TEACHERS

Cheryl A. Lubinski, Illinois State University
Albert D. Otto, Illinois State University

Beverly S. Rich, Illinois State University
Patricia A. Jabeig, Illinois State University

This paper compares the beliefs and practices of six ele..-nentary education majors prior to
and during their senior year clinical and student teaching experiences. Three of these
preservice teachers had the minimum requirement of two mathematics content courses. The
other three were mathematics specialists and had at least six additional courses in math-
ematics. Comparisons are made from data, pre-intervention baseline to post-student teach-
ing, on their teaching practices and on their reported beliefs. Although results from this
comparison suggest that the change profiles of these two groups are different, at the end of
their student teaching experience these two groups are not significantly different in their
teaching practices and in their reported beliefs.

Typically, elementary education majors believe mathematics is a set of rules
and procedures (Ball, 1990; Ball & Wilcox, 1989). The image they have of what
teaching is, influences what they do with their student teaching experience
(Calderhead, 1988). Their methodology involves a "show and tell" approach and
they believe listening to children is an important factor in the learning environ-
ment (Feiman-Nemser. McDiarmid, Melnick, & Parker, 1989). Often, they tend to
teach as they were taught (Ball, 1990; Lappan & Even, 1989). Since teachers'
understanding of mathematics is an integral component of theirknowledge base
for teaching (Ball, 1991), it could be assumed that an increase in mathematics
understanding would have a positive effect on teaching practices. The purpose of
this study was to provide insights into the effect of an increase in mathematical
knowledge on teaching practices by comparing the reported beliefs and observed
practices of elementary K-9 mathematics specialists and non-specialists.

The Project

This study is part of a five-year National Science Foundation grant that is
designed to prepare teachers to base their instructional decisions on research find-
ings about children's mathematical thinking. During the initial phase of the project,
25 experienced K-6 teachers developed learning environments to reflect their per-
ception of teaching mathematics for understanding. This was done in collabora-

The preparation of this paper was supported in part by a grant from the National Science
Foundation (Grant No. 1)UE-9250044) on the "Influences on Preservice Teachers' Instruc
tional Decision Making. Any opinions expressed herein are those of the authors and do not
necessarily reflect the views of the National Science Foundation. We acknowledge the as-
sistance of Deborah Carter and Rosanna Siongco in the data analysis component of this
paper.
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tion with university researchers and involved a four week summer seminar, class-

room visits, and a bi-weekly meeting for one school year. During the second
phase of the project twenty-five K-9 preservice teachers joined the project.In the

summer preceding their senior year. a two week summer seminar was held in which

experienced and preservice teachers collaborated on mathematical tasks. In the
fall semester the preservice teachers were enrolled in the same mathematics meth-

ods class where they had access to the same information and research that the
experienced teachers had had during the previous year. Further, as part of their
clinical experiences the preservice teachers were assigned to observe and teach for

six hours per week in the classrooms of the experienced teachers. For the student

teaching experience during the spring semester, the preserviee teacher was as-
signed to a different grade level with another experienced teacher. During the fall

and spring semesters, both the experienced and preservice teachers attended bi-

weekly meetings conducted by the university staff.

Data Collection

Data collected on the preservice teachers included information from the Perry

Scale. a written belief survey, a belief interview, and pre- and post-intervention

video tapes of model mathematical lessons followed by stimulated recall inter-

views.

Subjects

Three mathematics specialists Barbara, Quincy. and Faith and three non-spe-

cialists Evelyn. Nancy, and Wanda (pseudonyms) were selected for more in-depth

analysis. Barbara and Nancy student taught in a second and first grade classroom.

respectively. Evelyn is a non-traditional student having an undergraduate degree
in psychology. She and Quincy were both placed in fifth grade classrooms. Wanda

experiences great degrees of mathematics anxiety. She and Faith were at the same

school teaching sixth and fifth grade, respectively. Both were in departmentalized

situations and taught mathematics throughout the day. Selection of these six was

based on commonalties in their grade-levels taught for both clinical and student
teaching experiences, of their Perry scale ratings, of their belief survey results, and

among their cooperating teachers.

Findings

The analysis of all data focused on the observed and reported changes of the

preservice teachers with respect to their beliefs, practices, and decision-making

processes before, during, and after the intervention. This is approximately a pe-

riod of one year.
Written Beliefs Survey. The written belief survey was adapted from the

Cognitively Guided Instruction project (Peterson, Fennema. Carpenter & Loef,

1989). A high score indicates a reported belief that learning and teaching deci-

sions need to be based on the consideration of developing students' understand-
ings. Prior to any intervention, the range of belief scores for all mathematics spe-

) 144



cialists (n=6) went from 3 08 to 4.5 Non-specialists (n=19) ranged from 3 04 to
4.0 After Intervention, the range for the mathematics specialists was 3.6 to 4 8
and for the non-specialists from 3.56 to 4.8 We conclude there was no significant
difference between the two ranges at the end of the intervention.

Stimulated recall interviews. A videotape of a 15 minute model lesson was
made prior to any intervention. Three other model lessons were also taped. one
during the clinical experience and two during the student teaching experience. A
stimulated recall interview was conducted after each of the last three taped les-
sons. Comparisons were made of the students in areas identified as relevant
(Lubinski, 1990) and related to lesson planning: objectives, content, materials,
task selection, consideration of students, and role of assessment.

Objectives. Nancy and Evelyn both shifted from focusing on review and
practice of appropriate operations for their grade level to developing strategies for
use in word problems which involved all four operations and allowed for multiple
solution strategies. Wanda initially focused on increasing student knowledge
through the use of definitions and formulas and developed her style to focus on
finding solutions to problems that she felt were the types to which her students
could make connections to real life situations.

Barbara and Quincy moved in different directions. Barbara's focus went from
an open-ended perspective to one being linked to a review or task in which she
was only minimally focused on the mathematics involved. Quincy shifted from
evaluating equations to teaching more open-ended types of problems that allowed
for multiple strategies. Throughout her involvement in the project, Faith had the
objective of teaching mathematics by placing her problems in a real-world setting.

Content and Task selection. For ease of comparison, all subjects were in-
structed to focus on whole number operations during the videotaping of any model
lesson. All subjects except Barbara developed teaching styles that incorporated
problem situations reflecting students experiences and interests. Both Evelyn and
Faith began with problem situations and continued with this style throughout their
teaching experiences.

Nancy selected tasks that were fun, infonnal. and non-threatening in her ini-
tial lesson, posing word problems with sums less than 20, These problems ap-
peared contrived rather than based on students' interests or experiences. One year
later her problems included not only all four operations and whole numbers, but
also fractions. She now selects activities that are integrated with literature, makes
connections to previous mathematics lessons, and focuses on problem solving.
Hcr lessons appeared to he influenced by tasks presented in the inethods course
and at project meetings.

The content of Evelyn's lessons were influenced by her belief that students
need challenge. Evelyn consistently used small groups incl developed her own
activities that she believed would relate to real-life problem solving, for example,
a game of Jeopardy. She went initially from focusing on one operation problems
to more open-ended problems.

At first, Wanda focused on formulas and definitions and tasks that focused on
computational proficiency. Later she developed a style using more relevant proh-
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lems that involved interpreting and solving written word problems. Wanda also
used group work hut struggled to have her students complete tasks in the assigned
time and was aware that her limited mathematics background contributed to her
inability to implement lessons that flowed smoothly. The implementation of her
lessons appeared to be influenced by her cooperating teacher's style.

Barbara initially used problems with multiple answers which incorporated all
four operations. In her last three lessons she used problems which did not readily
allow for multiple answers or alternative strategies. Her additional mathematics
background experiences were not reauily apparent in their selection of tasks.
Barbara's task selection during her student teaching experience appeared strongly
influenced by her cooperating teacher, who interrupted her several times during
the videotapings.

During initial and clinical videotapings in grade one settings. Quincy's con-
tent went from join change unknown problems using numbers under 20 to making
connections between repeated addition and multiplication. During student teach-
ing, Quincy selected tasks to develop understandings related to curriculum guide-
lines and to which students could relate. However, during this time, his groups
wcre structured in order to keep students on task and control behavior, not to de-
velop understanding. During his final videotape, he appeared anxious and focused
on controlling behavior more than usual. He relied heavily on his own perception
of how mathematics should be taught and struggled to establish a working rela-
tionship with his cooperating teacher.

Faith was consi,tent with using topics to which the children could relate. In
the model lesson during her first grade clinical experience she selected to teach
comparison problems. That is. she did not focus on developing strategies, but
rather on teaching problem types. By the end of her student teaching experience
she was still using interesting problems, but incorporating techniques to develop
students' thinking. Her content selection was often influenced by the experiences
she had within the mathematics department.

Materials. All used a variety of materials hut for different reasons. Nancy
initially selected materials that were "fun for the students". As they developed
their teaching style. both she and Evelyn realized that some materials and
manipulati% es can detract from the learning. Nancy's choice of materials became
dependent upon student behaviors and she resorted to paper and pencil during her
final two lessons. Evelyn often selected materials based on assumptions she made
about how the students would use them to develop their thinking. Wanda used
materials that suggested strategies for solviml the problems posed.

Both Barbara and Quincy initially used only paper and pencil, but progres-
sively used more materials: however, their rationales for doing so differed. Barbara's
materials were related to projects needing to be completed before the mathematics
could be introduced. Quincy introduced materials and manipulatives to develop
diverse thinking strategies. Faith used a variety of visual aids and manipulatives
throughout.

Consideration of students and the role of assessment. Init ia I ly. Nancy based
her decision on her conceptions of what students can do at a particular grade level
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and on what they like. She was awais.: that the level of difficulty of the problems
may have been inappropriate because she asked the students at the end of the
lesson if the problems were too easy. She developed an awareness of her students'
understandings and interests, tried to incorporate assessment as part of instruction,
and began to make connections among the strategies collected. In her final lesson
she was aware of different students' abilities based on the kinds of strategies they
used and considered this in planning. During instruction at the end of her student
teaching experience, she solicited students' thinking but did not alter plans or pose
follow-up questions based on their responses.

Evelyn assessed continually as she taught. In her initial first grade situation,
the second sentence she said was, "How high can you count?" She became in-
creasingly aware of her students' strategies and modified her lessons accordingly.
She had the students verbalize their thought processes to not only develop their
understandings. but to collect information about their thinking. She progressed
from simply collecting strategies to comparing the strategies suggested. This indi-
cates a more developed level of pedagogy than exhibited by most of the other
student teachers.

Wanda had preset assumptions of what the students knew. Initially, she made
little effort to solicit students' thinking. During her clinical experience, she fo-
cused more on her own thinking even though she solicited students' ideas about
their thinking. She developed her questions to better determine how students were
thinking about solving a problem by stating, "Could you walk me through it" or
"How do you know?" Consideration of students' experiences was not apparent
until the final lesson in which problems were taken from real-life situations but
there was little evidence of assessment in lesson planning.

Barbara considers students' background throughout her teaching experiences,
however assessment was often based on assumptions. There was little evidence of
using students' thinking to formulate questions during instruction or to plan for
further instruction. Emphasis was mote often on a procedure, not oil zinderstand-
ing the concepts. She frequently referred to "doing procedures correctly" as pro-
viding evidence of understanding. Her emphasis was on obtaining the right an-
swer.

Quincy initially based his decisions on what he perceived interesting to the
students, considering their skill level. At the end of student teaching he exhibited
an increased awareness of and ability to illicit students' thinking and multiple prob-
lem solving strategies. He professed to address a variety of cognitive styles he
believes his students possess. Quincy's assessment progressed from walking around
the class watching students work to adjusting problems to individual's abilities
based on their responses. Faith considered students' interests, experiences, and
needs throughout. She focused on their strategies, maintained a flowing dialogue,
and used both written and verbal feedback for assessment.

Discussion

It was hoped that an increase in thc amount of mathematics coursework where
instructors modeled reform-based pedagogy along with a change in reported beliefs
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would affect teaching practices Our results suggest that it is not clear what effect
more experiences with mathematics being taught for understanding has on teaching
practices specifically during student teaching. Other factors may be of greater
influence. The cooperating teacher and classroom environment were major
influences on some specialists and non-specialists alike. but for others there was
little evidence of this. One mathematics specialist was influenced by her
mathematics project and non-project experiences, while another appeared to be
influenced only minimally by the mathematics coursework. Overall confidence
allowed two of the mathematics specialists and one of the non-specialists to be
less concerned about control within the learning environment. Wc attribute this in
part to their mathematics backgrounds. level of maturity, or level of cognitive
development.

If teachers tend to teach as they were taught, the question becomes "Taught
when?" Further, the "show and tell" approach discussed in the literature extended
with our preservice teachers to collecting strategies without making connections
among them. Our conclusions at this time suggest that there arc many factors that
affect teaching practices. Rich descriptions are still needed of the relationships
among preservice teachers' beliefs, knowledge. and practices. Further, it is impor-
tant to follow these new teachers as they begin to teach in order to determine if our
findings are consistent over time.
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COOPERATIVE LEARNLNG IN RESPONSE TO AN
INNOVATIVE CURRICULUM AS A MANIFESTATION

OF CHANGE IN TEACHING PRACTICE

Thomas G. Edwards, Wayne State University

This paper traces the development of cooperative learning strategies in the practices of two
middle school mathematics teachers who implemented an innovative mathematics curricu-
lum with their 7th and 8th grade students. The evidence suggests that these teachers in-
creased their use of cooperative learning strategies, and this increase was related to the
nature of the curriculum materials, as well as to their views of the nature of mathematics
and its teaching and learning. Moreover, both teachers appear to share a similar view of the
social context of the classroom.

A critical problem facing mathematics education reform is the translation of a
vision of mathematics teaching and learning contained in the National Council of
Teachers of Mathematics (NCTM) Standards documents (NCTM, 1989, 1991)
into actual practice in classrooms. This vision suggests learning environments
that require substantive changes in current norms of teaching practice (Brown &
Borko, 1992; Schifter & Fosnot, 1992; Simon, 1994; Simon & Schifter, 1993;
Thompson, 1992). Among questions associated with the current reform, Nelson
(1993) asks about the role of innovative curricula. Speaking at the Research
Presession of the 73rd Annual Meeting of NCTM in Boston, Susan Jo Russell, in
what she terms a hopeful observation, suggests two ways in which curriculum
materials can be powerful tools for reform:

Innovative curricula allow teachers to focus on the particularity of
their own classrooms, and

Innovative curricula support teachers' efforts to establish mathemati-
cal cotnmunities (Lindquist, et al, 1995).

This research report will tracc the development of cooperative learning strategies
in the practices of two middle school mathematics teachers who implemented an
innovative mathematics curriculum.

Methodology

In the fall of 1992, a large, urban school district in the northeast began a dis-
trict-wide implementation of an innovative mathematics curriculum in grades 8-
10. The materials implemented were the University of Chicago School Math-
ematics Project (UCSMP) Transition Mathematics (grade 8), Algebra (grade 9),
and Geometry (grade 10). Teachers involved in the UCSMP implementation re-
ceived some staff development. This took the form of a series of eight Saturday
morning paid inservice meetings spaced at 4 or 5 week intervals. The content of
these inservice meetings typically involved teachers presenting their reactions to
the UCSMP materials, as well as training in instructional strategies supportive of
the UCSMP materials. Cooperative learning strategies were among those in which
such training was provided.
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In the fall of 1992, a case study of an eighth-grade teacher who was imple-
menting the UCSMP Transition Mathematics matenals for the first time was be-
gun. This case study was dPveloped over the course of two school years, and in
the fall of 1993, a second case study was opened. The second teacher was part of
a pilot project testing the efficacy of teaching the UCSMPRansition Mathematics
and Algebra courses over three years: grades 7, 8, and 9. She was also using the
UCSMP materials for the first time and implemented about 60% of the Transition
Mathematics materials in her seventh-grade classes.

These two case studies were developed using qualitative data. The data were
triangulLcd across time and across three primary sources:

Fieldnotes taken from observations of the teachers using the UCSMP
materials.

Interviews of the teachers.

Reflective journals kept by the teachers.

Diane, the subject of the two-year case study, was observed 13 times while Gina,
who was studied for a single year, was observed 8 times. The observations were
spaced at approximately 4-5 week intervals. Each teacher was also interviewed on
the day of the observations. The interviews were semi-structured using an inter-
view guide (Patton, 1990) and were typically 45 minutes to an hour in duration.
Both teachers also kept journals of their reflections regarding thc UCSMP imple-
mentation. These journals were interactive with the researcher.

The data %VCR analyzed using a constant comparative approach (Glazer and
Strauss, 1967). Of particular interest was the question of what instructional changes,
if any, these teachers would make in response to their implementation of the UCSMP
materials. An attempt was made to ground results in thc ongoing interpretations of
the researcher (Strauss, 1987). The data were coded and sorted in a manner sug-
gested by Jorgensen (1989). Conceptual categories were derived from the re-
search questions, and themes that emerged from the data themselves provided key-
words. Matrix arrays of the data were also produced to aid in understanding rela-
tionships. As theories emerged from the analysis, they were tested against the data
and further refined.

Findings

As thc studies unfolded and patterns began to emerge from the data, it became
apparent that Diane and Gina were changing their instructional practices in quite
similar ways. One of the most striking of these changes was the increased use,
albeit for somewhat different reasons, of cooperative learning strategies by both of
them.

The Case of Diane

Diane teaches 7th- and 8th-grade mathematics in a K-8 school and is the only
teacher certified in secondary mathematics in that building. She was selected for
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the study in part bemse her responses to a survey questionnaire were fairly repre-
sentative of a large group of teachers who would be using the UCSMP materials
for the first time.

At the close of the school year prior to her first year of UCSIMP implementa-
tion, in completing the survey questionnaire, Diane had indicated disagreement
with the statement: Students working in cooperative groups can learn just as well
as from whole class instruction. During our first interview at the beginning of the
next school year, I asked Diane to elaborate her response:

I guess in my experience, with these students, at least, I haven't
come up with a way yet to get them to work in small groups
that's productive.

When I probed further, Diane indicated that she would find cooperative learning
groups acceptable, if she could be shown ways to bring such strategies to fruition
in her classroom.

This interaction apparently kindled, or perhaps rekindled, Diane's interest in
cooperative learning strategies, for in a November journal entry, she wrote:

I've been reading some books on cooperative learning teams,
and I've signed up for a cooperative learning inservice. I plan to
really work at using these strategies in my classroom.

Diane also attendee the cooperative learning workshop that was part of the series
of UCSMP inservias mentioned earlier. Moreover, her regular use of the Teacher's
Edition of the UCSMP textbook brought her into almost daily contact with subtle
hints and suggestions that are provided in the Teaching Notes that accompany
each lesson in the text. These noies cover a variety of topics, including small
group work.

The fteldnotes of my observatIons of Diane's practice confirm that she at-
tempted to use cooperative learning strategies, with some success, through the end
of the second year of the study. During an interview near the end of the first ycar,
I asked Diane if working with the UCSMP materials had influenced her instruc-
tional practice in any ways.

I think that through the UCSMP, I started to use cooperative
learning more. And that was one thing that I had wanted to do.

The Case of Gina

Gina teaches 7th-grade mathematics in a K-8 school that has a large propor-
tion of students for whom English is a second language (ESL). She was selected
for the study due to the possible tension between the large number of ESL students
in her classes and the reading requirements of the UCSMP materials.

During our first interview, prior to hcr use of thc UCSMP materials, I asked
with what importance she viewed cooperative learning strategies:
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In the past 1 haven't used it, definitely not most of the time, and
probably not half of the time I don't think I'm going to have
much choice with this program I'm just going to have to have
them work in groups. just to get as much experience as possible
... because of the pace of the course; because of the whole setup
of everything.

In this instance, I interpreted Gina's remarks to indicate that she viewed the UCSMP
materials, with their heavy reliance on student reading, as problematic due to the
large number of ESL students in her classes. She then decided to use cooperative
learning groups, which provide a format for students to use each other as resources.
as a response to this problematic situation.

Indeed, the fieldnotes of my observations of Gina's work confirm her use of
such learning contexts. Her use of cooperative strategies was often limited to pairs
and triads, but for activities such as Think-Pair-Share (Davidson, 1990) and se-
mantic mapping (Carrell, Pharis, & Liberto, 1989). larger groups were utilized.

Toward the end of the school year. I asked Gina to tell me about any changes
in instructional practice that she might have made that were related to her use of
UCSMP materials. Without hesitation, at the top of her list was, I've used more
group work.

Teacher Beliefs

Thompson (1992) acknowledges the relationship between teachers' beliefs
about the nature of mathematics and their instructional practices that is suggested
by a number of studies. Ernest (1989) proposes three main categories of views of
mathematics, which he characteriies as Platonist, instrumentalist, and problem
solving. Ern.nt also notes that mathematics curriculum reform efforts are often
based on mathematics perspectives and links the current reform efforts with the
problem solving view.

Diane and Gina both selected the problem solving description of mathematics
from among Ernest's three views as most closely describing their own view of
mathematics. When asked to generate adjectives or adverbs to describe math-
ematics, both offered "broad;" Gina suggested "art" and "science;" while Diane
chose "logical" and "invented." Moreover, in choosing words to describe the pro-
cesses of learning and teaching mathematics, Gina offered "collaborative," "fun,"
and "interesting," and Diane "inexact," "challenging," and "never-ending." These
selections seem to fit well with both Ernest's problem solving view of mathemat-
ics and the underlying philosophy of UCSMP, which embraces the NCTM Stan-
thuds (UCSMP, 1992).

Discussion

Both Diane and Gina attribute their increased use of cooperative learning strat-
egies to their use of the UCSMP texttvok. It seems no accident that their espoused
views of mathematics are a good fit with those of the NCTM Standards authors.
In addition, these teachers were observed to make changes in instructional prac-
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tice that suggest a transition in their conception of the role of the teacher away
from one as a "transmitter of knowledge" and toward one as a "facilitator of learn-
ing." An increased use of cooperative learning strategies was one embodiment of
that transition.

The observation that the teachers' use of the innovative UCSMP materials
fostered changes in teaching practice may be interpreted in a manner that is con-
sistent with constructivist thinking. These teachers' daily interactions with the
innovative textbook and materials, their students, and their students' reactions to
the materials required them to interpret the innovation on a regular basis. This
may well have provided a source of continuing perturbation in their understanding
of their Own practices, and the resolution of any such perturbation may well have
resulted in changes in instructional practice.

These results also seem to fit well with several points in Ernest's (1991) analysis
of the influence of social context on teaching practice. Among the factors that
Ernest includes in the social context are the texttx)ok and.the curriculum. If there
is indeed a good fit between these teachers' belief structures and the epistemology
that underpins the work of UCSMP, it is likely that the use of these materials acted
as a powerful catalyst for change in these two teachers' instructional practices.

In his analysis, Ernest (1991) notes that "the socialization effect of the context
is sufficiently powerful that despite having differing beliefs about mathematics
and its teaching. teachers in the same school are observed to adopt similar class-
room practices" (p. 289). However, it is likely that such a constraint did not arise
in the case of Diane, because she is the only secondary mathematics teacher in her
school, nor in the case of Gina, who has little day-to-day professional contact with
the only othcr secondary mathematics teacher in her school. Moreover, if my
interpretation is accurate, both Diane and Gina were changing their conception of
their role as teacher, anit the nature of that transition toward more of a facilitator's
role suggests that they viewed the social context within their Own classrooms as
more of an opportunity than a constraint to change.

Conclusion

The research herein reported suggests that innovative textbooks and curricu-
lum materials might serve as catalysts for change in instructional practice, even
when implemented with minimal support. The teachers in this study appear to
mix* both of Russell's observations previously noted. In focusing on the par-
ticularity of their o:in classrooms, they seemed to view the development of math-
ematical learning communities as an advantageous change, while the innovative
curriculum materials that they were using supported their efforts to establish such
communities.

One extension of this research is to ask the question, "What :4.- an innovative
textbook or curriculum is implemented together with a high level of support for
teachers' attempts to bring their practices in line with the innovationsr Develop-
ers provide some support for innovative materials which are currently available.
The role in the process of change of both the innovative materials and the adjoined
support efforts, as well as their interaction, deserves our attention.
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THE DEVELOPING ROLE OF TEACHER: ONE
PRESERVICE SECONDARY MATHEMATICS
TEACHER'S BELIEFS AND EXPERIENCES

Jennifer Chauvot, The University of Georgia
Pamela Turner, The University of Georgia

This study followed one preservice teacher. Liz, as she progressed through her senior year
of a secondary mathematics education program that illustrated and encouraged views con-
gruous with the NCTM Standards. At the start of the program Liz saw her role as one in
which it was her responsibility to create a classroom environment defined to be non-intimi-
dating, non-frustrating, interesting, and motivating for her students. Throughout the year,
her beliefs defining her role of teacher were strengthened by the program. In addition, a
belief in the use of problem-solving activities evolved from her beliefs of her role of teacher.
This belief in problem-solving activities paired with her student teaching experience caused
Liz to re-examine some of her earlier beliefs. We will follow Liz into her first year of
teaching to see how or whether this evolution continues.

Preservice teachers enter mathematics education programs with preconceived
notions or ideas about the role of teacher in the classroom. As mathematics educa-
tion programs continue to implement and encourage the underlying ideas and con-
cepts espoused by the NCTM Standards (1991), preservice teachers are encour-
aged to develop and identify their role as teacher. Their initial notions, often con-
structed through their own classroom experiences, are the beginning of a more
structured development and identification of beliefs about teaching. This study
was conducted as part of the Research and Development Initiatives Applied to
Teacher Education (RADIATE)' project. We followed one preservice teacher, Liz,
as she progressed through her senior year of a mathematics education program
that illustrated and encouraged views congruous with the NCTM Standards. At
the start of the program Liz saw her role as one in which it was her responsibility
to create a classroom environment defined to be non-intimidating, non-frustrating,
interesting, and motivating for her students. Throughout the program her beliefs
defining her role of teacher were strengthened. In addition, a belief in the use of
problem-solving activities evolved from her beliefs of her role of teacher. This
ritw belief combined with earlier notions and her student teaching experience,
caused Liz to re-examine some of her earlier beliefs.

We used Green's (1971) theory of belief systems to help us organize and un-
derstand Liz's beliefs and how they werc structured. Considering a quasi-logical
structure, Green described beliefs as either derivative or primary. A derivative
belief is a belief that follows from, or is derived from other beliefs. For example,
a teacher may have a belief of frequent use of cooperative learning. The teacher

' RADIATE was directed by Dr. Thomas J. Cooney and Dr. Patricia S. Wilson and funded
by the National Science Foundation (grant # DUE9254475 1 and the Georgia Research Alli-
ance. Any opinions or conclusions expressed by this report are those of the authors and do
not necessarily represent an official position of the funding agencies.
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may argue that this belief followed from a belief that one needs to be able to func-
tion as part of a team to be successful in the real world. If the teacher cannot
provide a reason, or argues ";I just is", then the belief is described as primary.

Psychologically, beliefs are either central/core or peripheral. Green used con-
centric circles as a model in which the interior circles represent psychologically
central beliefs and the exterior circles represent psychologically peripheral be-
liefs. The teacher's teamwork belief (to do well one must be part of a team) may
be held centrally, or psychologically strong. On the other hand, the belief may be
held peripherally to a core belief that the teacher must prepare students to do well
in the real world. If it is held peripherally, then it is not held as strongly and is
more likely to be examined and perhaps changed.

Green (1971) uses evidentially and nonevidentially held beliefs to describe
grounds of beliefs. A belief held nonevidentially is less apt to be modified despite
evidence or reasons provided. The teacher may believe that teamwork is the way
to go regardless of the success of individual workers. Evidentially held beliefs
however are more susceptible to modification. They can be changed through the
introduction of more evidence, for example, success of individual workers.

Methodology

Liz, one of fifteen preservice teachers of the RADIATE program, participated
in two mathematics education courses, a practicum, one quarter of student teach-
ing, and a post student teaching seminar. She was chosen for this study because of
her willingness to participate and share her views on teaching and learning. Data
collection came from several sources. At the start of the study. Liz completed an
initial survey that asked her to reflect on her views of mathematics and her views
of the teaching and learning of mathematics. She submitted journal entries weekly
the first, second and fourth quarter. Journal questions focused on reflections of
course experiences, how they related to herself and to her teaching. Coursework
artifacts (papers. exams) and student teaching artifacts were also collected. Nine
audiotaped interviews were conducted throughout the year. one of which was a
card-sort interview. For the card sort Liz highlighted passages from her first seven
interviews that she felt were important. She defined "important" to be what she
thought was valuable. Her choices were placed on cards and she was then asked to
sort them into categories which she defined. Lastly, Liz was observed in separate
field experiences: team-teaching a technology enhanced lesson, team-teaching a
week long unit, and her ten week student teaching assignment.

Liz's Developing Role of Teacher

Liz entered the program with many notions of teaching in mind. She de-
scribed the characteristics of a good mathematics teacher as follows.

A gomi mathematics teacher can explain one problem in several
ways, can deviate from the lesson plan to meet the needs of his/
her students, can help the students visualize with the use of dia-
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grams or props, can vary teaching to increase interest and moti-
vation, can spend extra time with students. is patient and flex-
ible, verifies comprehension before leaving one topic, is aware
of his/her body language and comments toward students in or-
der to not disencourage [sic] students from learning, is comfort-
able with his/her mathematical knowledge, is always properly
prepared to teach. (initial survey, 3/29/94)

In the first interview, Liz reiteratcd these characteristics and stressed the responsi-
bility of the teacher to behave in the above manner. From this, we began to iden-
tify some of Liz's beliefs about teaching, specifically her beliefs about her role of
teacher. A core belief seemed to be that it was bes responsibility to create a class-
room environment that demonstrated the above characteristics. This classroom
environment was defined by three other beliefs: students should not be intimi-
dated or embarrassed, students should not be frustrated, students should be kept
interested and motivated. These four beliefs and Green's (1971) theory helped us
understand Liz's reflections and actions as she shared her perception of her role of
teacher.

Liz based hcr three beliefs defining the environment on her experiences as a
student in the classroom. She made references to classes where the instructor had
been intimidating, material was not explained clearly (causing frusuation), and to
classes that were boring. These served as counterpoints and defining elements of
what she considered good teaching to be.

Liz's role of teacher became more and more defined as she expressed how she
would fulfill her responsibilities. For her, the creation of a classroom where stu-
dents did not feel intimidated could be achieved using the following strategy.

If the teacher, on the first day, randomly picked someone to come
up front and do a problem on the board and you know, do this.
And if they embarrass themselves, it's no problem. You just
keep going and, you know, everyone's going to get the chance
to embarrass themselves. And it just becomes that kind of envi-
ronment ...it encourages questions and someone's more liable to
raise their hand and say, "I'm confused.- You know? (1st quar-
ter interview 4/7/94)

This strategy remained consistent throughout our year with Liz.. This belief that
students should not be intimidated seemed centrally held and had a primary struc-
ture (Green, 1971), It was not subject to change. To Liz it was common sense to
believe that part of an ideal classroom environment would include students who
did not feel intimidated or embarrassed to ask questions.

It was also common sense to believe that students should not feel frustrated in
a classroom Liz had two strategies that fulfilled this belief which again helped
del ine her tole of teacher. The first was for the teacher to demonstrate flexibility.
Flexibility was defined to be an ability to "deviate from the lesson plan to meet the
needs of his/her students-. This was. of course. contingent upon students' willing-
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ness to ask questions. Liz expressed this belief throughout the year and demon-
strated it while she was student teaching. (The text in italics represents passages
Liz highlighted in the card sort interview )

I was gonna go over everything again before I talked about stan-
dard error. But umm they, they. it sounded like they knew what
they were doing so I went ahead to standard error and we cov-
ered everything and they were ready to try out what they knew.
And um, so I was, it ended up being a lot more organized 'cause
when I started. the lesson was all dependent on what they re-
membered fmm the day before. (student teaching interview, 2/
23/95)

Flexibility had been a part of her plan. She would not have gone on with new
material had her students expressed confusion. Her second strategy to reduce
frustration of her students was to present and explain material clearly. She dem-
onstrated this consistently throughout the program. Her mathematics education
courses included several activities which were open-ended and provided limited
direction. In reflecting on such activities and how or if they would be used in her
classroom, Liz consistently modified the activities to provide more direction. This
belief of providing direction appeared to be peripherally held, contingent on the
level of student. In her second interview she mentioned different approaches for
different level students. She was asked to elaborate.

Uhm. for the advanced students, probably more challenging,
more individual or group work that doesn't show as much an
objective and they figure it out for themselves. The general
classes, maybe more give them a lead, give them an objective of
what we're working on so that they're going in the right direc-
tion. you know, they can still work on the problem solving but
they're at least led in the right direction kind q. because 1 feel
like they're more likely to maybe get discouraged and quit rather
than the advanced ctudent. (1st quarter interview, 5/24/94)

However, student teaching data did not illustrate this differential treatment. Al-
though activities in the higher level courses that Liz taught were open-ended ex-
plorations, handouts she provided withth,-! activities were very structured and lead-
ing. This suggested that perhaps she held her belief of low frustration levels of her
students more strongly than we thought. representing a core belief (Green, 1971).

According to Liz, her third belief in defining her ideal classroom environ-
ment. students should he kept interested and motivated, could be fulfilled by vary-
ing her teaching styles. In the fourth interview. Liz discussed the use of lecture.

I think that sometimes that that's the best way deperuling on your
time, the size ().f your group, and everything, and the material
you have to teach, then I think that that could easily he the best
way. Also I think it's good to vary the way you teach just the
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same. I mean I think if they get used to activities and how you're
gonna test them and everything, then they can easily get into
that group and start slacking so you know? //they never know
what they're gonna get wizen they come into the room, it's prob-
ably a little better. (2nd quarter interview, 10/13/94)

Although Liz's experiences as a student were mostly in cla,srooms that had been
teacher-centered and textbook-based, Liz was very receptive to the multiple teach-
ing styles demonstrated in the program. We suspect her belief of keeping the
classroom environment interesting and motivating, coupled with mathematics edu-
cation course experiences, provided a catalyst for a belief in the use of group work
in the classroom.

It's easy to just get drawn into the normal way of presenting the
material, teaching it step by step you know. The normal, what
the book says. the books suggestions of teaching it...but I would
like to throw in group activities and more exploration on the
student's part...! think it definitely helps their learning a lot so
(pause) cause it's helped mine just in our class. (1st quarter in-
terview 5/24/94 )

Related to this belief in group work was a simultaneously evolving belief in prob-
lem solving. It began with her view on word problems.

I really do like word problems, but as far as that being the main
point of it, I think that the students, if they learn their math they're
going to be able to apply it...I don't think that it has to be a
number one stress in the classroom. (1st quarter interview 417/
94)

At the start of the program, the terms word problems and problem solving were
interchangeable. Her belief in word problems seemed to be evidentially held in
that she was successful in her mathematics courses, and word problems did not
play a significant role in this success. She was also working under the assumption
that her students would learn the same way she did. However, as the program
progressed. more experiences forced her to re-examine her beliefs. She began to
realize not everyone is the same as she, word problems and problem solving are
different. and there is a lot to gain from problem-solving activities.

I probably will not be teaching many students with my perspec-
tive of math !enjoyment, success!. By observing at [a local high
school). I am learning the different students' perspectives...I have
learned that what worked with me will not necessarily work with
everyone. ( 1st quarter journal 5/10/94)

At the end of the first quarter, she differentiated between the terms "word prob-
lems" and "problem solving." Word problems were what she encountered as a
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high school student - problems with words at the end of each chapter. Those
problems were routine once you extracted the information. However,

[Problem solving isj more like ,You have to think of your own
method of doing it [not just follow the directions]...(problem
solving] is really important to just sort of bring everything to-
gether for the students to see how it connects and how it's not
just being used, you know in one specific area, that it can be
applied to other things and that all the concepts can be put to-
gether to solve a large problem, you know, that they work overa
period of time... (1st quarter interview, 6/2/94)

Time constraints of using problem-solving activities and covering school curricu-
lum were a consideration. Her practicum experience, which occurred between the
first and second quarter. allowed her to see group work and problem-solving ac-
tivities in action. "I was sold 100% because they learned more from that than it
looked like they were learning from lecture" (2nd quarter interview, 10/13/94).
This acceptance of the use of problem-solving activities was easily derived from
her belief of keeping the classroom interesting and motivating. Not only that, but
Liz's concern about time constraints was diminishing by tile end of her student
teaching expe ience. Under the guidance of her coopentting teacher, she saw flex-
ibility in the curriculum.

We've got two weeks to teach these three main topics dm we'll
expand into other stuff and overlap through activhies. So sud-
denly it was like I've got more than enough thne to do this. (4th
quarter interview, 4/20/95)

Problem solving was the largest of ten categories Lit formed in the card sort
interview. Over 20/"( of her cards were placed in this category. She saw problem
solving as mathematics that was not contained in school mathematics. but she
would be sure to include it in her teaching. In the last quarter, Lit defined problem
solving as the heart of mathematics. She added "if you have good problem-solv-
ing skills. then you can tackle a lot of things mathematically as well as in other
areas- (4th quarter interview. 5/30/95).

Liz's view of problem solving interacted with her belief in her role of provid-
ing direction to her students. In problem-solving activities her role was to "point
them in a direction...hut tun tell them where to go svith it..." (student teaching
interview, 2/23/95). Her belief in how mu,.11 direction to provide was unstable.
peripherally held to the core belief of keeping her students from being frustrated.
Lack of direction on the teacher's part will cause confusion and frustration in the
students. During student teaching. it was brought to her attention that perhaps shc
was providing too much direction.

Well I don't realize when I'm doing that, but uh my cooperating
teacher kept thinking that I did. you know'? That I wa.s giving
them too much direction where they're going, hut I guess that's
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just getting to know your students and knowing what they're
capable of doing, you know?.... [I need] to find a balance. Give
them just enough direction so that they feel like they have found
their answer on their own and they feel confident...But then not
giving them too little so they don't get frustrated. (4th quarter
interview, 4/20/95)

Liz was examining her belief in providing direction for her students and how it
related to her belief in problem-solving activities. We will follow Liz into her first
year of teaching to see how these two beliefs continue to interact.

Final Comments

Green's (1971) theory of belief systems provided a perspective for organizing
the structure of Liz's beliefs of her role of teacher in the classroom. This in turn
helped us consider experiences that promoted modification of her beliefs. If we
are receptive to preservice teachers' beliefs as they enter mathematics education
programs, we may provide catalysts that could promote change and growth in
beliefs congruous with the NCTM Standards.
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HIGH SCHOOL TEACHERS' EXPERIENCES IN A STUDENT-
CENTERED MATHEMATICS CURRICULUM

Melvin R. (Skip) Wilson University of Michigan
Gwen Lloyd, University of Michigan

Three mathematics teachers and ten of their ninth grade students were observed and inter-
viewed during a six-week period. One teacher claimed that her main challenge implement-
ing a student-centered curriculum was her doubt that students would make the right connec-
tions without her explanations. Another teacher struggled with the dynamics of operating
both small-group and whole-class discussions and ultimately decided not to hold whole-
class discussions. A third teacher achieved a more equal balance between teacher-directed
and student-centered activities. All three teachers demonstrated more difficulty than stu-
dents changing their expectations about appropriate mathematical activity.

It is r.iw well documented that many mathematics teachers communicate a
narrow view of mathematics--as a set of fixed procedures to be mastered by stu-
dents (e.g., Thompson, 1992). In contrast, reform movements, including many
specific curriculum development projects in the United States, are guided by a
growing consensus that school mathematics should be portrayed as an exciting
subject to be understood and explored. This paper describes the experiences and
conceptions of three high school teachers attempting to implement a student-cen-
tered mathematics curriculum that explicitly supports the assumption that math-
ematics is a vibrant and useful subject. The paper focuses on two main themes: (a)
how teachers (and to a lesser extent, students) made the transition from a teacher-
centered to a student-centered classroom, and (b) teachers' and students' beliefs
about mathematics, particularly the mathematics suggested by a specific set of
curriculum materials.

Because we were interested in describing how mathematics teachers' concep-
tions were related to their classroom decisions and actions, we considered research
related to teachers' conceptions of mathematics and mathematics teaching (e.g.,
Thompson. 1992). Since wc wanted to interpret teachers' and (to a lesser extent)
students' conceptions, decisions, and actions in a climate of change, we investi-
gated literature (both general and in mathematics) related to the intellectual growth
of adolescents and adults (Belenky et al., 1986; Cooney, 1994; Copes. 1982; King
& Kitchener, 1994; Perry. 1970). Expecting students to explore and understand
mathematical ideas requires them to accept much of the responsibility or authority
for determining, for example, appropriate procedures and methods to solve prob-
lems. We were interested particularly in learning about participating teachers and
students' beliefs about pedagogical authority (i.e.. where the authority of math-
ematical correctness and understanding lieswith the teacher, the texttvok, or the
student) and so we focused on what this literature said about authority.
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Design

Curriculum Materials, Participants, and Research Sites

Teachers and students in this study used materials generated by the Core-Plus
Mathematics Project (CPMP). a curriculum that encourages and supports teachers
in organizing the classroom so students can explore mathematical concepts, work
cooperatively, learn from each other, and think about and solve interesting prob-
lems (Hirsch. ('oxford, Fey, & Schoen, in press). Three teachers (one female, two
male) were selected from two high schools in neighboring public school districts
located in a small northeast urban community. All three had taught for 10 or more
years, but none had previously taught using CPMP materials. Ninth grade math-
ematics classes (one taught by each teacher) were observed daily for 5-6 weeks
during November and December of 1994. This study took place while classes
participated in a unit called Patterns of Change. the second unit in the ninth grade
CPMP sequence. All three teachers were well-established traditional teachers (by
their own admission) and recognized at the outset of the study that change would
not be easy. Yet all were extremely enthusiastic about using the CPMP materials
and incorporating the accompanying suggestions.

Data Collection

Teacher and student data were collected between September 1994 and June
1995 using interviews, observations, and students' and teachers' written work and
plans. Two one-hour interviews conducted during September and October of 1994
investigated each teacher's conceptions of mathematical functions and of math-
ematics and mathematics teaching more generally. During a five- to six-week
period in which classes were observed daily, each teacher was interviewed four or
five times. These hour-long interviews allowed teachers to comment on recent
classroom events. One group of students (3-1 students) was identified by each
teacher as a target group. Students in target groups were observed and interviewed
periodically during class sessions. After students had completed the observed unit,
hour-long interviews with 10 target group students encouraged them to comment
on their experiences in the observed classes. An hour-long interview at thc end of
the observation period (December 1994) assessed each teacher's immediate re-
flections on his or hcr experiences teaching the unit. To allow teachers to reflect
on the entire year's experience, as well as enable them to comment on their resolu-
tions for the next year, teachers were also interviewed at the end of the academic
year (June 1995) in a group setting. Ficldnotes were taken during classroom ob-
servations and all observations were video recorded, with a cordless microphone
carried by the teacher. Teacher and student interviews were audio recorded and
transcribed for ongoing analysis. Photocopies were made of the written artifacts
(e.g., student work).
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Findings

Student-Centered vs. Teacher-Centered Activities

For all three teachers, a dichotomy existed between "a cooperative learning
ahnosphere" and "a teacher-centered" or "traditional" one. This dichotomy mani-
fested itself in various ways as teachers contrasted their prior experience to what
they were trying to do in the CPMP class. Ms. Gifford, like the other teachers,
communicated an understanding of the intent of CPMP curriculum materials. In
an early interview she explained: "In theory the teacher goes from being ruler or
dictator who is disseminating all the information, to a facilitator.. . . As kids are
doing work, you're there to assist." She further descTibed the students' role in this
model classroom: "(the mathematics is] something they can get out of their seats
and put their hands on and have some ownership of the data that's being used.
Rather than my giving them whatever equation, they come [up with the] relation-
ship." However, Ms. Gifford felt like she did "too much front of the room instruc-
tion" in her CPMP class. Citing as her biggest challenge thc fear that her students
would not be able to make appropriate connections on their own, she frequently
interrupted or even eliminated small group work. She lamented often feeling that
she had to "jump in there and save them" and that she had difficulty "letting stu-
dents go." Of the three classes we observed, Ms. Gifford's was indeed the most
teacher-centered. Additionally, her students were the least inclined to describe
their CPMP class as being radically different from other mathematics classes they
had experienced. However, Ms. Gifford (as well as the other teachers) expects
that her transition from "dictator" to "facilitator" will become easier in subsequent
years, as she gains experience with the CPMP program.

Mr. Al lea also communicated concern about student abilities, but in his class
we observed a substantially different routine. During almost any given class pe-
rim', after a brief introductory whole-class discussion, students worked in groups
of three or four for the entire time. Mr. Allen circulated among the groups, an-
swering questions and helping individuals and groups to stay "on task," but he
rarely called the whole class together for sharing, questioning, or summarizing.
One reason for his decision to permit extensive group work was that Mr. Allen
wanted his students to learn to rely upon other group members (and themselves)
instead of solely on him. However, he admitted that his decision to not interrupt
group work was due mainly to his previous unsuccessful attempts to gather stu-
dents together tbr whole-class discussions. Although he believed whole-class dis-
cussions were important, he felt uncomfortable with the "in and out" movement
between group work and teacher-centered instruction and thus chose to explain
and share important connections and generalizations with small groups of stu-
dents. In an effort to further compensate for what he perceived to be inadequate
teacher direction, Mr. Allen often supplemented curriculum materials with teacher-
constructed review sheets.

Mr. Johnson was more inclined than Mr. Allen to interrupt small-group dis-
cussions to discuss important conclusions hut he was not nearly as directive as Ms.
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Gifford. Mr. Johnson attributed his ability to easily and comfortably lead transi-
tions between student-centered and teacher-directed activities to his experience
teaching computer science courses. in whith he organized class as a sort of "lab."
The following example is somewhat typical. Before the class period, Mr. Johnson
made overheads of one group's work. During the class discussion, the students
from this group stood in front of the class and pointed out connections between a
graph, equation, and table they had generated. Mr. Johnson helped them do this by
standing in the back of the room and asking questions, making comments, and
providing encouragement, but he was careful to let students explain most of the
important connections and conclusions.

Although Mr. Johnson considered himself to he very capable of leading effec-
tive whole-class discussions and he believed that such interactions were some-
times necessary (even teacher lectures). he was convinced that to meet the needs
of all his students, he needed to let them do most things in groups. -During inter-
views he frequently commented that many students thought that teacher lectures
were "boring and confusing" but that group explorations were "refreshing." For
example, during one interview he claimed that he lost "half his students when he
talkied]." On another occasion, he explained that in past years 90% of his students
were so "turned off' by his lectures that he could "do anything and they would just
sit there." In such situations, Mr. Johnson would plead, "My God, you guys are
dead!" and students would respond, "but it's boring." He agreed, describing tradi-
tional, teacher-directed classrooms as being very boring and ineffective.

A related issue concerns sources of pedagogical authority. The teachers com-
municated, both by the ways they taught and by the things they said, that they
wanted students to take more responsibility for learning. For example, they in-
sisted that students work cooperatively. 'Teachers wanted students to become less
dependent on them (teachers) and more dependent on each other. During our post-
unit interview we asked students to describe how, in this mathematics class, they
would typically decide when they had done a problem correctly. Students who did
ultimately refer to the teacher as a source of "correctness" (only about half did),
did so after first explaining the important role of peers and discussion within groups
to determine correctness. This result, together with Our observation and teachers'
claims that students preferred to work cooperatively on interesting problems (rather
than in a teacher-centered environment), contrasts with the image described by
Borasi (1990) of the "invisible hand" of students' expectations operating in In;
ematics classrooms. Borasi claims that students' expectations often encourage the
adoption of a traditional, teacher-directed classroom model, despite teachers' ef-
forts to do otherwise. Students in our study enjoyed thc student-centered, prob-
lem-driven activities and had little difficulty adapting to them.

What Constitutes Appropriate Mathematics?

Participating teachers were deeply committed to change. As the previous
section illustrates, to varying degrees, all three teachers were successful in changing
their practices to incorporate student exploration and cooperation. Not surprisingly,
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during our end-of-the-year interview, all three teachers were able to identify positive
and negative aspects of the CPMP and traditional curricula, and all favored the
more useful understandings that students acquired in the CPMP curriculum.
Although they did maintain concerns about public acceptance of the program (e.g..
college admission, state testing), in general they were happy with the CPMP
approach. But despite their claimed and observed shift, these teachers struggled
longer than their students in changing their traditional views about what constitutes
appropriate mathematics and mathematical activity. Further, the teachers' struggle
to change (at least their early struggle) seemed to be masked by reference to the
difficulty of getting students to change their expectations. From the outset of our
study, teachers maintained that because CPMP classes were not like ordinary
mathematics classes emphasizing traditional topics such as solving equations,
factoring, etc., many students in those classes felt like they might "miss out.-
Although we observed some dissatisfaction and concern among students at the
beginning of our study, during our formal interviews with target students at the
end of the Patterns of Change unit (December, 1994), few of them commented
that they were concerned with the non-traditional focus or content of the class. In
fact, students reported liking the fact that the mathematics they were studying had
meaning and application.

Discussion

Our results about teachers' and students' conceptions of what constitutes ap-
propriate mathematics, as well as student conceptions about where the authority of
mathematical correctness lies, point to at least two possible implications for cur-
riculum and teacher development. First, individuals who develop and implement
new curricula need to be aware that teachers often perceive student pressure or
resistance to be stronger than it really is. Second, teachers who plan to do innova-
tive things should understand that although student resistance is often strong at the
outset, it lessens as time goes on.

Students in our study had a less difficult time than teachers adjusting to a
student-centered classroom environment, one in which the teacher, to a lesser ex-
tent, was the ultimate authority. In one sense. this seems surprising. Adolescents
are generally more inclined than adults to rely on outside authority for verification
of legitimacy or truth. However, it is also thc case that adolescents are less reflec-
tive than adults (King & Kitchener. 1994). Students did not struggle as much with
the adjustment to a student-centered environment because they probably did not
think much about it. To them. the authority (teacher) set things up that way so that
is the way it was. On the other hand, the teachers were not only attempting to do
something with which they were unfamiliar and felt considerable outside pressure
to resist. but were actively thinking about the pros and cons of the new setup and
whether it actually worked better. It is not surprising then that they struggled
longer than students.

All three teachers commented that CPMP students were more difficult to bring
together for whole-class discussions than students in other, more teacher-centered
classes. This difficulty posed such a problem for Mr. Allen that he rarely attempted
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to gather students together, except at the beginning of class. Some teachers (par-
ticularly very traditional ones) may interpret this student tendency as a lack of
respect or as evidence of a teacher's inability to appropriately "manage" the class-
room (Mr. Johnson would not agreehe claimed that CPMP classes were easier
for him to manage). But perhaps this tendency is simply an indication that stu-
dents are accepting responsibility for their own learning. When students are given
more of the authority or responsibility for learning, it is more difficult to "inter-
rupt" their activities to do activities that are primarily teacher directed. This new
cLassroom dynamic needs to be recognized and addressed by curriculum develop-
ers and others interested in reform.
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MATHEMATICS FOR ALL STUDENTS!
MATHEMATICS FOR ALL TEACHERS?

Ronald V. rreston, East Carolina University
Diana V. Larnbdin, Indiana University

Mathematics for all students is a goal of the current mathematics education rethrm move-
ment. But is today's reform also workable for all teachers'? We profile two teachers who
dropped out of field testing an innovative middle grades mathematics curriculum. The
teachers are of interest because (1) their mathematics backgrounds seemed strong, (2) their
espoused philosophies seemed compatible with the innovation, and (3) their work environ-
ments provided considerable support. We detail their difficulties and offer recommenda-
tions for helping teachers succeed with curricular reform.

One of the goals of the current mathematics education reform (NCTM, 1989;
1991) is to help students and the general public understand that all students can
learn mathematics. Just as important might be this questionare today's reform
recommendations workable for all teachers? Successful traditional teachers are
finding much of the mathematics they are confident about teaching de-empha-
sized in favor of newoften unfamiliartopics, while their tried and true meth-
ods are being challenged as well.

As external evaluators in charge of the nation-wide field testing of materials
from a reform curriculum (the NSF-sponsored Connected Mathematics Project
CMP), we are involved in studying teachers' adaptation to change. CMP units of
study engage middle school students in learning mathematics through contextualized
investigationsand in reflective writing and oral communication about the math-
ematical concepts they encounter. Our field testing data include a variety of pre-,
mid-, and end-of-year questionnaires from teachers; questionnaires three times a
year from students; teacher calendars of daily plans; and classroom observations
and feedback from individuals hired as site recorders.

Teachers' reactions to CMP have been diverse. Some teachers enthusiasti-
cally accept the program. finding a match with their own philosophies. Others
experience philosophical differences with the approach or content difficulties with
the mathematics. However, most teachers seem to agreeafter trying the CMP
materialsthat the new approach is worthwhile. Though there is much to be learned
from these teachers described (we have previously written about themLambdin
& Preston, 1993; 1994; 1995), stories of teachers who have dropped out of the
project can also inform the research community. Two of the nearly 100 teachers
involved w'th CMP for at least one yearwhom we will call Hannah and Laura'
--dropped out during 1993-94. Their cases intrigue us because we initially be-
lieved they were strong candidates for field testing CMP. What went wrong?

' Hannah and Laura are pseudonyms for real teachers. All quotes from them are actual
quotes and all details are accurate, althoughin the interest of maintaining their anonym-
itywe have omitted mention of certain details that might identify them or their schools.
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After combing through our data, we developed a list of questions that we used
in interviewing the recorders who had observed first-hand in Hannah's and Laura's
classes. We also talked with Hannah and Laura themselves to get their perspec-
tives on their CMP experiences. In this paper, we detail their difficulties and pro-
vide some recommendations for helping teachers succeed with curricular reform.
(Due to page restrictions we have been reduced to including here only a small
fraction of the evidence we have for many of our claims. Additional data will be
presented at our PME presentation.)

Hannah's Case: Easier Said than Done?

Hannah came to the project as a teaching veteran of 18 years, with the past
seven years being in middle school mathematics. Originally elementary prepared,
Hannah earned her mathematics certification six years ago. Her philosophy and
style of teaching (as self-described on a pre-project questionnaire) seemed largely
in line with CMP:

My main belief is that every student must be made to feel com-
fortable with themselves and the subject in order to grow and
achieve. No question posed by a student is too trivial to warrant
an explanation and can almost always be answered by another
student. Understanding what to do is more important than cal-
culations that are performed for tests.

Hannah's school provided plenty of collaborative assistance: regular meetings of
all project teachers, a masters-level student/recorder who could help or observe in
the classroom four days per week, a site director who offered content and method-
ological assistance, and a supportive administration. Hannah was (at least at first)
a regular and productive contributor to weekly teacher meetings.

Hannah's dissatisfaction with the project came to our attention through stri-
dent self-report questionnaire responses at mid year; very different start-of-year
and mid-year responses on the Stages of Concern Questionnaire (SoCQ) (Hord.
Rutherford, Hu ling-Austin. & Hall, 1987); undeniably inflammatory comments
from her students on mid-year questionnaires; and most of all, from observations
of the site recorder. Hannah wrote, "students are uncomfortable with materials
explanations are not clear," and "Get rid of ACE Ihoineworki #5too difficult,"
and quizzes are "not clear enough to use." At mid-year, on her concerns question-
naire, Hannah marked "very true" for three items that we had previously identified
as possible "rcd flag" indicators of dissatisfaction with the project:

At this tune I am not interested in learning about this innova-
tion. I would like to know how to supplement, enhance. or re-
place the innovation. I would like to know how this innovation
is better than what we have.

Students in Hannah's class reacted angrily on the mid-year questionnaire. Their
responses to "What else would you like to tell the writers of CMP?" included



numerous adolescent vulgarities and even one death threat. Fifteen of Hannah's
28 students had more negative comments at mid-year than four months before.
The recorder believed Hannah was actually the source of the students' discontent,
claiming "the students are coilfusing their [negative] feelings toward the teacher
with their feelings toward the project."

In a tape-recorded interview, the recorder suggested that though Hannah talked
quite knowledgeably about mathematics education reform, she actually taught very
little mathematics in her CMP class, leaving her students to flounder uncomfort-
ably:

People coining in taght not know it's a math class ...she would
talk about other things, not the math ...students and parents had
complaints that they weren't doing any math. She knows about
NCTM Standards. She knows everything. You'd get so moti-
vated when you'd talk to her but when you'd go to her class it
was like a bombshell. (Site Director] was shocked too....She
doesn't believe in telling them (students], she doesn't guide.
She'd let them 2o for weeks not knowing what the real answer
is. Some of them that really need to know, they'd leave her class
even more confused, because there's never closure...she doesn't
pose other questions to focus them.

Shortly after mid-year. it was mutually agreed that Hannah would stop field
testing CMP. In our subsequent interview with her. Hannah claimed that the cur-
riculum "was jumping around a lot," that "there was no provision in that bo)k for
practicing basics, which is what a 7th grader needs." that "there was a lot of resis-
tance" from students and parents because "parents couldn't help," and that "the
book was not math friendly, especially if the student had trouble reading." Though
Hannah believed "most of the NCTM standards definitely fit with the ICMP] phi-
losophy," she also believed that the standards confirmed her own teaching phi-
losophy. which she claimed to have espoused for decades: "when I saw it in the
NCTM standards. I said, 'hey. I've been doing the right thing. Hannah did not
note any conflict between these statements and her comment that CMP "was just
so radical to the students that I could not overcome the resistance."

Hannah confirmed the recorder's observation that shc had provided almost no
direction in her CM P class. She also confirmed that her students floundered, learned
little, and became increasingly hostile and belligerent. We believe Hannah may
have thought that minimal teacher direction was a prerequisite for a student-cen-
tered environment such as that espoused by CMP. Perhaps she was confused be-
cause she had not attended the week-long summer inservice that provided an in-
troduction to CMP. (Hannah also refused to read the Teacher Edition because she
preferred to learn along with the students.)

Hannah talks as if she believes in active, student-centered learning, hut she is
unable to actually pull it off in her classes. She also seems to suffer somewhat
from conflicting beliefs, alternately claiming that rules, computational practice,
and algorithms are important and not important. Though she claimed that "under-
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standing what to do is more important than calculations that are performed for
tests," she was distressed that "fractions were thrown in almost immediately [in
CMPI. I know they should have had fractions, they should be able to remember
that, but there was no provision in that book for practicing basics, which is what a
seventh grader needs." Upon closer investigation, it became clear to us that pres-
sure from a district-imposed standardized test that emphasizes a very algorithmic,
computational approach created some of this conflict for Hannah.

We believe that Hannah is an example (albeit extreme) of a teacher who claims
(and probably even believes) that she is a proponent of new ways of teaching
mathematics, but who finds it very difficult to actually implement them appropri-
ately in her own teaching. Though Hannah talks convincingly about reform in
mathematics education, she shows quite clearly that such changes are often much
easier said than done.

Laura's Case: "I Think It's Great, But ... "

Laura had been teaching for 12 years when she began to field test CMP. Origi-
nally an English major, she had returned to college for classes leading to a K-9
license with reading specialization. Then, after one year teaching elementary school,
she became a middle school mathematics teacher. She reported 52+ quarter hours
of math/math methods (the mathematics classes for her elementary degree "so
captured my interest that I continued to take them after earning my teaching cer-
tificate"). In recent years, she has been involved in Math in the Mind's Eye, the
Middle Grades Mathematics Project, and spent a sabbatical year working on an
alternative assessment project.

Laura field tested CMP materials for nearly a year-and-a-half before dropping
out. The first year, she taught seventh grade. On an initial questionnaire. Laura
wrote:

Activity based mathematics is my favorite way to teach where
kids look at a situation or problem. Kids have access to
inanipulatives at all times. They're encouraged to use them,
make models or draw pictures to help solve problems. I like to
relate mathematics to history and current issues or other situa-
tions.

Her philosophy seemed to align well with that of CMP. In fact, to talk to Laura, to
read her questionnaire responses, and to listen to descriptions from her on-sitc
recorder was to experience a teacher so enthusiastic that she could have been a
spokesperson for CMR For example, in her first year of CMP, Laura declared, "I
can't help but feel my kids will be much better prepared for algebra next year than
with the !other math] hook." On other occasions she volunteered "I love Investi-
gation 6 because of the history tic in," and "I really like the "Filling and Wrap-
ping" play dough and rice (activityl. YES IT WORKS!"

On the other hand. Laura sometimes sent other signals. She was torn between
using CMP or favorite activities from previous years. When asked if shc supple-
mented CMP she always answered affirmatively (e.g., "YeA, almost daily (picture
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of sad face] 'sorry.' I need to work on sticking to the CMP material. It will save
time."). Later, she wrote, "I try to use your matenals faithfully, but I am readily
distracted." She said that she supplemented CMP with "nifty, human interest things
that spark excitement and conaections." Laura also admitted spending insuffi-
cient time preparing, confiding that "my best lessons were ones that I'd thought
about for a couple of days, not just in the car on the way to school" and "I need to
see how do-able certain questions are for homework before I assign them. I've
really screwed up on this when I didn't know."

Laura's SOCQ questionnaire revealed high concerns in every category (al-
most all above the 50th percentile)in fact, higher than any of the 50+ other
teachers for whom we developed concerns profiles. In her first year of CMP, she
depended heavily on her recorder (who was also teaching CMP and willing to plan
collaboratively). After her first year. when asked to provide advice for new teach-
ers, she wrote "It really helped having (name] as our recorder. I was able to go to
her with questions and concerns."

In her second year with us, Laura moved from 7th grade to 8th gradewhere
she taught one CMP class and several traditional algebra classes. Amazingly, by
mid-November, Laura had spent only four days using CMP with her CMP class!
Her calendar detailed the variety of things she had done instead (e.g., history of the
word "algebra." pattern work, logic problems. fraction worksheets, survey project,
film on Platonic solids, area bingo, arca of silhouettes, and activities from two
other sets of materials).

What contributed to this enthusiastic, if somewhat harried. CMP supporter's
avoidance of the 8th grade project materials? We have identified several possible
factors. The first and perhaps the most important factor is Laura's mathematical
background. It appears that the mathematics of the eighth grade curriculum chal-
lenged her (see Ball. 1991) to the point where she was uncomfortable and thus
avoided it. The eighth grade materials have a strong algebraic emphasis. Laura
was experienced at teaching algebra traditionally, with an algorithmic approach,
while CMP stresses learning algebraic ideas through investigation, which can be
quite challenging. Upon further investigation we determined that Laura's alleged
52+ quarter hours of math/methods had actually focused much more on methods
than on content. Her mathematics background was weaker than it k)oked. This
helps explain why she was so often bothered, in both the 7th and 8th grade draft
materials, by typographical errors and incomplete solutions. She was apparently
quite insecure about teaching from materials that she could not rely upon for an-
swers and explanations.

A second factor involves collaboration. In her second year of trialling CMP
materials. Hannah was the only eighth grade teacher using ('MP in her school:
The recorder was no longer teaching and planning collaboratively with her, as in
the previous year. This no doubt contributed to her decision to drop out ol the
project (see Little, l)87). A third factor relates to planning. By Laura's Own
admission she often waited until the last minute to put together a k ',son, acknowl-
edging that it "is really up to me to find the time."
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A fourth factor is the student population. At the private school where Laura
teaches, all the eighth grade students had taken algebra the previous two years,
with mixed results. (Some ended up repeating the course in 9th grade.) Laura's
8th grade CMP class consisted of student.s counseled not to take algebrathe bot-
tom 25% of the 8th grade. The recorder opined that Laura "believes that her kids
won't 'get it.' She spends time going back over *rules' for algorithms for rational
number operations . .."

Laura's case provides an example of a teacher who enthusiastically embraces
the methods of reform, but whose limited understanding of mathematics, lack of
collaborative support, and limited confidence when faced with errors in the mate-
rials led to insecurity, and eventually to avoiding the innovation entirely.

Discussion

Though Hannah and Laura had what looked to be above adequate mathemat-
ics backgrounds and appeared to agree philosophically with CMP, upon closer
examination, we discovered problems in both these areas. Both women had be-
come "mathematics specialists" through course taking and attendance at work-
shops, but the tenuousness of their mathematical expertise was revealed when they
were confronted with unfamiliar mathematical ideas. Both talked enthusiastically
and informatively about mathematics education reform, but had difficulty actually
implementing their visions in the classroom. Hannah and Laura's cases concern
us because indicators of trouble became apparent only in hindsight, when we be-
gan to look closely after they dropped out of the protect.

Reform curricula seem likely to succeed only to the extent that teachers are
helped to become knowledgeable and confident about mathematics content, and
well supported in their efforts to use new methods of instruction (e.g., inservice
and collaborative assistance). Content knowledge and pedagogical beliefs must
be primary considerations for those who design inservice workshops and teacher
manuals for innovative materials. It is also apparent that it is not easy to predict
success with an innovation by the typical completing of forms and brief inter-
views. Use of the SoCQ, observations, and other means of identifying concerns
and problems are important for identifying areas that can then be addressed (e.g.,
provide content assistance). Without significant efforts along these lines, it is look-
ing more and more likely that reform success "for all teachers" may be an elusive
dream.
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ONE TEACHER'S LEARNING: A CASE STUDY
OF AN ELEMENTARY TEACHER'S BELIEFS AND PRACTICE

David Feikes, Purdue University North Central

This is a case study of one teacher's beliefs, practice, and learning during his first year of
participation in a problem-centered second-grade mathematics project. The teacher in this
study, attempted to realize an alternative approach to teaching mathematics that differed
dramatically from his former practice. This study looks at his former beliefs and practice,
his teaching of mathematics during his participation, and the process by which he learned
and consequently changed his beliefs and practice. The teacher in this study learned and
consequently changed his beliefs and practice through his actual practice Paradigm cases
often consisted of alternative interpretations of classroom incidents.

Teachers' development of beliefs and knowledge is synonymous with teach-
ers' learning. Teachers learn as they reflect on and reorganize their knowledge,
and modify their previously taken-for-granted practices. Teachers, like students,
are considered as active reorganizers of their experiences who actively construct
knowledge. This social constructivist perspective on teacher development draws
on student development (Bauersfeld, 1995; Cobb, 1989) as a source of analogies,
a position that ties connected perspectives to a common, consistent, theoretical
foundation of how people learn.

Teachers are viewed as learners, not as empty vessels to be filled. Mathemat-
ics educators often attempt to fill the vessel by supplying teachers with research
knowledge or modeling the direct results. However only opportunities for teach-
ers to learn can be provided. The most productive opportunities for teachers' learn-
ing arises in the course of their practice as thcy interact with students. Conse-
quently, this is where teacher/researcher interaction is most vital. This paper at-
tempts to illustrate how the teacher in this study learned and markedly changed his
practice and beliefs.

The Case Study

Carl Willis, the teacher in this study, was interviewed and his classroom teaching
was video-taped and analyzed over the course of a school year. At the time of the
study Carl was teaching second-grade in an inner-city elementary school where he
had taught various gradc levels for 27 years. Carl expressed and exuded an exu-
berance for teaching, especially mathematics.

Carl taught arithmetic through extensive drill and practice with a heavy em-
phasis on flash cards. He indicatel that he might do mathematical activities (e.g.,
flash cards) three times a day: in thc morning, the regular lesson, and at the end of
the day.

Ok, 1 believe in them, (flash cards] drill over these, drill over
these ... 1 would start in September. Every day, every day the
good Lord says so ... Lot's of time, at least sonic of the time
when we line up at the door, I would dismiss them by a fact, you
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know. For themto get Out of the classroom. I would ask them [a
flash card].

They would really know that [nine plus c.!ightl is 17. They didn't
have to take the time... I believe they really understand the basic
ones when they come to this [nine plus eight], they didn't have
to do all this [counting], they just knew it.

For Carl, if a child knew his facts, that is, he could rapidly answer a series of flash
cards correctly, then that child was learning. He believed mathematics was the
application of known procedures and basic facts to compute solutions to problems

that had already been predetermined.

Carl viewed learning as a process that he could significantly influence. For
him, it was important that children were exposed to something if they were going
to learn it. For him, learning was like exposing film to the light; an image is left on
the film and the more times the film, or student, is exposed to the light, the stron-

ger the image becomes. Carl believed that learning consisted of memorizing and,

as such, the sequencing and timing of mathematical content was not crucial to
students' ability to memorize.

I always teach my kids that they arc the best second graders here
at Lincoln School, no matter what class I have [referring to the
ability grouping of classes]. To get them to think that. And by
me drilling these, these cards every day ... And at the same time
I'm telling you [his students], you are the best and they really
believe that, so getting them to really think that thcy are, which
they would be ... success, always success, always success you
know, in these [the basic facts], every day in math class. I would
make them feel like they'd really done something and they re-
ally would deserve that and just build that up into them.

Carl made his children feel successful by having them master the facts. More
importantly, he believed that his children were successful in mathematics. He
sought to instill this belief in his children. Carl attempted to build up the children's
self image as a means of motivating the children.

Carl was a caring teacher who helped his students develop proficiency in
memorizing the basic facts and through this he also attempted to build his own and

children's self image. His focus was on the mathematics, the facts, and through
his teaching of the facts he focused on the child. After 27 years of teaching, in
which he considered himself to he an excellent mathematics teacher, Carl believed

that his former practice was not problematic and that it might only require a slight

enhancement. Since he thought of himself as an excellent mathematics teacher, he

saw no need to change his practice. He had not volunteered for the project but
assumed that he was selected because of his expenise in teaching mathematics.
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Carl's Practice

His students had the greatest opportunity to express their mathematical ideas
in the initial whole-class activities which were designed to generate a variety of
responses and solution methods.

The class was working on Double Ten Frames. Carl had placed four red chips
in the left frame and six green chips in the right frame. Carl asked the class what
they saw and how many chips there were in all. After they agreed that there were
ten in all, the class discussion centered around the idea that one could say four plus
six equals ten or six plus four equals ten. Theresa indicated a different way to
express the same idea.

Th: You could say.... it's six on this side (pointing to the right frame) and
take one from that side [and] put it on the red side [the left side] ...

T. I.isten to her.

Th: And (you( would have five plus five.

T: All right. Do you understand what she [said!? I like that. She said, if
we were to take one of these green and put it over here with, with the
four [pointing to the four red chips]....you could say five plus five.
That's good! (9/25/89)

Carl (tad created an atmosphere where Theresa could express her ideas. In gen-
eral, as long as his students arrived at the correct answer. Carl encouraged their
creative thinking. As students expressed their varied mathematical ideas he began
to see how the instructional activities encouraged students to develop competency
and understanding of the basic facts. Although. Carl was still the authority in the
classroom, his students began to express their mathematical ideas. Their thinking
became increasingly accepted and valued in his classroom.

Carl also became more knowledgeable of the ways that his students used to
solve problems and he began to see that there were several ways to solve particular
problems. With this new knowledge, he began to have his students explain their
solution methods in more detail and to encourage alternative methods. This in
turn gave rise to learning opportunities for his students as they explained their
thinking.

For example, Carl began One class with a warm-up activity using balances.
He wrote several balance problems on the overhead and asked the students how
they solved each problem.

T: Let's put. six and seven. Sheryl? [Carl put a six and seven in two boxes
on one side of the balance and a blank box on the other side.1

Sb Thirteen.

110W did you knos% (h I like that. I love

Sh. 6, 7, 8, 9, 10, II, 12, 13.

T. All right would you Ito Theresa] like to tell us something different? ...
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Th: I had six plus six 'is twelve and the six on the right, 1 just added one
more to it.

T: I love it. (9/27/89)

Increasingly, Carl asked students to justify their solutions, "How did you know?".
He was aware of how a less able student like Cindy might 'count on,' and a more
able student like Theresa might use a thinking strategy. What was significant was
that he encouraged both students to explain their methods and he was no longer
satisfied with just the answer. In Carl's class, mathematical discussion was start-
ing to mean: 'How did you solve the problem, if you have the right answer'.

The following episode contrasts with his prior practice in that he encouraged
a student to explain an incorrect solution and he also refrained from directing her
to the correct solution. He had written 9 + 10 + 11 on the board and asked the class
to solve the problem mentally. In the preceding discussion, two students had given
correct answers and their explanations.

T: Someone else who didn't get a chance from last time. Dana.

D: I had 31.

T: How did you get 31? [Carl's tone of voice was much softer than it had
been in the past.] (12/15/89)

His actions indicated that he really wanted to know how Dana had solved the
problem.

Dana went on to explain that 10 plus nine was 19 and that 19 plus 11 was 31.
Carl asked her how she added 19 plus 11. She explained that she had counted.
Instead of "straitening" her out he asked the class about her solution. Ralph indi-
cated that 19 plus 12 is 31. However, she still insisted that 19 + II was 31.

T: Are you still going to stick with 19 plus II would he 31?

D: ... I think that's still 31.

T: If we take. I'm not going to say that! Ha ha. ICar1 stopped his question
and looked to the back of the room at the project staff member and
laughed] (12/15/89)

Carl caught himself in the act of directing a student to the answer. He acknowl-
edged his actions and laughed at his intentions. He had frequently attempted to
lead students to a predetermined process, hut this was the first time that he stopped
to examine this approach. It was as he interacted with his students that the sugges-
tions of the project staff made sense to him. Even though his new practice wa.s
induced by the suggestions and comments of the project staff, Carl himself had to
do the reflecting and learning.

Carl's Beliefs and Learning

He no longer viewed the correct answer as the most important part ol math-
ematics.



That's another thing I've learned. too. I was too much hung up
on what's right and what's wrong, getting the right answer, and
that's not as important as how ... the child or the method they
used to get their [solution].

He viewed the processes by which students solved problems as important and,
hence, gave students the opportunity to express themselves.

The project staff had noted that one of Carl's slower students could only add
by counting on his fingers. In his former practice Carl expected students to memo-
rize the basic facts: now he was being asked to consider how this student could
solve problems.

When she [the project staff member) told me, what really struck
me. Travis was only able to count up to five with his [fingers)...
When a child, [Travis], will have to soy five plus one, he really
doesn't know what ]he's doing)... He has to say one, two, three,
four, five, six....[Drilling with flash cards] he has no real idea
what he did....I was denying him the chance....He really didn't
understand the relationship.

As this example illustrates, Carl learned and altered his practice as he learned
more about how his students solved mathematical problems. His interactions with
the project staff influenced him to question his taken-for-granted assumptions about
children's learning and his teaching of mathematics. However, his interaction
with his students was the primary source of his learning and it was here that the
project staff's suggestions began to make sense for him.

Carl indicated that One key aspect of his learning was that he now listened to
his students. This enabled him to learn more about how they learned mathematics
and, in turn, how to teach mathematics.

I really didn't listen to the children. I didn't give them an oppor-
tunity to express themselves. That's the key thing right there, to
be patient and to give them time to express themselves. I think
the whole thing is to give...the child an opportunity to...tell how
they got their solution to the problem and which I had never
really...given a child that (opportunity).

As he learned how his students solved problems, he saw a need for change. Spe-
cifically, listening to his students was the basis for much of his learning. This
influenced his beliefs about how to teach mathematics.

The project staff attempted to make interventions that might influence Carl to
reformulate his beliefs and practice. One means they used was to suggest to him
what he might expect from his students. Salient experiences which influenced his
learning were specific examples of his studety mathematical activity together
with the interpretations offered by the project ,.kaff. As previously mentioned, Carl
was amazed when he learned that Travis could only add by using his fingers. These
became paradigm cases which Carl could verify in his actual practice. Carl had to
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learn to listen to Travis to verify the staff's assertions. As Carl learned to listen to
his students, he became less dependent on the project staff. He learned about his
students' mathematical understandings by interacting with them.

Implications

The Curriculum and Evaluation Standards for School Mathematics, (1989);
& Professional Standards for Teaching Mathematics, (1991); have attempted "to
establish a broad framework to guide reform in school mathematics in the next
decade. In particular, they present a vision of what teaching should entail ...". The
project in which Carl participated fits with the recommendations of the NCTM
Standards. The NCTM Professional Standards for Teaching indicate what teach-
ers should do and know. However, the Standards do not elaborate in detail how to
support this change and develop this vision. "These standards focus on what a
teacher needs to know about mathematics, mathematics education, and pedagogy
to be able to carry out this vision of teaching" (p. 6). Simply providing teachers
with the appropriate knowledge will not be sufficient to transform mathematics
education as assumed in the Standards. Reform efforts arc destined for failure
unless teachers are viewed as active learners, are consequently provided with op-
portunities to learn in the classroom, and arc provided with on-going classroom
support.

Teachers learn from their actual practice. Paradigm cases, which often con-
sisted of alternative interpretations of classroom incidents, were important in the
teachers' learning. Teachers learned as they used alternative perspectives to ex-
plain and make sense of classroom events. In this study the project staff offered
these interpretations of classroom events and attempted to encourage the teacher
to question his taken-for-granted assumptions about teaching mathematics.
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ONE TEACHER'S STRUGGLE TO BALANCESTUDENTS'
NEEDS FOR CHALLENGE AND SUCCESS

Margaret Schwan Smith, University of Pittsburgh

This study investigates a dilemma faced by an experienced teacher during the early stages
of participating in a mathematics instructional reform project. The dilemma arises as the
teacher's past practices come into conflict with new forms of instruction. Factors that as-
sisted the teacher in dealing with the dilemma and arriving at a satisfactory resolution are
identified.

Dilemmas or conflicts in teaching are situations that arise when a teacher is
confronted with two alternatives, which seem to stand in contradiction to each
other, neither of which is considered a solution. Lampert (1985) suggests that
dilemmas are commonplace in teaching and grow out of the uncertain and unpre-
dictable nature of classroom activity. She recounts a dilemma from her own fifth-
grade classroom where her practice of teaching from the "boys' side" of the room,
so as to ensure that the boys' behavior did not get in the way of mathematics
learning, created a conflict since the girls came to believe that they were being
ignored. She was confronted with two altemativesmake the girls feel that they
were being unfairly treated or risk misbehavior from the boys--neither of which
she saw as a viable option.

Lampert argues that teachers need to be thought of as dilemma managers rather
than problem solvers, recognizing that some situations cannot be solved and that
facing dilemmas need not result in a forced choice between competing alterna-
tives. According to Romagnano (1994), "the image of teachers as dilemma man-
agers is one that gives teachers themselves opportunities for their own profes-
sional growth and development" (p.14). In the case of the "order vs. equal oppor-
tunity" dilemma noted above. Lampert made the decision to begin the next unit by
reorganizing the class into tour small groups (two of each gender) and moving one
group of boys to what had been the "girls' side" and one group of girls to what had
been the "boys' side". With each group working individually with the teacher or
the student teacher, there was less of a chance that the teacher's behavior could be
viewed as preferential towards one group. In addition, it allowed the teacher to
respond to the students as individuals rather than as members of a gender group.
This strategy allowed the teacher to manage the conflict without making a forced
choice.

Lampert (1985) suggests that "our understanding of the work of teaching might
be enhanced if we explored what teachers do when they choose to endure and
make use of conflict" (p. 194). The Second Grade Mathematics Project (Wood.
Cobb, & Yackel, 1991) provides a context for exploring Lampert's question. Wood
et al (1991) contend that it is through the resolution of conflicts or dilemmas that
learning occurs. The second grade teacher, who was the focus of their research.
encountered conflicts which challenged her previous assumptions about her role
as the authority in the classroom (e.g.. using teacher-given procedures vs. student-



created procedures). Through reflection on her practice. work with students in her
classroom, and support from researchers, she resolved the conflict and came to
develop a form of practice that placed an emphasis on students as constructors of
mathematical knowledge. Hence, the conflicts with which she dealt provided oc-
casions for new learning and in turn led to the development of an enhanced in-
structional practice.

Ball (1993) contends that while dilemmas can occur under any conditions,
they are even more likely to occur when teachers begin to implement reform. What
teachers are trying to do stands in sharp contrast to what teachers have previously
done. New ways and old practices that seem contradictory put the teacher in the
position of having to accommodate new knowledge and previous beliefs and ways
of doing and knowing. Potential conflicts are inherent as teachers make signifi-
cant shifts in the types of mathematics tasks used, the nature of the. classroom
discourse, the learning environment, and the analysis of teaching and learning
(NCTM, 1991).

If mathematics education reform is going to take hold on a large scale, we
need to facilitate the process by "being able to recognize certain familiar dilem-
mas, crises, or choice points and understand something about the typical range of
routes through those points" (Gold.smith & Schifter. 1993. p.12). Understaneing
the dilemmas faced by teachers in the early stages of reform, the process by which
a teacher deals with or "works through" the dilemmas associated with reform, and
the factors that contribute to teachers "hanging in there" rather than abandoning
reform, have implications for in-service education, especially with respect to the
experiences and support needed to make this transition.

The purpose of this study is to investigate an instructional dilemma with which
a teacher struggled during the early stages of implementing matheinatics educa-
tion reform in her classroom. Of particular interest is the situation which gave rise
to the dilemma, the way the teacher dealt with the dilemma, and the factors that
support successful resolution of the dilemma.

Method

Subject

The subject of this study is Ellen Hyde, a veteran teacher with 25 years of
experience. who was participating in QUASAR a national project aimed at
improving mathematics instruction for students attending middle schools in eco-
nomically disadvant4ed communities in ways that are consistent with the recom-
mendations of the National Council of Teachers of Mathematics (1989, 1991).

Data

The data. gathewd during the first three months of the 1990-9 I school year,
provide information on classroom instruction, staff development, and personal
perspectives of the teacher. Specific data from this period include 37 journal en-
tries written by the teacher; videotapes of three consecutive teaching episodes:
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interviews conducted with the teacher before and after the sequence of teaching
episodes; and videotapes of two-full day staff development sessions in which the
teacher participated along with her mathematics teacher colleagues and teacher
educators from a local university (i.e., "Resource Partners") who provided support
during project implementation. The resource partners encouraged Ellen and her
colleagues to keep journals of reflections on the issues or concerns regarding their
practice that were most salient to them.

Analysis

All data were systematically reviewed, and the dilemmas with which the teacher
struggled were identified. An area the teacher repeatedly identified as problematic
was then traced chronologically through the data sources. The trace involved look-
ing for ways in which the dilemma manifested itself in tne teacher's oral and writ-
ten accounts of her practice and in actual classroom instruction and for factors that
appeared to influence the teacher's perspective regarding the dilemma.

Results

One dilemma that emerged early in the ftrst year was the tension between
structuring learning opportunities so that students could experience success and
facilitating the development of problem-solving skills. While the teacher stated
that one of her goals for the year was to help students approach problem solving
openly, she also felt that if the students were given tasks which were too hard or
too frustrating, students would become defeated by their failures. If that hap-
pened, she felt that she would not have fulfilled her obligation as a teacher. Thus,
she structured her lessons so that students would experience success. As she com-
mented in a journal entry early in the school year:

I can't buy the idea that kids don't feel bad starting off with
what they perceive to be failure. When they have homework
they can't do or don't have the confidence to do then I have to
intervene... I will help kids do more verbalization in class, get to
the kids who didn't volunteer and guarantee them success by
asking them to do things they couldn't fail to do right. I can't
ignore that success breeds success. Too many are starting out
with what I'm sure they perceive to be failure. [ September 16,
19901

In the classroom. this "structuring for success" often lcd the teacher to reduce
a complex task to a set of subtasks which presented little challenge to students and
provide limited insight into student thinking. The lessons became directive, guided
by low-level questions that were. in Ellen's words, "not designed for deep thinking,
just success.- This pattern was evident in the videotape of the first day of the
three-day observation. When given the pattern train shown in Figure I. rather
than providing students with time to investigate the patternbuilding the next
train in the sequence. predicting some future train, and making general observations
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regarding the pattern the teacher began by asking questions regarding each
figure in the train, guiding students in their observations and eliminating any
potential for struggle or discomfort. The teacher-student exchange regarding the
first train is shown in Figure 1.

=1>
Train 1 Tram 2 Train 3 Train 4

Figure I.
Four Pattern Block Trains

T: Figure 1, Tim tell me one thing you and your partner noticed.

S: That there's 2 trapezoids and they're back to back and the small sides
are back to back.

T: OK, would that be a pretty good descnption? He says "2 trapezoids
back to back and the small sides are doing it An}body describe it
differently, Mike?

S: A squished pop can.

T: And it looks like a squished pop can, all right. Keshia?

S: It has 4 equal sides.

T. The figure ends up having 4 equal sides there [pointing to the non-
parallel sides of the two trapezoids]. And does it have another pair of
equal sides?

S: Yes. And the outmdes.

And the outsides.

S: Parallel sides.

T. The parallel sides are also equal. Right Figure 2?

At a staff development session a few weeks later, teachers were given the
Opportunity to share a ID-minute segment or a videotaped lesson with their col-
leagues. Ellen volunteered to show a segment featuring the pattern block train
shown in Figure I. She indicated that she had discovered that her students weren't
very good at observations, but that they had been verbaliiing more since she broke
it down for them, focusing their attention on each part of the sequence rather than
on the entire series. One of the resource partners asked Ellen if the students had
progressed to the point where they could make observations without "breaking it
down." She asked Ellen how long you needed to break things down for students
and questioned whether or not some of the observations would come out naturally
if the students were given the opportunity to do so. Ellen went on to say that she
hoped she did not always have to structure things. but that students were still at the
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comfort stage, and they needed this support. She believed that once students expe-
rienced success they would try harder and that then it would no longer be neces-
saiy to provide this support.

In her journal later that day, Ellen reflected on the comments that had been
made at the staff development session: "I need to make sure I'm not structuring
too much. It is easy to be too leading and feel OK about it because the kids seem
happy. After all, many kids are happy with shut up and add." Over time, she
continued to question this approach, wondering whether structuring the learning
opportunities so that students were always successful would help students to be-
come competent and confident problem solvers. As she noted in her journal:

I have decided that when an activity is easy, maybe just rein-
forcing or practicing, the room is quieter. It is when they are
being challenged that they get scared. I'm going to watch and
see if this is so. I'm so used to the idea that that kind of confu-
sion means I haven't introduced the lesson properly or have given
the kids something too hard. Sometimes that is true, but some-
times it is necessary to go through panic before we find solu-
tions. [November 13, 19901

Later that month. after watching the videotape of the pattern train lesson in
it's entirety, and responding to a set of reflection questions provided by the re-
source partners, Ellen commented:

Students had ample opportunity to successfully predict visual
pattern block trains in this lesson, but it was set up too much for
success and not enough for the frustration that goes with prob-
lem solving...I now think I need to let them go through the frus-
tration that goes with problem solving. The lesson probably
wouldn't have looked as smooth, but I think it would have
stretched the kids more. I am at a different point in my thinking
than I was at the time of the lessons. (November 26, 19901

This view of the fall teaching episode stands in sharp contrast to her perspective on
the day of the lesson: "The lesson was all I could have asked of the kids...it is very
exciting."

The teacher struggled to develop a practice that would honor both her concern
that students not feel the frustration of not having immediate success and her inter-
est in having her students learn to engage and solve challenging problems. Through
reflection on classroom practice (i.e., watching videotapes and journal writing)
supported and encouraged by the resource partners, and interactions with others
providing support (i.e.. resource partners), Ellen began to change her perspective
regarding the dilemma and to consider ways of supporting student learning with-
out reducing the complexity of the tasks.
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Discussion

The teacher in this study was confronted with issues that are at the heart of
instructional reform how to challenge students in ways that will empower them
as learners of mathematics and provide sufficient support to meet the challenges
without reducing the demands of the task. It has been well documented that com-
plex mathematical tasks are often implemented in ways that reduce the cognitive
demands of the task (Doyle, 1988; Stein, Grover, & Henningsen, in press). This
'reduction of cognitive demands' often is the direct result of pressure exerted by
students resulting from their frustration with the task (e.g.. Romagnano, 1994).
Goldsmith and Schifter (1993) suggest that an important question for teachers is
whether or not "they are able to find ways to encourage and support students as
they struggle with the limitations of their current ways of knowing" (p.11 ). An
important question for teacher educators is how to create experiences that will
help teachers build this capacity.

This study suggests that encouraging teacher reflection on practice, providing
a non-threatening forum for discussing reflections, and providing on-going sup-
port to teachers during implementation may be important factors in building a
teacher's capacity to cope with instructional reform. While the need for reflection
and support are promulgated by many reform-oriented teacher education projects,
the current study provides insight regarding the links between support, reflection,
and change. Longer-term studies are needed that look at teacher change over time,
that provide additional insight into how dilemmas "play out" over an extended
period, and that begin to specify how teacher learning occurs through the manage-
ment and resolution of dilemmas.
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RAISING VOICES: USING TEACHING CASES
TO STIMULATE TEACHERS' THINKING AND REFLECTION IN

MATHEMATICS EDUCATION

Linda Ruiz Davenport, Education Development Center
Annette Sassi, Education Development Center

This paper examines the reactions of IC elementary teachers to a teaching case used as part
of a professional development project's curriculum. Their written reactions to both reading
the case and participating a two-hour discussion of it suggest that cases may stimulate teachers
to think about their own understanding of mathematics, the mathematical thinking of chil-
dren, and their roles as teachers. In addition, patterns in the data suggest that teachers'
reactions to cases are strongly colored by their prior experience with case materials, their
abilities to articulate the subtleties of reformed mathematics teaching practice, and where
they are in their thinking about mathematics education reform.

The current mathematics education reform recommendations call for a prac-
tice that is different in kind from what we see in most classrooms today (Cohen et
al., 1992; NCTM, 1989, 1991; NRC, 1989; Nelson & Hammerman, in press).
Adopting a practice consistent with these recommendations requires developing a
deeper understanding of mathematics, a new sense of what it means to learn math-
ematics, an appreciation of the mathematical thinking of which students are ca-
pable, and a sense of the mathematical tasks and investigations that support the
development of powerful mathematical ideas.

Many teachers lack rich images of what this new mathematics teaching prac-
tice might be. They themselves did not learn mathematics this way, and many of
them were not prepared to teach this way in their teacher education programs (Ball,
1988). Furthermore, the relative isolation of many teachers has resulted in few
opportunities to visit innovative classrooms, even when these innovative class-
rooms exist (Ball, 1994; Barnett & Tyson, 1993).

Increasingly, teaching cases are proving to be a powerful vehicle for commu-
nicating possible visions of mathematics education reform. Cases provide situ-
ated images of this new pedagogy, allowing teachers to analyze its subtleties and
complexities in classroom contexts (Barnett, 1991; Carter. 1993; Shulman, 1986;
ShuLman, 1992; Sykes & Bird, 1992; Witherall & Noddings, 1991). Cases help
teachers learn to articulate the dilemmas of their own practice, thus helping them
learn to voice their own perspectives, issues, and concerns (Schifter & Fosnot,
1993; Schifter, 1994). Furthermore, teaching cases help teachers learn to estab-
lish collaborative norms for thinking at)out. and talking about, their mathematics
teaching practice (Featherstone ct al., 1993).

Unfortunately we know little about the images that individual teachers create
from these case materials. Nor do we know very much about differences between
the understandings they construct from reading case materials, and what they fur-
ther gain from participating in a structured case discussion. This paper explores
what individual K-8 teachers in a professional development project seem to gain
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from reading a teaching case and then participating in a discussion about it with
colleagues and a facilitator.

The Teachers

The teachers in this study were participants in the Teachers Resources Net-
work (TRN), a project designed to help K-8 teachers transform their mathematics
teaching practice through the exploration of the resource materials currently avail-
able to the mathematics education community. These teachers met biweekly after
school with a project facilitator and were encouraged to explore and discuss re-
source materials of particular interest to them.

Several teachers were very new to the teaching profession, and others had
been teaching for over 20 years. Thcy came to the project with a range of prior
professional development experiences and were concerned about a wide range of
teaching and pedagogical issues.

The Case and the Case Discussions

While most TRN meetings focused on resources that teachers selected, on
two occasions the facilitator structured a whole group discussion around a teach-
ing case that she brought to the group. This paper focuses on the first of these
teaching cases. which was explored over a period of a month' last winter. The
case, entitled Inside Student Thouglus: Mke One-Third, is from a recently-pub-
lished casebook in mathematics education (Barnett et al., 1994). It begins with a
teacher posing the following mathematics problem to a group of 7th- and 8th-
grade students: On your own, draw a picture where you take 1/3 of 1 1/3. Hint:
Start with a picture of 1 1/3. The case then explores how students thought about
this problem. how the teacher reacted to their thinking, and what the teacher thought
about her lesson.

Prior to receiving a copy of the case, teachers were given as homework the
fraction problem posed in it, worded exactly as it was in the case. They came to
the next meeting prepared to discuss the problem, and were eager to share their
thinking. Many said they also had posed the problem to friends, family, and even
their own students. The discussion took most of the three-hour meeting. At the
end of the meeting, the teachers were given a copy of the case and asked to read it
and write their reactions for the next meeting.

The next thiee-hour meeting was dedicated to discussing the case itself. The
conversation revolved around several main issues' : (1) what was difficult con-
ceptually about the problem: (2) what role did language play in confusing or

' The discussion of the case actually continued! if more than a month. Teachers continued
to think about it, referred to it in many subsequent meetings, and one teacher even brought
in student responses to the problem posed as late as the May meeting. However, only two
meetings were specifically set aside to discuss the case with the group.
The discussion was facilitated by the TRN project director, who used teachers reactions to

the case as a starting place for the discussion The description of the issues is couched in
their terms
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enlightening students about how they might solve the problem (e.g. how were
students to know that "of' meant multiplication); and (3) to what extent was the
teacher in the case intending to allow her students to "explore" and to what extent
was she actually trying to "teach" them. These last two issues had been raised
explicitly in the case by the teacher herself. During the last 20 minutes teachers
were asked to write additional reactions or insights that came as a result of the
discussion.

We then analyzed the teachers' written reactions, looking for patterns across a
set of 10 reactions written after reading the case but before the case discussion,
and a set of 9 reactions after the case discussion. These patterns are described
below, along with excerpts of the actual writing of these teachers, used with their
permission and identified with their initials.

Teachers' Reactions After Reading the Case

Reading the case did evoke for teachers images about the complexity of teach-
ing. Their initial reactions to the case explicitly referred to several challenges
often faced as teachers reconstruct their mathematics teaching: (1) confronting the
limits of their own mathematical knowledge; (2) confronting children's math-
ematical thinking and reasoning; and (3) questioning their roles as a teacher.

Some teachers wrote about recognizing the limits of their own mathematical
knowledge. Some expressed reassurance that they were not alone in their struggle
to deeply understand the mathematics content. For instance, MMC wrote: "Maybe
she (teacher in the case] has a hard time conceptualizing as I do." Others couched
their awareness in more anxious terms. FCA wrote: "But how am I going to make
sense of that to my students? How am I going to make sense of that to me?" YRC
confided that she made the same mistake as one of the students in the case and then
questioned "Why is it OK to divide in order to multiply?"

Some teachers thought about children's' mathematical thinking, often in con-
nection with the confusing nature of the content. MMC conjectured, "I felt that by
allowing the kids to 'explore' she the teacher in the case] allowed them to raise
issues and think 'incorrectly.' The more issues they raised the more confused (the
teacher] became." One teacher, PDB, admitted her own difficulty in following the
thinking of the students in the case: "There is no rhyme or reason given why Bob
would represent one whole as nine circles." In contrast, another teacher, JPA,
commented that the students' reasoning seemed "so logical." Several teachers felt
that students were being confused by the language of the problem: "I think that
this is one example which further reinforces the importance of the language of
mathematics and using it with students often, carefully, and consistently." (MMB)
Finally, one teacher. FCA, explicitly expressed her valuing of student thinking: "I
think it's great that the teacher listened so well to what her students thought. I am
trying to do that now."

' Not all teachers were present for both meetings; there was a complete data set of "before"
and "after" for only 8 of the teachers.
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Questioning their role as a teacher is evidenced in the way teachers were able
to place themselves in the case itself and think about what they would have done.
MMB, for example, shared the tensions she felt in her own practice: "There is
always the tension between what we need to provide as teachers and the need for
allowing students to discover their own solutions and to hopefully internalize the
concept through their own discoveries/constructions." Others were comfortable
stating what they would have done in her stead: "I think the time spent should
have been more on the language than on the fractions since that was where the
difficulty lies" (MMB) and "Begin simple and gradually work up to the more
difficult." (BCA)

Teachers' Reactions After Participating in the Case Discussion

The case discussion helped teachers see that they ail faced similar struggles.
Some, like MMC, identified pedagogical struggles: "After listening to the group I
feel that many of us are locked into teaching the way we were taught . . . The
bottom line is that we still resort to algorithms." Others, like FCA, highlighted
mathematical understanding: "First of all I'm thrilled that other people spoke up to
say that they also had difficulty conceptualizing the problem 1/3 of 1 1/3. So it was
comforting to know that I am not out there alone."

One teacher (BAB) began to think differently about mathematics teaching
and learning after the discussion: "Today's discussion helped me frame a new
question. To what extent can you design/create a lesson or series of lessons that
are open-ended (inquiry) based and also directed towards the discovery of a con-
cept/skill? I realize even as I write this that this question is fraught with an error in
that open-ended discovery by its nature is not directed toward any specific, pre-
dictable gain in skill....Maybe. as I look at my own teaching, there is a place for
both."

Several teachers confessed that the discussion did not change their reaction to
the case: "I still feel that understanding the concept of a whole and fractions and
being able to work comfortably with different parts of a whole would have helped
the students or anyone solving this problemwithout using multiplication or divi-
sion" (MMB); "I'm not sure that I feel any differently since I read over [my
writing from the previous meeting lI'm still feeling like I don't know everything
I would like to know and probably never will...This lengthy discussion seems
only to make my head spin but not clarify things for me." (JFA); 1 guess I'm still
my usual confused self." (MSA); and "I found this (discussion) to he just as
confusing as reading the case." (YRC)

What We Are Learning About What Teachers Are Learning
Teaching cases are thought to be powerful because they provide situated im-

ages of teaching, help teachers to voice the issues and dilemmas of their Own prac-
tice, and shape norms for collaboratively inquiring into teachers' practice. The
TRN teachers identified with the images of classroom practice captured in the
case.. using them to think about mathematics content. student thinking, and the
roles of the classroom teacher. For many. these images were an invitation to share
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aspects of their thinking about their own practice be it their own mathematical
confusions, their appreciation of students' thinking, or the struggles they face over
when to explore and when to explain. By reading the case, they could recognize
that at least one teacher faced struggles similar to theirs: by participating in a case
discussion, they learned that they indeed all shared in these dilemmas.

This was the first teaching case explored by this TRN group, and for some it
was a new and confusing experience. Some were unsure of the purpose of the
reading or the discussion. MSA wrote that "Since I'm at the 4th grade level we
never seem to get into fraction problems of this kind, and it really wasn't some-
thing that held my interest." Others were not accustomed to thinking critically
about a classroom episode: "I think my problem with this case is that we are
second-guessing someone who isn't here to expand of the article. We are project-
ing our own ideas and needs and assumptions on someone else, finding fault and
criticizing without enough knowledge as to the teacher's expectation, class, or
next steps." (YRC) Learning to use the cases as an opportunity to analyze a piece
of teachingindeed, even to think about teaching as something to be analyzed
is an orientation that seems to take some time to build.

We recognize that it is important to be cautious in making strong inferences
about teachers' thinking and reflection based on their journal writings, as much
depends on their abilities to express themselves in writing, as well as their willing-
ness to take the time to do so. For example, journal entries ranged from as long as
20 lines to as little as two: "I found the article intriguing. I have an excellent
activity with fraction circles that I did today." (BAB) and "Discussion was great!
Ideas were good! Exchange was good!" (LJA) In each case, one of these brief
entries was paired with a much longer, and quite thoughtful first or second entry.

On the other hand, teachers' writing can provide important assessment infor-
mation about where teachers are in their thinking about mathematics education
reform. For example, teachers in this study wrote openly of their own confusions
and the confusions of their students. What is particularly informative is that al-
most all of them felt that these confusions were something to be remedied imme-
diately. In marked contrast, only one teacher (KOB) wrote appreciatively about
the role of confusion. In her response to reading the case, she wrote: "In regard to
(the teacher's] query about letting students explore before a formal lesson, I be-
lieve this is extremely important. The level of thought, frustration, and cognitive
dissonance she achieved with this class could not have been attained if she had
first taught them formally about multiplying two fractions when you see the word
"of." In her response to the case discussion, she commented about her colleagues:
"I found there was a lot of focus on how we could help thc kids 'get it' rather than
on how to understand their thinking, and helping them go further with it."

Many interesting questions remain about the extent to which the images con-
veyed in a case help teachers reconsider fundamental aspects of their practice..
There are also important questions about how teachers learn to participate in the
dialogue about mathematics education reform, and share these aspects of their
practice with colleagues. Both of these sets of questions are important faceZs of
helping teachers reinvent their mathematics teaching practice.
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TENSIONS AND STRUGGLES: PROSPECTIVE SECONDARY
MATHEMATICS TEACHERS CONFRONTING THE

UNFAMILIAR

Bridget Arvold, The University of Georgia
Maureen Albright, The University of Georgia

Being open to new ideas is instrumental for the professional development of teachers. Us-
ing numerous case studies of prospective teachers' beliefs as a backdrop, we investigated
the tensions and struggles four prospective teachers encountered as they confronted the
unfamiliar. We interpreted both the formation of their belief systems and the interactions of
their beliefs with the unfamiliar as our participants engaged in a discussion, reflection, and
activity-rich pro-active teacher education environment. Through the tensions and struggles
associated with multiple interpretations of mathematics and issues related to multi-
culturalism, we gained insights into the complexities of becoming a teacher during this time
of mathematics education reform.

In light of recent reform efforts in mathematics education, teachers and teacher
educators are striving to extend their own reflective, analytic, and adaptive mind
sets and to encourage others to do so as well. Such mind sets are necessary to help
teachers create a rich, comfortable, and empowering environment for their stu-
dents (NCTM, 1991). Discussions, reflective journal writing, and experiencing
learning and teaching through new methods provide opportunities for opening minds
to new ideas (NCTM, 1989).

The manner in which people address new ideas is complex. One contributing
factor in this process is the individual's tendency toward open-mindedness, a put-
ting aside of predispositions and forestalling premature judgment in an attempt to
come to understand new ideas and new perspectives of familiar ideas. Although
existing beliefs and knowledge influence an individual's ability to attend to new
ideas and understand them, existing beliefs can also inhibit one's intellectual growth.
Since many teachers and prospective teachers can profit from gaining a broader
range of perspectives, being open to new ideas is instrumental in their professional
growth.

As part of the RADIATE' research team, we investigated the tensions and
struggles of prospective secondary mathematics teachers participating in a pro-
active teacher education program. The program shared the underlying philoso-
phies expressed in the NCTM Standards (1989, 1991). Paramount was the phi-
losophy that educating is not disseminating information but facilitating each
individual's accommodation of existing knowledge to new ideas within the con-
text of a social setting. Reflection upon multiple perspectives of mathematics,

' RADIATE (Research and Development Initiatives Applied to Teacher hducationl is di-
rected by Thomas J. ('ooney and Patricia S. Wilson and funded by the National Science
Foundation (DUE9254475) and the Georgia Research Alliance. Opinions and conclusions
expressed herein are not necessarily those ol the funding agencies.
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teaching, and learning permeated the environment. Although the program's .cur-
ricular design was responsive to student needs, the sharing of multiple perspec-
tives was fundamental to all course activities.

Framework

Multiple lenses provided insights into the beliefs and tensions of the prospec-
tive teachers. The dynamics of the belief systems in terms of strength of psycho-
logical commitment and clustering of beliefs (Green, 1971) aided us in identifying
and interpreting the nature of the prospective teachers' beliefs. Within these sys-
tems, the received and connected procedural ways of knowing (Belenky, Clinchy,
Goldberger, & Tarule, 1986) and the progression from dualism to relativism (Perry.
1970) provided insights into how beliefs and knowledge were held and into the
sense of ownership related to specific beliefs. As tensions arose, the idea of a
continuum from close-mindedness to open-mindedness (Rokeach. 1960) provided
insights into how our prospective teachers handled these tensions, and the degree
to which they chose to ignore the unfamiliar or to keep their minds open as they
struggled with new ideas.

Methodology

The present study, as part of the RADIATE project, involved 15 prospective
teachers with whom we worked from April 1994 through June 1995. Data were
collected during the prospective teachers' participation in specially designed classes
integrating pedagogy and content, during their student teaching experiences and
during the culminating education seminar. Participant data were collected through
initial surveys, nine guided interviews, handWritten and electronic journals, class-
room and field observations and appropriate artifacts such as tests and reports.
The instructor's January statement of goals and concerns supplemented the data
from the participants. All members of the seven-person researcher team shared
their respective constant comparative analyses (Glaser-Straus. 1967) during weekly
discussions. In our analysis of tensions and struggles arising from encounters with
the unfamiliar, we first categorized data contributed by the entire tcam. In this
report we used a theoretical sampling (Glaser-Straus, 1967) to focus on the unfa-
miliar Standards-driven encounters most often noted by the prospective teachers.
We explicitly discuss the tensions and struggles precipitated h!, the multiplistic-
oriented functions unit and a multi-cultural lesson. Since the studies of our own
particular participiults provided somewhat representative data, we focused our at-
tention on the tensions and struagles of Harriet, Carl, Alice. and Shannon.

Tensions and Struggles

The prospectie teachers' cooklvok expectations of the program contrasted
greatly with the design of the curriculum and the instructor's stated goals "to
shake people up and challenge them to think beyond the surface. I want them to
become reflective about their assumptions, their reasoning, and their behaviors
...While I want students to he comfortable and to learn in a friendly, open environ-

0
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ment, rattling ideas takes priority over comfort." Our participants entered this
unfamiliar classroom environment with varied backgrounds. After losing interest
in "boring" accounting, Harriet entered the teaching program to become a certi-
fied secondary mathematics teacher. She believed she had already learned all she
needed to know from her mother, an experienced middle school mathematics
teacher. It was her mother's voice she shared with us. Carl shared a different
voice of experience. It was after fourteen years in a managerial workforce that he
sought an undergraduate degree and teacher certification. His volunteer math-
ematics tutuI .1g of confused student employees and his caring nature piqued his
interest in improving the teaching profession by joining its ranks. Carl believed
field experiences would be his teacher. Unlike Harriet and Carl, Alice had always
wanted to teach. Her early practicum experience gave rise to both her dissatisfac-
tion with traditional teaching techniques and a multitude of questions about the
process of teaching. She hoped for an inspiring learning experience. Lacking a
vision of her future, Shannon seriously considered the recommendations of her
high school teachers, and entered a teacher education program. Like Alice, once
Shannon realized that there were alternatives to lecturing, she poised herself to
"listen and digest" as she encountered "the whole Standards outlook on things."

Material on functions served as an introduction to the program. Besides pro-
viding an opportunity to integrate the learning of content and pedagogy, the mate-
rial fit the instructor's stated goal of helping "students realize that there is a great
deal of high school mathematics that they do not know." The functions material
built upon multiple strategies for problem solving by scaffolding activities that
included investigations of multiple representations and categorizations of func-
tions, analysis of case studies and reflections on pedagogical issues. Most often
the activities included the modeling of real life situations and follow-up analyses
enriched by the use of graphing calculators, and algebraic, geometric, and spread-
sheet computer software.

Perceiving the function material as irrelevant. Harriet's tensions were limited
to her coping with the curriculum. "It was like what we saw and what we -ire
going to see is going to be much higher than what high school students are going to
see which means it was like it was there for our enjoyment and completely almost
forgot about our students." Harriet placed herself in the teacher role as shc spoke
of "our" students but her product-oriented mathematics blinded her of the oppor-
tunity to gain a deeper understanding of mathematics and teaching. Her more
dualistic orientation (Perry, 1970) inhibited her seeing the value of multiple per-
spectives. Carl viewed the activities involving multiple strategies and multiple
perspectives as no more than a catalogue of activities for use in the classroom
Carl's orientation toward partitioning his beliefs and knowledge (Green, 1971)
instead of making connections was evident in almost every aspect of our study
For example, Carl's failure to understand the derivative nature of multiplication
and addition during a lesson on completing the square precipitated tension during
his student teaching. When he finally realized that his student's "2 times 13/2"
meant the same as his "13/2 plus 13/2." he did not contemplate his negative re-
sponse to his student, but rather was irritated at not having been told him about this



fact in his earlier education. He claimed no ownership of his mathematics. After
a brief troublesome period contemplating how he might till the gaps in his math-
ematical knowledge. his pride in a high score on the state teachers exam eased his
tension. This instance reflected how his strong psychological beliefs (Green. 1971)
held from a dualistic perspective (Perry, 1970) supported his abandonment of ten-
sion and struggle. The dualistic tendencies of both Harriet and Carl forestalled
most tensions and obstructed not only the relevance of pedagoOcal issues hut an
analysis of the multiplistic and connected nature of the rich mathematics.

Both Alice and Shannon entered the program confident in the richness of their
mathematics only to become perplexed by the function-related activities. Alice
expressed dissatisfaction with the recurrent discussions of the maximum volume
box problem while Shannon struggled to become proficient with the unfamiliar
technology, trusting that soon the purpose for all this mathematics in a "methods
class- would be explained. Although the experiences with the functions material
did not conflict directly with their knowledge of mathematics. it underscored an
unrecognized perspective of mathematics. Although neither Alice nor Shannon
came to understand mathematics as one's own construction, upon reflection each
of them came to recognize the lack of depth in their own received (Belenky et al.,
1986) mathematical knowledile. Even though Shannon expressed her newfound
freedom in mathematics, "I like stumbling around with math ... experimenting and
playing around." she and Alice struggled with these new disconnected pieces of
mathematics. Later Alice and Shannon credited the Nuhsequent study ot the Stan-
dards and their research involvement for helping them gain a perspective on what
they had been experiencing. Their understanding of the philosophy of the Stan-
dards added coherence to the multiple ideas precipitated by the functions material
by uniting many of the belief clusters (Green. 1971) that they had been forming.

Both the functions material and aspects of the multi-cultural lesson permeated
the entire program. The multi-cultural lessons were driven by readings and dis-
cussions using the prospective teachers' own interpretations of culture. Harriet
welconted the study of culture es en though she, as an African-American, had "not
learned a whole lot" in class. She was already "aware and experienced" in cultural
issues. She was comfortable with most cultural issues because they substantiated
the knowledge imparted upon her by her select grot p of authority figures. her
received knowledge (Belenky, 19861. There was one particular reading and class-
MOM discussion that incited her to question and ultimately modify her belief about
color-blindness. "I have come to realize that color-blindness is not a very power-
ful or profitable approach to relating to other people Istudentsl." Her reflective re-
evaluation of an existing belief illustrated an infrequently observed move toward
open-mindedness (Rokeach, 1960) in an area of deep psychological commitment
(Green, 1971).

Harriet did not adapt her existing perception of culture as lace to the context
of the mathematics classroom, and Carl's perception of culture as the origins of
mathematics remained void of the new context as well. Harriet and Carl each
protected their existing beliefs from contamination. a more dualistic orientation
(Perry, 1970). Carl hinted at why he dismissed the relevance of culture. "I'd have
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a difficult time right now focusing on multi-cultural because there's so many other
things ... Yes, it's something I'd like to master but certainly would not go into my
initial teaching methods.... Multi-cultural was just thrown in because an instructor
wanted it, IbutI I did use an aspect of it when it just happened to come up." Cul-
ture became just another disconnected belief cluster (Green, 1971), another item
on his list of things to "master."

Alice's initial tension also reflected her limited view of culture in mathemat-
ics. "Math is math. Culture doesn't change the way you do math." Shortly
thereafter she widened her perspective of mathematics as process and reflected
upon the influence of culture in the creation of mathematics. Widening again, she
reflected upon the cultures of her students. Alice and Shannon each struggled with
similar issues as they came to the realization that their inability to observe culture
during field observations was due in part to their negative view of "labeling people."
In their struggles to integrate conflicting ideas, they reflected a more relativistic
orientation (Perry, 1970). Alice chose to unveil her struggles in addressing the
needs of her non-English speaking student through her senior research project,
and evidenced an area of initial commitment (Perry, 1970) in her growing concern
that many teachers are unaware and insensitive to the cultures of their students.
Shannon focused on the importance of treating "any student with respect, no mat-
ter if their views are different," and "the teacher's responsibility to make sure
students do not put down other students for their differences." She valued students
gaining a better understanding of mathematics through its historical context and
contemplated culturally rich research projects. Alice and Shannon both attempted
to incorporate the voice of the student into their more connected procedural know-
ing (Belenky et al., 1986).

As we focused our analysis on tensions arising from encounters with new
ideas, we tended to neglect analysis of how these new ideas actually relieved exist-
ing tensions. As existing tensions diminished others took their place. Alice's
tensions relating to the inadequacies of traditional teaching lessened as she struggled
to create a new vision of teaching. Shannon's tensions eased as she discovered
that learning mathematics need not be constrained to the formalist rigor she had
come to previously accept. Carl focused his tensions associated with his desire to
improve the teaching profession as he concentrated on cooperative learning as his
solution to poor teaching. Harriet entered with few tensions and left the program
still questioning the appropriateness of the program itself.

Summary

This study suggests that our prospective teachers' orientations toward ten-
sions were directly related to their inferred belief systems. More dualistic orienta-
tions tended to ward off tension whereas more relativistic orientations allowed the
consideration of multiple perspectives. A more relativistic orientation also nur-
tured struggles involving analysis and the integration of novel ideas. In belief
systems with an plethora of belief clusters, new ideas remained segregated from
existing beliefs or entered a single cluster instead of becoming connectors be-
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tween clusters. The abundance of multiplicity in the program may have created
too much interference for viable attending and connecting.

Discussion

We as researchers, must open our minds to new ideas and new perspectives in
order to better understand our prospective teachers and help them learn. Our own
limited domains trammeled our analysis of the complexity of the dynamic envi-
ronment. Although we gained a better understanding of how existing belief sys-
tems, tensions and struggles influence the professional growth of teachers, care
must be taken to account for the value of theoretical perspectives in order not to
fall into the trap of what Bauersfeld (1988) refers to as "theoretical autism."

References

Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative
perspectives for mathematics education. In National Council of Teachers of
Mathematics (Eds.) , Perspectives on research on effective mathematics teachng.
Reston VA: Lawrence Erlbaum.

Belenky, M. F., Clinchy, B. M., Goldberger. N. R. & Tarule. J. M. (1986). Women's ways
of knowing: The development of self voice, and mind. New York: Basic Books.

Glaser B. G., & Straus A. L. (1984). The discovery of grounded theory: Strategies for
qualitative research. New York: Aldine De Gruyter.

Green, T. (1971). The activities of teaching. New York: McGraw Hill.

National Council of Teachers of Mathematics. (1991). Professional standards for the
teaching of school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: Author.

Perry, W. G. (1970). Forms of intellectual and ethical development in the college years.
New York: Holt, Rinehart, & Winston.

Rokeach, M. (1960). The open and closed mind. New York Basic Books.

fl
'1 I 198



MATHEMATICS REFORM IN APPALACHIAN SCHOOLS

Genevieve A. Davis, Kent State University
Trish Koontz, Kent State University

Since 1990 Kent State University professors have collaborated with educa-
tors in an Appalachian County in a research project to improve mathematics teach-
ing and learning inside the classroom as well as to help change belief systems of
teachers and parents about how children best learn mathematics. This research
project was designed to examine this change process in rural educational settings.

This research project provided opportunities for teachers, administrators and
parents to effectively communicate with each other. This innovative reform move-
ment has developed strong collaborative alliances within buildings and across dis-
tricts that have continued to sustain themselves beyond the initial three years of
NSF funding. This project has proven to be successful because its vision and
design are grounded in sound theory based on constructivist views of teaching and
learning.

As teachers' beliefs began to embrace constructivist views, the following prac-
tices were documented by collaborating university faculty:

Teachers encouraged children to explore mathematical concepts.

Teachers and children dialogued about their mathematical explora-
tions.

Teachers were more accepting of children invented procedures.

Teachers provided time for children to reflect and communicate about
their mathematical experiences through dialogue and journal writ-
ing.

Teachers recognind the need for and practiced authentic assessment.

Teachers' beliefs about the nature of mathematics changed signifi-
cantly.

Teachers developed the confidence to defend their beliefs about
constructivist practices to colleagues and parents.

This research has confirmed that in order to affect change in teachers' beliefs
about the nature of mathematics teaching and learning, inservice efforts need to
include ample knowledge about constructivist learning environments, mathemati-
cal content knowledge. and pedagogy.
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PORTFOLIOS AS A TOOL FOR REFLECTION IN TEACHER
PREPARATION PROGRAMS

Elizabeth H jakubowski Florida State University
Grayson H. Wheatley, Florida State University

Evangelina Diaz Obando, Florida State University

In order to assist teachers to have alternatives to teaching the way they were
taught, teacher preparation programs have moved to incioding experiences that
perturb prospective teachers into reflecting on past experiences and developing a
vision of what mathematics classrooms, teaching and learning for the twenty-first
century might be. It is asserted in this paper that the notion of reflectivity is a
viable element for the improvement of the process and profession of teaching
mathematics.

The concept of reflectivity is a reasoned, principled response through either
pre-planned or spontaneous but conscious action in which awareness of past expe-
riences and understandings are linked with present experience to lead to new un-
derstandings and appreciations. Reflective activity can emphasize a professional's
basic freedom of choice, which is implicit in the concept of professionalism. A
key feature of reflection is the need for prospective teachers to learn to exercise
that freedom rather than merely conform to the influence of the professor.

Through reflection, the learning experiences of prospective teachers can be
extended into what Dewey (1933) calls a learning k)op. There is a continual rees-
tablishment of relationships between experience and understanding thereby en-
couraging limitless opportunities for explorations into issues associated with teach-
ing and learning mathematics. Reflection becomes a process for learning how to
learn rather than performing a prescribed set of actions. When reflection is used in
prospective teacher education programs, the prospective teachers are being subtly
encouraged and predisposed to incorporating inquiry and evaluation as an habitual
practice in all teaching experiences.

In developing a middle grades mathematics teacher preparation program we
wanted to include elements which would cause the students to probe for deeper
meanings in their reading, their study, and their actions. Two years ago when pro-
gram development began, portfolios were to be included as a way of assisting
prospective teacher's to develop images of alternative assessment. However, as we
have moved through one cycle of the program we have found that using portfolios
has allowed us to encourage the students to incorporate inquiry into their teaching
experiences. By examining three participants in the first cycle of the program, this
paper will provide a description of how reflectivity, especially through portfolio
activities, has enabled these prospective middle grades mathematics teachers to
develop into inquiring professionals who are demonstrating during their intern-
ship programs the ability to he responsible and reflective professionals.
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A MODEL FOR EXAMINING THE CHANGING BELIEFS OF A HIGH
SCHOOL PHYSICS TEACHER INTEGRATING MATHEMATICS

THROUGH TECHNOLOGY

Marsha Paulus Nicol, The Ohio State University

Mike Smith, a high school physics teacher, decided to investigate the use of
graphing calculators in the classroom. As a participant observer, I used a researcher-
developed model for understanding teacher change to focus on Mike's changing
beliefs about mathematics, education, and graphing-calculator usage. The theo-
retical framework for the study incorporated Kuhn's (1970) theory of paradigm
shifts in the midst of revolutions. Vygotsky's (1978) and Piaget's (Eggen & Kauchak,
1992) developmental learning theories, and Anchored Instruction (The Cognition
and Technology Group at Vanderbilt. 1990).

Mike's dramatic and revolutionary change came as a result of several factors.
As colleagues and students convinced him that he needed to become knowledge-
able about graphing calculators, his belief system was shaken and disequilibration
occurred. As a result, he and I participated in a week-long professional develop-
ment institute that emphasized the use of the Texas Instruments' (TI) Calculator-
Based Laboratory (CBL) and the TI-82 graphing calculator in an integrated math-
ematics and science classroom environment. Immersed for a week in mathemat-
ics, science, and technology in a familiar setting. Mike's learning became anchored;
and as his understanding of concepts began to deepen, his mathematics and educa-
tion paradigms shifted.

Mike and I worked together preparing for CBL presentations and for his physics
classes. As we ran experiments and discussed analysis and interpretation of our
resulting data, he admitted that he learned much from me. Vygotsky's theories of
learning from a capable peer were evidenced.

Mike first took ownership of his change. Hc then continued to experience
much disequilibration, but he continually took steps to restore his equilibrium.
Mike is a very reflective teacher, and reflection was the driving force behind his
change. As a result. his beliefs changed, which forced change in his classroom
practice.
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A MODEL TO ASSIST IN IMPLEMENTING
CHANGE IN TEACHER PRACTICE

David R. Erickson, The University of Montana

The reform documents of the professional mathematics Organizations, the
National Council of Teachers of Mathematics. NCTM, and the Mathematical As-
sociation of America. M AA, project a vision for a new, changed school mathemat-
ics environment. Although NCTM and M AA make no prescriptions for obtaining
this vision, a constnictivist epistemology provides a theoretical framework for both
investigating and implementing necessary changes.

During a two-year case study of a sixth-grade teacher of mathematics, a model
for teacher change emerged with eight intertwined factors: goal, conflict, vision,
commitment, support, action, reflection, and executive control. The first six fac-
tors are represented by nodes suspended within a metacognitive sphere. Bi-direc-
tional arrows that represent reflective activity link each node. Vignettes fibril the
naturalistic study document how these eight factors are important to this teacher's
attempts to change her teaching practice.

The focus of this poster is on the most important of these factors, executive
control. This represents the steering mechanism for the change process and is a
metacognitive activity. The strength of this activity, together with all the factors
identified, determines the level of success and the length of time required for change
to occur. Evidence of this executive control surfaced more readily in situations for
which curriculum, pedagogy, and assessment were all addressed im ultancousl y.
When one of these areas was unresolved, not yet aligned with the teacher's vision,
progress was slowed. Having an overseer, a person who provides a direction to
take at each of the factors, is the role assumed by this metacognitive activity.

Further research is necessary to test the hypothesis that identificatior, of the
manifestation of these eight factors by individual teachers will lead to an increase
in successful implementation of desired change in teaching practice. Does a di-
rect, explicit awareness of the executive control factor contribute to a decrease in
the time required for making changes?
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REFLECTIVE APPROACH AND CONTINUOUS TRAINING OF
ELEMENTARY SCHOOL TEACHERS OF MATHEMATICS:

AN ANALYSIS OF THE CLASSROOM
MICROCULTURE EVOLUTION

Louise Poirier, Université de Montréal
Nadine Bednarz, Uriiversité du Québec a Montréal.

A number of analyses of classroom interaction patterns have highlighted the
implicit elements behind the social regularities (occurrences) emerging from some
school cultures (Bauersfeld. 1980; Voigt, 1985). These analyses tie in well with
the work on the didactic contract (Brousseau, 1986; Schubauer Leoni, 1986) which
explains the system of reciprocal expectations observed in specific teaching situa-
tions; whereby the teacher's actions with respect to a given problem influence how
the students will grasp a specific knowledge. The students decipher the situation
given to them and execute the problem following their own interpretation of the
rules in place as well as abiding by the implicit expectations they feel in this par-
ticular instance.

Given the fact that students simply react to what they think is the teacher's
implicit expectation, how can one establish a didactic contract wherein students
truly participate in the construction of their own knowledge? A number of recent
studies have investigated the conditions of evolution of this classroom microcul-
ture in mathematics (Cobb et al, 1994). To change this classroom culture and to
influence its evolution requires a thorough understanding of what really happens,
as well as allowing teachers to reflect on the actions and interactions in the class-
room. Since this study uses a socio-constructivist approach (Bednarz et al, 1993),
thc practices implemented in the classrooms are aimed at altering the traditional
didactic contract defining the respective roles of the teacher and the students.

Objective. As part of a collaborative research project in an elementary school,
teachers (1st, 2nd and 3rd grade) arc invited to reflect on the interventions in their
mathematics classrooms. What is being proposed here is regular, planned alterna-
tion of in-class experimentation of the approach with group (teachers and research-
ers) reflection on this process. In this presentation, the evolution of the teachers
thinking will be emphasized by showing the change in the classroom culture.

Method. The reflections of teachers, as expressed during exchanges between
researchers and teachers have been recorded on a regular basis over a two year
period. In addition, their classroom teaching practices have been videotaped also
on a regular basis during the same period. These observations provide an analyti-
cal basis for retracing the different phases which teachers go through as well as
illustrating the doubts and changes in their ways of thinking and teaching, as they
attempt to create a new didactic contract within the classroom. This analysis high-
lights also the evolution in the classroom culture fostered by the changes in the
didactic contract made by the teachers.
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THE SETTING FOR PROBLEM SOLVING:
A TEACHER'S BELIEFS

E. S. Senger, Louisiana State University

While reform in mathematics teaching involves both internal beliefs and ex-
ternal practices, the distinction is important for studying the process of change and
teachers' personal avenues toward professional development. Thompson's (1992)
study and review of the literature suggest that teachers' conceptions and beliefs
regarding mathematics highly influence their classroom practice. Fennema &
Franke (1992) found that some forms of teacher knowledge and belief, develop
through teaching practice.

Elementary teachers are faced with issues of change in the teaching of math-
ematics. Whether such changes are deep and lasting, or superficial depends on the
process of reflection and reframing that the teacher has the opportunity and will-
ingness to pursue (Richardson, 1990, Russell & Munby, 1991).

This study involved participant observation of one fourth-grade teacher,
Pamela, and her process of change, both internal and external over the course of
one school year. Interviews, videotaped observations, and discussions unpacked
Pamela's beliefs and practices regarding teaching and learning mathematics while
she struggled with issues of reform. Qualitative analysis revealed her focus at dif-
ferent times during the study.

The content and pedagogical concerns revolve around Pamela's beliefs and
classroom tasks in problem solving, and the roles of teacher and student in learn-
ing to process and solve problems. The journey with Pamela through her dilem -
mas and attempts at change adds insight into her progression from teacher-as-
answer-giver to teacher-as-witness of children's diverse ways of investigating
problem situations.
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TEACHER CHANGE IN A STAFF DEVELOPMENT SETTING: CASE
STUDIES OF MIDDI E SCHOOL MATHEMATICS TEACHERS

Terese A. Herrera, The Ohio State University

The purfx)se of this study was to document the influence of a mathematics
inservice on practicing middle school teachers. My specific focus was the unique.
individual character of the change process. Rather than rely on aggregated group
effects, I employed qualitative methods suitable for registering the response of the
individual participant and for documenting in detail the process of change as it
occurred.

Three seventh grade teachers, participants in an intensive, long-term math-
ematics inservice, contributed their perspectives of change through interviews,
lessoii plans, assessment instruments, portfolios, and classroom observations. In
my role as participant observer, I accompanied these teachers for over a year, gath-
ering data on their conceptions of teaching and learning of mathematics prior to
and during the summer inservice, and then throughout the following academic
year.

The six-week inservice was sponsored by Ohio's State Systemic Initiative,
Project Discovery, which offers science and mathematics institutes for teachers
throughout the state. What is modeled is a "discovery" or inquiry method. Instead
of lectures on mathematical content, the instructors immerse thc participants in
problematic situations. They directly encounter and explore the mathematics em-
bedded in these situations. How or whether a teacher decides to implement the
inquiry method is left to the professional discretion of the teacher. Seminars dur-
ing the following year bring teachers together to discuss their experiences with
inquiry teaching.

Data analysis produced case studies describing personal teacher change as
experienced by the individual teacher. a perspective usually absent from investi-
gations of staff development. Social context played a large role in the six-weck
experience, as did student reaction in the following year.

In a cross-case analysis, patterns emerged that allowed me to tentatively de-
scribe teacher change in terms of interaction between the inservice experience and
the individual's personal construct of "math teacher."

On a more pragmatic level, knowledge of mathematics proved to he a deter-
mining factor in the teachers' interpretation and implementation of the inquiry
method modeled in the inservice.
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COMING TO TERMS WITH CONCEPTUAL KNOWLEDGE:
ONE TEACHER'S JOURNAL

Christine L. Ebert, University of Delaware

This study will describe the emerging mathematical understanding oi one student enrolled
in an elementary mathematics content course. Through the medium of her journal entries,
a portrait of Elena's struggle to overcome her difficulty with mathematics and construct
conceptual knowledge has emerged. Though mese struggles are not unique. Elena's story
is at once both poignant and extraordinarily compelling. She gives voice to the child within
struggling to make sense of this "mysterious information presented by adults which empha-
sized procedural skills over all," the adult attempting to negotiate this "return to meaningful
learning," and the metacognitive monitor that reflects lucidly on the "mental paralysis" that
she experiences even when "one has worked hard and made great effort to control one's
reasons and thoughts." By examining Elena's emerging view of conceptual knowledge and
her reflections on this process, we may also access information about. viable means of fa-
cilitating this process.

Theoretical Framework

The current reform movement in mathematics education suggests that teacher
subject-matter knowledge is an important component of the new view of math-
ematical competence. The task of investigating tne construction of conceptual
knowledge and the subsequent transformation of that subject-matter knowledge
into pedagogical content knowledge is extremely complex (Shuiman, 1986). As
researchers, we struggle to construct tasks that will provide useful information
about both of these processes. Within the content and methods classes we seek tu
design experiences that will facilitate the construction of conceptual knowledge.
If we are to provide these opportunities for prospective teachers to construct the
conceptual knowledge suggested by the reform documents, then we must examine
cases of that construct'on process through in-depth portraits of individual teachers
(Ball, 1988). Elena's journal entries provide important information about her
struggles with the mathematics, her reflections on that struggle, and reflections on
her mathematical journey.

Methodology

Thc data source for this study consists of One prospective elementary teacher
enrolled in the first of two courses in mathematical content at a major university in
the mid-Atlantic states. The course, which was designed to focus on problem
solving and conceptual understanding, consisted of two weekly lectures and two
weekly problem solving sessions. This class of approximately 180 stud-ins met
with the instructor for lectures in a large auditorium and with One of the two teach-
ing assistants for problem-solving sessions in a class of approximately 25 stu-
dents. The course focused on the "construction of conceptual understanding of the
elementary mathematics curriculum" (M251 Course Syllabus, 1993).



The emphasis on problem-solving was reflected through the allocation of two
classes each week to solving problems with a partner. On thc first day of problem-
solving, all students took a s::ills test which consisted primarily of 36 arithmetic
and pre-algebra problems. Based on the scores from this test, students were as-
signed a partner for the semester. Pairings were made such that the ability differ-
ential for all of the pairs was constant. During the problem-solving sessions stu-
dents were either assigned problems from the textbook or given a problem-set to
work on for that particular day. Problems were never assigned in advance. The
role of the instructor during these two weekly sessions was to circulate around the
room discussing the problems and problem-solving strategies and offering sug-
gestions whenever appropriate. The "homework" in the COUNC consisted of doing
as many problems as necessary to gain understanding of the concepts.

Results

Elena is a returning adult student in her mid-forties who has worked as an
artist and medical illustrator prior to seeking certification to teach art in the el-
ementary school. Elena's journal was chosen for analysis because she consis-
tently recorded her mathematical growth and struggles. She also included a wide
variety of other sources from Polya's "little book", How to SoNe It, to a New York
Times article about Bob Moses' work on the Algebra Project. All of her quizzes
and tests contained additional notes concerning the problems with which she had
difficulty and the progress she was able to achieve. The richness of her journa:
mathematically and the compelling way in which she expresses her reflections
throughout this journey provide important and intriguing information about the
construction of conceptual knowledge.

Initiating the Conversation

Disposition/ Beliefs about Mathematics. Elena initiated the conversation
through the medium of her journal with a quote from Polya's How to Solve It that
she uses to illustrate her openness to this experience and express the hope that it's
"never too late to experience the grain of discovery in the solution of any problem'
whenever that susceptible age should occur" (Elena 2/10/93). She also provides
her own mathematics history in the initial journal entry.

It seems amazing that meaningful learning is considered to he
"new"! Perhaps it is a new emphasis for mathematics? I cer-
tainly was not taught in a way that made mathematics meaning-
ful for me. As a young child I believe that I experienced much
of what might be considered the very worst. Math made no
sense. The adults presenting this mysterious information em-
phasized proef.dural skills over all. "Do it my way, do it cor-
rectly and you will obtain the right answer." I am still strug-
gling with the mental/emotional baggage from my earliest in-
tr(xluetion to math in elementary school. These words come to
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mind fear, confusion, discouragement. embarrassment. bore-
dom. Needless to say I do not want to convey any negative
attitudes or "hang-ups" to youngsters. I've worked hard as a
parent to avoid this and I am striving now to overcome the atti-
tudes that thwart my own progress as a student. (Elena 2/10/93)

Fears About Doing Mathematics. While this particular mathematics history
is not especially unique, Elena does seem to be able to convey an important dis-
tinction between meaningful learning and her own experiences that the emphasis
focused on procedures and that her particular experience generated significant
negative feelings. At this point in her reflections it is clear that she is "striving" to
overcome the attitudes that thwart hcr progress. In the following quotation. Elena
reflects on the "skills test" and gives voice to the child to describe her initial "re-
turn to meaningful learning."

I took the skills test today. Some things worked, some things
didn't. How long has it been since I thought about what an equ a-
tion is, let alone construct one!...it continues to frustrate me that
in math my mind is not at its best even when I know what to
do. It is embarrassing. I often feel that in this realm, I am a
nervous 8-yr. old. (Elena, 2111/93)!

She also writes that she "does not know how to go about describing sequences."
A few days later she writes about her attempt to solve the initial problem in the
text.

DESCRIPTION = FORMULA! FORMULA = ALGEBRAIC
DESCRIPTION (EXPRESS ION) OF SEQUENCE INFORMA-
TION

I find moving methodically, slowly, through these sequences,
watching how the numbers "make sense" to be extremely satis-
fying. 1 can't remember ever being taught this way. It makes
my brain feel good. (Elena 2/15/93)

n(n+1) = 98,282
n2 +1 = 98,282-1
n2 = 98,281
n = 313 He is on page 313.

The Metacognitive Monitor Speaks. An important contribution of Elena's
journal is the multiplicity of persoectives that she conveys as she reflects on these
experiences and her attempts to g.tin conceptual understanding of the mathematics
curriculum. Her initial responses arc those of the adult negotiating this return to
learning and gathering as many and as varied a collection of resources as she is
able to make sense of this experieme. However, given that her childhood experi-
ences with learning tnathematics were so negative, the voice of the frightened.
frustrated, and discouraged child is also quite prominent. In addition, when she
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can stand hack and reflect on the mathematics she is doing, quite frequently the
voice is one of metacognitive monitor - dispassionate and reasoned. She writes
about examining her thought processes and her response to the first quiz.

Quiz returned I did better than expected - what a relief! Mak-
ing tables is now seared in my brain (as is the formula for the
area of a circle - square that radius!). Determined to be calmer
the next time. (Elena 2124/93)

On this first "written assessment" Elena did quite well (19/25 or 765%). Al-
though the work and the progress that she makes does not reveal constant growth
but the typical fragility inherent in the learning process. shc expresses her arrival
at this small plateau in an extremely poignant and revealing way.

Taking in small amounts of information, experiencing small
amounts of understanding at an ordered gentle pace is what I
need at this time. I almost feel as if something once broken or
walled-off is healing or opening. I am amazed by my need for
plenty of time and how luxurious it is to bc able to return again
and again to some small idea and really hold it in my mind...there
it is...and it makes sense to me now. (Elena 2/25/93)

This statement is particularly revealing because it stands in such sharp con-
trast to her previous statements. Although she may have understood intellectually
that mathematical ideas could be held in one's mind, considered, and understood,
she had not personally experienced this sense of conceptual understanding. Fol-
lowing the return of the quiz, mathematics was still rules and formulas that must
be "seared in my brain...square that radius!" rather than concepts and ideas that
could be considered and understood. Similarly when she reflects on the value of
communicating about mathematics for children. her statement suggests her own
wistfulness for this experience. Only in this most recent statement does she indi-
cate a personal and individual understanding that mathematics can indeed make
sense to her and the wonderment and sense of peace that she now feels as she
experiences learning in this way.

Observations And Conclusions

It is clear throughout the journal that Elena believes that mathemolics should
make sense and that doing mathematics should be largely a sense-making proposi-
tion. She also indicates a clear understanding of the importance of sufficient lime
and social interaction in the construction of mathematical knowledge. While this
process of struggling with conceptual understanding of the mathematics evokes
childhood memories ol those same struggles, her ability to reflect on the math-
ematics from the child's point of view is a real strength. The very nature of these
struggles has provided her with the opportunity (she has the natural dispositm) to
consider central issues in k'arning and teaching mathematics - the intrinsic value
and beauty of mathematics thc importance of constructing knowledge for oneself
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- the value of social interaction in the learning process the importance of children
working out their own representations. Elena's journal is also clearly an example
of an individual who was pre-disposed to significant self-reflection. It is also
unique and idiosyncratic in that she was an "older' student. married, and a mother
of two children. She herself makes sonic of the distinctions between herself and
the "twenty-year-olds."

The task of investigating the construction of conceptual knowledge and the
subsequent transformation of that subject-matter knowledge into pedagogical con-
tent knowledge is extremely complex. As researchers, we struggle to construct
tasks that will provide useful information about both of these processes. Elena's
journal provides a rich source of just this type of information. Elena's story sug-
gests that serious reflection about learning is very hard and sometimes very pain-
ful. However, thc value of 2iving voice to the child within and the metacognitive
monitor provides an invaluable lens ii.rough which teachers may focus on learn-
ing.
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HER MATH, THEIR MATH: AN IN-SERVICE TEACHER'S GROWING
UNDERSTANDING OF MATHEMATICS AND TECHNOIDGY AND

HER SECONDARY STUDENTS' ALGEBRA EXPERIENCE

Rose Mary Thick, University of Iowa

This case study investigates an experienced secondary school mathematics teacher's under
standing of mathematics ("her" math) and decisions she makes about her students' class
room experiences ("their" math). This report focuses on the competing roles of her grow-
ing understanding of novel technology-rich mathematics and her decisions about activities
and expectations in this algebra course in light of her beliefs about learning and teaching.
Data document developments in her mathematical understanding and classroom practice
during her first 13 months of teaching Computer-Intensive Algebra' as a participant in the
Empowering Secondary Mathematics Teachers in Computer-Intensive Environments project
(C IME).2

Framework

A practicing teacher's understanding of school mathematics includes a blend
of her knowledge and beliefs about formal mathematics, about pedagogy, and about
how people learn mathematics. Numerous prior studies (cf. Ball, 1991; Carpenter,
Fennema, Peterson, & Carey. 1988) document the impact of practicing teachers'
understandings and beliefs on their classroom decision-making. Other works in-
vestigate the relationship between teachers' understanding of mathematics and
their students' achievement. This literature suggests that teachers' understandings
of mathematics affect their classrooms and their students' learning environment in
complex ways.

As Fennema and Franke (1992) note, when positing a framework for research
in teacher knowledge. there is a nee'l for research that explores the relative roles of
knowledge of mathematics. pedagogy, and learning with respect to beliefs and
currcnt context of the teacher. If technology is an integrated part of school math-
ematics and cunicula change to reflect its presence, teachers are teaching math-
ematics that is new to them with a focus on process rather than product in a tech-
nology-intensive mathematics classroom filled with open-ended activities and
tnathematical explorations (NCTM, 1989). Technology then suggests a need to
study a teacher's understanding and doing of mathematics with technology and
the classroom learning environment she fosters.

I A revised version of Computer-Intensive Algebra is now distributed b Janson
Publications as Concepts in Algebra: A Technological Approach.
2 CIME is funded by the National Science Foundation under award number TPE-
9155313, M. K. Heid and G. Blume, Principal Investigators. Any opinions. find-
ings, and conclusions or recommendations expressed in this material are those ot
the authors and do not necessarily reflect the view s of the NSF.
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Methodology

Context. The current study follows one teacher through her entire experience
as one of 60 participants in Empowering Secondary Mathematics Teachers in Com-
puter-Intensive Environments (CIME). CIME is a teacher enhancement project
that implements and tests a model for the continuing education of secondary school
mathematics teachers. The CIME experience begins with a four-week summer
institute that concentrates on developing teachers' mathematical understandings
and technology knowledge and on engaging them in using alternative forms of
assessment to better understand students' conceptions of mathematics. The first
summer workshop also introduces them to Computer-Intensive Algebra (CIA) as
one example of an innovative, technology-intensive first-year algebra curriculum.
This curriculum built around the function concept, mathematical modelling, use
of multiple representations, open-ended exploration, and constant access to com-
puter algebra systems - differs greatly from teachers' prior experiences with first-
year algebra. CIME teachers return to their schools to implement CIA and then
attend a one-week institute during the next summer.

Instruments. Data reported here come from four sources as collected over
13 months. Ten interviews address understanding and doing of mathematics in the
presence of computing tools, understanding and beliefs about how learning occurs
and about what it means to understand mathematics, and documentation of class-
room activities. Six series of observations (four in CIA classes and two in geom-
etry classes) with pre- and post-observation interviews address the nature of math-
ematics in the classroom and the teacher's changing practice. The remaining data
are a set of one journal entry per week written by the teacher and copies of course
materials created and used by the teacher.

Analysis. Analysis of data began with the coding of all interview transcript
passages that included any discussion of mathematics. Patterns arising from these
yielded tentative hypotheses about the subject's understanding and beliefs about
mathematics and her perceptions of students' understandings and learning of math-
ematics. The findings exemplified here are hypotheses that survived comparison
with results of a similar analysis of the classroom observation and journal data.

Subject

"Le Anne- is unified to teach secondary mathematics and taught for 22 years
before her CIME experience and this study began. She has undergraduate degrees
in both mathematics and elementary education, mathematics certification at both
the elementary and secondary levels, ?nd a master's degree in secondary math-
ematics education. Lc Anne teaches in a suburban/rural high school of approxi-
mately 850 students in grades 9 through 12. Teaching only at the high school level
tor the last decade, Le Anne had a fairly stable teaching assignment consisting
almost exclusively of geometry courses. She never taught an algebra course using
CIA materials prior to the CIME experience but verbally espoused CIA goals of
technology use and exploration.
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Findings and Discussion

In the paragraphs that follow, a summary of Le Anne's expressed views about
learning, doing, and teaching mathematics followed by a description of her class-
room environment lead to a seeming contradiction between what she espouses and
what actually occurs in her classroom. Subsequent consideration of the Lc Anne's
views and actions however address the extent to which she seems to alleviate the
contradiction as her understanding and beliefs grow and change throughout the
academic year.

Expressed views. Throughout the year. Le Anne expressed consistent views
about mathematics learning, teaching and curriculum. Sh frequently spoke of
learning as discovery and teaching as facilitating, as exemplified in her assess-
ment of a sample teaching scenario during one interview:

[The teacher in this scenario isl questioning them...she's not
saying...what the answers are or what they need to do to find
them...she's having them, ah compare their answer with what
information they have...to maybe help thent think through whal
they should get. And this is what I do a lot;.., very few times do
I actually give the kids answers...But I ask them questions for
them to think through what the answer should be.

Thc importance of reasoning through mathematical problems as opposed to
simply knowing outcomes also came through clearly in her stated goals for the
geometry course. These expressed values appear consistent with the goals of CIA
and CIME and set expectations about how Le Anne herself would approach com-
puter-intensive mathematics and orchestrate her classroom. What then seems to
be the nature of Le Anne's mathematics and what characterizes her students' class-
room experience?

"Her" mathematics. Lc Anne herself never used a computer algebra system
(CAS) to solve real-world problems, complete modelling tasks, or investigate func-
tion families prior to CIME and the current study. However, she spent many hours
preparing for thc class by using Calculus T/L II (the ('AS available in her class-
room) and working through the computer labs in the CIA curriculum materials.
She became adept at using the technology and used it during interviews in ways
and for mathematics tasks that transcended as well as matched the CIA curricu-
lum. At the end of the year, Le Anne could quickly use Calculus T/L II to produce
and use symbolic rules, tables and graphs of functions, to edit these things and to
re-organize the images on the screen. She also developed a deeper sense of
exploring both situations modeled by a function and families of functions pre-
sented in the abstract. Evidence of the level of expertise she achieved is in an
interview task at the end of the year: Desct the the effects of changing the values of

3 Calculus T/l. II is distributed by Brooks/Cole Publishing Company, Pacific Grove,
CA.
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b, and c on the graphs of functions of the formf(xI = ce+f(b,x) + c. She begins
with a=b=c=I and entersflx). /^x+//x+/; the display appears as j(x) = 2 +
She noted:

I to any power will give you 1, so it's adding the 1 plus 1... (She
creates s table Os in Figure I. I Okay, at 0 I get undefined, and at
half, 4. Then it keeps on going down. IShe produces graph in
Figure 2.1 So if I graph it; it's a hyperbola (sic). Okay. Ah,
what I'm going to do is change a to maybe 2 and see what hap-
pens. [Teacher entered fix) = 2^x+ I/x+ I and produced a table
and then the graph in Figure 3, while losing the definition of the
first function, f(x) = 2 + .ffi,x)./...1 should have called [this new
function] a different function name because I lost the original.

LeAnne sketched and labeled each of these two graphs. She then tested a = -2 by
producing the table and graph in Figure 4. She noted that in this table "there are
more 'undefineds' here." After she created the graph, she discussed the conflict
between the graph and the table, sketching what she claimed is a better graph
(Figure 5). She then zoomed in on the portion of the graph for 0.5 x 2 but got
an error message and noted:

But yet on my table it's saying that ah, let's see. At 1 y should be
a 0; so there should be a point at I. Hmin. Okay. let's. Change
this [value of a to] 1; see what happens.

LeAnne explicitly compared the graph and table, noting a discrepancy and
predicting the pattern for negative values. She then tested one more value of a
(a = I) and concluded:

When it's positive you get ah, two hyperbolas (sic), and it keeps
increasing which means making a smaller one Ion the right side].
And then when it's negative it keeps going off into infinity ev-
ery other number. I mean ah, whole number it gives you a point
and then the next x which is, I've got it set at 2.5 at half thcn it
goes undefined.

LeAnne seemed to have a feasible attack to the problem. She used the tool
fluently to achieve her goals, occasionally editing her previous work or ideas. When
the tool produced unexpected outcomes, she stopped and interpreted them or pur-
sued them further. She explained in detail what she did with the CAS and why her
actions and results made sense. Her agile use of the CAS was apparent. However,
she consistently stated conclusions based on two examples (e.g., try a = / and
a = 2 and conclude about all a 0). If asked to further justify conclusions. LeAnne
relied on one additional example (e.g., a = I) and only occasionally reasoned
abstractly. This was "her math."

"Their" mathematics. In September. students met in the lab and worked
through explorations. LeAnne described the lab a:, a noisy place where students
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Figure 5.

asked many questions, puzzled over mathematical tasks and occasionally struggled
with tool syntax challenges Le Anne experienced while working through activi-
ties to prepare for class.

By the middle of the school year. Le Anne made some changes. Class began
in a non-lab classroom where, with occasional computer demonstrations, Le Anne
presented carefully prepared notes about how to use the CAS in the lesson. The
notes prescribed keystrokes and commands that students would need to answer
almost every problem they would encounter. Students then went to the lab and
smoothly executed the lesson. For example, one CIA lab explores temperature in
degrees Celsius as a function of temperature in degree Fahrenheit, with
F(C) = f(9,5)C + 32. Students began this "exploration" by assembling in the non-
lab classroom. Le Anne gave notes about using direct solve commands to deter-
mine the value of C given the value of F(C) and using computation commands to
compute F(C) given the value of C. Le Anne and her students referred to these as
"Finding Celsius" and "Finding Fahrenheit," respectively. Exchanges between
teacher and student lab pairs during the lab experience then fell mainly into one of
two predictable teacher-led patterns: determining whether a problem required "Find-
ing Celsius" or "Finding Fahrenheit." and dwelling on the keystrokes needed. One
example is Le Anne's exchange with two students as they sought F(56):

L: They're looking for Fahrenheit. Don't you have Fahrenheit?
[She scrolls up the screen to F(C)49,5)C + 32.] Right. So let's
reuse this, Fahrenheit. [She clicks on it.]

S I : I think so.

1: Then go into EXPRESSION. Okay?

S2: Okay.

1: EXPRESSION. [Student clicks on EXPRESSION option.]

S I : Okay, for this we put, oh, 56 and then this. [LeAnne points to
syntax notes for computing RC). Student enters F(56) and the
CAS responds with f(664,5).] 664 over 5.
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In addition to thc notes, Le Anne created supplemental worksheets to provide
practice with the tool. One worksheet showed printouts of Le Anne's CAS work to
answer CIA questions. The students' task was to replicate her work, checking that
they got the same results. The classroom mathematics experience moved from
experimentation and diversity of approaches to precision and rapidity of task
completion.

Initial comparison. Although Le Anne talked about valuing exploration.con-
ceptual development and reasoning why, her students spent class time taking notes
on Le Anne's explorations and then following these notes algorithmically. She
knew the open-ended, exploratory mathematics environment reflecting her CIA
goals, but she needed a less chaotic classroom. Her need for orderliness influ-
enced on-going changes in her classroom. The result was a blend of her explora-
tion and their organized activity.

Conclusion

In Le Anne's classroom. "their" math was "her" math at the beginning of the
course. By the end of the year, their math became a well-orchestrated march through
her tool-based tasks to lead to her mathematical conclusions. A myopic view of
this observatit..7, however neglects to recognize the growth over one year in Le Anne's
.understanding of mathematics, agility with technology, and awareness of key as-
pect% of innovative and radically different school mathematics curricula.
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THE INTERPLAY OF MATHEMATICAL UNDERSTANDINGS, FACILITY
WITH A COMPUTER ALGEBRA PROGRAM, AND THE LEARNING OF

MATHEMATICS IN A TECHNOLOGICALLY RICH
MATHEMATICS CLASSROOM

NI. Kathleen Heid,The Pennsylvania State University

As teachers begin to implement mathematics curricula that capitalize fully on computing
technology and that are focused on concepts and applications instead of on execution of by-
hand symbolic manipulation routines, their well-established routines of thinking about
mathematics and its teaching no longer apply in seamless fashion. This case study, a part of
which is reported herz, examines the ways that an experienced teacher who participated in
CIME, a four-week program on the teaching and learning of mathematics in technology
intensive environments, confronted some of the mathematical issues inherent in technol-
ogy-intensive mathematics. This report gives some insight into one teacher's understand-
ing of functions, independent variables, and parameters, and the ways that this understand-
ing interacts with her use of the new computing tools.

Researchers (Fennema and Franke. 1992) have suggested important compo-
nents of teachers' knowledge that impact on their teaching and their students' learn-
ing: knowledge of mathematics (Ball, 1988; Lampert, 1989) and mathematical
representations (Hiebert and Wearne, 1986), pedagogical knowledge (Clark and
Pet.erson, 1986; Shulman, 1986), and knowledge of how students come to under-
stand mathematics (Carpenter. Fennema, Peterson, Chiang, & Loef, 1989). In

computer-intensive environments, additional components of teachers' knowledge
that impact on their teaching and their students' learning may include knowledge
of the use of technology for the exploration of mathematics and knowledge of the
technology itself.

The Empowering Mathematics Teachers in Computer-Intensive Environments
project (National Science Foundation award number TPE 9155313) is a multiple-
year teacher enhancement/research project which focused on developing second-
aly mathematics teachers' abilities to implement computer-intensive mathematics
curricula. Teachers involved in the project (Computer-Intensive Mathematics
Education or CIME) completed several courses connected with their teaching of
Computer-Intensive Algebra' (CIA) (Fey, Heid, et al., 1991), a radically reformu-

The Computer-Intensive Algebra Project was funded by grants from the National Science
Foundation under award numbers DPE 84-71173 and MDR 87-51500 to The University of
Maryland (Principal Investigator: James T. Fey) and award number MDR 87-51499 to The
Pennsylvania State University (Principal Investigator: M. Kathleen Held). The CIME project
was funded by the National Science Foundation to The Pennsylvania State University through
award number 91-55313 (Pnncipal Investigators: M. Kathleen Heid and Glendon W. Blume;
Faculty research associate: Rose Mary Thick). Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors and do not necessarily reflect
the views of the National Science Foundation. First distributed through the Office ^f Tech-
nology Liaison at The University of Maryland, Computer-Intensive Algebra is currently
being distributed as Fey, J. T. & Heid, M. K. with Good, R., Sheets, C., Blume, G., Zbiek, R.
M. (1995).Concepts in Algebra: A Technological Approach. Dedham, MA: Janson Publi-
cations.

221

0



lated beginning algebra curriculum that is built around the concept of function.
employs calculators and computers as tools for 'student exploration, and develops
fundamental concepts of algebra (e.g., variable, function, equivalence, system)
through mathematical models of realistic situations. The CIME course experi-
ences (one four-week course the summer prior to their teaching CIA and one one-
week course the following summer) had three integrated components: mathemat-
ics; assessing students' understandings in technologically rich mathematics class-
rooms; and issues of teaching and learning in computer-intensive environments.

As teachers begin to implement mathematics curricula that capitalize fully on
computing technology and that are focused on concepts and applications instead
of on execution of by-hand symbolic manipulation routines, they find that their
well-established routines of thinking about mathematics and its teaching no longer
apply in the same seamless fashion. The case study reported here examines the
ways that an experienced teacher who participated in the CIME program thinks
about the new mathematics, the ways she interacts with computing tools, the ways
she attempts to understand what her students are understanding, and the ways she
converts her new experiences into a teaching/learning situation for her students.

Subject and data

The focus of the case study was Sara, a teacher who had taught mathematics,
almost always first-year algebra, for over 20 years in the same rural high school.
The primary data used as a basis for this case study consists of verbatim transcripts
from a variety of sources over a thirteen-month period: task-based, scenario, and
documentation interviews with Sara, eight observation cycles focused on the CIA
class Sara taught, small group sharing sessions in which Sara participated during
the summer courses, and sessions during both summers during which Sara helped
plan and execute task-based interviews with a ninth grade student who had com-
pleted a CIA course.

We conducted three types of interviews' with Sara during the summers pre-
ceding and following hef first year of teaching CIA. Task-based interviews (TB1
at the beginning of Summer I, TBII at the end of Summer 1, and TBIII during
Summer 2) were designed to get a picture of Sara's understanding of mathematical
concepts underlying CIA and her use of technological tools to explore those con-
cepts. Scenario interviews (SCI at the beginning of Summer I. SCII at the end of
summer 1, and SCIII during summer 2) were designed to tap S.a's abilities to
understand students' mathematical understanding as seen through interview tran-
scripts provided for her. A documentation interview (DO(') during the second
summer provided data on Sara's perception of teaching CIA.

We conducted four rounds of observations of the CIA class that Sara taught.
Each round consisted of several days of observations. Pre-observation conversa-
tion and post-observation conferences along with the observations, were focused

InWrviews and observations were designed and conducted by M. Kathleen Heid,
Glen Blume, and Rose Mary Thick. Analysis was aided by Mathematics Educa-
tion doctoral students Barbara Edwards, Wilhelm ina Mazza, and Barbara Edwards.
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on Sara's instructional decision-making. Finally, we analyzetl portions of what
happened during the summer courses. We analyzed what Sara said about teaching
CIA during small group sessions, and we studied the ways in which she attempted
to assess student understanding through task-based interviews she and several oth-
ers conducted both summers.

Results

Analysis of the data is currently ongoing, but preliminary results suggest pos-
sible tensions related to teaching mathematics in technologically rich environments.
Several results address the effects of a teacher's developing understanding of math-
ematical concepts, of the use of computing tools, and of new ways to think about
teaching and learning. An example of these effects is discussed below.

As Sara thought about, talked about, and taught a functions-oriented algebra
course, her personal understanding of function came to the fore. Sara saw little
use for function notation, often using explicit function rules rather than more ge-
neric function notation. Early in December, for example, Sara was beginning a
total class discussion of a CIA problem which involved attendance at a talent show
as a function of the price of a ticket. The function rule with which the class was
working was a(t) = 1.05(800 500 and the class was finding the ticket price that
yielded various attendance values. The following interchange ensued:

Sara: What was the input variable in this situation?

S I : Ah,... the input variable was the price of a ticket.

Sara: Okay. Okay, S2, what was the output variable?

S2: Attendance.

Sara: Okay, the output variable was attendance. And S3, do you remember
what another form for the rule was that we were looking for yesterday?

S3: a equals one point oh five times the quantity eight hundred minus fifty t...

Sara: Okay, a equals ... so we know that instead of writing a of t, we can also
just write that as a equals when we're wanting to find the attendance.
When would you write it as simply a equals? Which command would
you be using when you would do that?

S: The solve command.

Sara is suggesting to her class that they should find the attendance for a given
price (say $8) by "solving" the equation a = 1.05 (800 - 50*8). Even though the
program with which Sara's class was working would have allowed the user to ask
the program to "evaluate" a(8), Sara prefers not to use function notation and finds
a way to get the numerical answer without such notation. Interestingly, Cale T/L
II is a program especially designed to force the user's attention on the objects with

Cale TA, 11 by J. Douglas Child is distributed by Brooks Cole; Pacific Grove,
CA.

223

G



which they are working. Before asking for some particular symbolic manipula-
tion, the user must choose the object with which he or she is working. To evaluate
the function a(t) for t = 8, the user would (1) select "function," (2) define the
function, a, from the function window, then (3) select "expression," (4) write a(8)
from the expression window, and (5) evaluate it. Sara was proposing what was.
for her purposes, a shorter method: ( I ) select "function," (2) define the function, a,
from the function windoV, (3) redefine the function a as a = 1.05 (800 50*8), and
then (4) write resulting redefined function, which would be displayed in evaluated
form. The fact that the Computer Algebra System her CIA class used was predi-
cated on a function as object approach was no help to Sara since she was reticent to
explore the computer program and used it to get answers even if the methods
producing those answers made little conceptual sense. Her use of the function
concept suggested a "process" rather than an "object concept. This tendency to
view function as process along with her aversion to function notation played itself
out as Sara encountered families of functions.

Prior to teaching CIA, during the first CIME summer Sara was just beginning
to deal with families of functions, at first allowing only families with familiar
names (e.g., linear. quadratic). Shc took a "function as process" approach to ex-
ploring farailies of functions with which she had no previous familiarity. For
example, in investigating the effects of a on f(x) = f(a,x) + hx + c, Sara started by
assuming a b-value of 5 and a c-value of -5. She continued, saying "Well, let's just
let x be 2, okay?" She then calculated the value of the resulting expression, f(a2)
+ 5(2) - 5, for a = -2 and a = -4. and concluded that the function decreases as a
decreases since f(-4,2) + 5(2) - 5 < f(-2.2) + 5(2) - 5. The fact that she took a
numerical instead of a graphical approach to her exploration may have been thought
to he related to her relative ii.zxperience at that time with graphics programs and
their use in teaching algebra. The following summer. however, aftcr having taught
CIA to a low-ability group of ninth graders for a year, her approach to exploring
functions was not very different from the first summer's approach. In exploring
the function f(x) = a' + f(h,x) + e, she decided to let h be equal to I, let c be equal
to 0, and let x be equal to 2. She then calculated and examined values of a2 + f(1.2)
as the value of a increased in a manner similar to her exploration the previous
summer. She continued the exploration, this time seeming to reverse the role of
the parameter and the independent variable completely, graphing f(x) = x2+ f(1,2)
, and treating the original a as if it were the independent variable instead of the
parameter. Because Sara has fixed the value of the original independent variable
at x = 2, she is examining a different function than was originally intended and
concludes that changing h and c have t same effect on the function. She noted
that. in so doing, "whether I change the h or the c, it has the same effect." Because
the function .iotation itself has little meaning for Sara, the fac ?. that she is examin-
ing f(x) = a' + f(h.x ) + c is no different from her examining f(a) = a' + f(h,x) + c.

For Sara, teaching mathematics in a technology-intensive environment meant
encountering new mathematics or encountering old mathematics that takes on new
importance. In many traditional mathematics textbooks, there was no confusion
about the meaning of the function notation. In 1.1 x = 4' + 5,x) + 6, it was clear
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that the independent variable was x. In those environments, Sara and her students
would have had to confront the meaning of the function mtation. In the technol-
ogy-intensive environment surrounding the teaching of CIA, both Sara and her
students were confronted with situations in which clearer understandings of ttmc-
tions and function notation were needed. 'Perhaps because Sara was not one to
explore the tool on her own and because she could find ways, however conceptu-
ally inappropriate they might have been. to generate numerical answers without
using appropriate notation, her understanding and use of function notation seemed
not to improve substantially over the year.

Sara's emerging understanding of functions and avoidance of function nota-
tion, her reluctance to explore the capacity of the computer, and her lack of expe-
nen e with families of functions combined to produce a confusing perception of
one of the central CIA mathematical concepts. Other data suggests that this set of
circ =stances had significant effects on her students' mathematical understand-
ings.
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PRESERVICE ELEMENTARY TEACHERS' UNDERSTANDING OF
MULTIPLICATION INVOLVING FRACTIONS

Diane S. Azirn, Washington State University

This research focuses on preservice elementary teachers' understanding and reconstruction
of understanding about multiplication in the fraction domain. At the start of the study, 44%
of the 50 preservice teachers studied reported that they had a method for reasoning about
multiplication with fractions; 28% were able to describe a situation modeled by multiplica-
tion with a fraction operator. Although reasoning individually, the preservice teachers re-
vealed common dimensions of understanding about taking fractional parts of non-unit
wholes, and about numerical effects, referents for results, and the invariance of multiplica-
tion as they reconceptualized multiplication with fractions. "Sense" of multiplication
and "sense" of fraction relationships were forms of reasoning that supported the re-
conceptualization process.

With a renewed interest in conceptual understanding of mathematics as a fun-
damental purpose for classroom instruction, the conceptual understandings of teach-
ers and prospective teachers emerge as an extremely important issue. Recent stud-
ies of teachers' knowledge of rational numbers concepts and procedures have re-
vealed such findings as the fact that, "Ten to 25 percent of the 12181 teachers
missed items which we feel were at the most rudimentary level. In some cases,
almost half the teachers missed very fundamental items- (Post, Harel, Behr, &
Lesh, 1991, p. 186). Research into preservice teachers' understandings of multi-
plication with decimal numbers has resulted in similar findings (e.g., Graeber &
Tirosh, 1988; Hare!, Behr, Post, & Lesh, 1994).

The current research focuses on preservice teachers' understanding of and
re-construction of understanding about multiplication with fractions. Multi-
plication with fractions is included in United States textbooks in the middle school
grades, and teachers are expected to teach this topic with a conceptual orientation.
having knowledge of its potential for modeling real world situations. This study
researches prospective teachers as they enter an elementary mathematics methods
course (following the conclusion of their mathematics content coursework), and
addresses the following research questions: (1) How do the preservice teachers
reason about multiplication with fractions as they enter the methods course? (2)
What common dimensions of understanding about multiplication with fractions
do the prewrvice teachers evidence as they construct understanding? (3) How do
individual preservice teachers construct understanding? (4) What forms of rea-
soning appear to influence or support their re-construction of understanding about
multiplication in the domain of fractions?

These questions focus on preservice teachers' understandings about multipli-
cation with fractions from four perspectives: their entry level understandings or
forms of reasoning, the content-related structures of understanding that they col-
lectively reveal as thcy construct new understanding. perspectives on individual
preservice teachers' methods of constructing and re-constructing understanding.
and theoretical speculation about reasoning that supports the re-construction of
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understanding about multiplication in the fraction domain. The theory, or theoreti-
cal framework, within which this research is conducted is the research-based theory
that whole number multiplication must be re-conceptualized in the rational num-
ber domain (Greer, 1994; Hiebert & Behr, 1988):

It is likely that there are not smooth continuous paths from early
addition and subtraction to multiplication and division, nor from
whole numbers to rational numbers. Multiplication is not sim-
ply repeated addition, and rational numbers are not simply or-
dered pairs of whole numbers. The new concepts are not the
sums of previous ones. Competence with middle school num-
ber concepts requires a break with simpler concepts of the past,
and a reconceptualization of numbers itself. (Hiebert et al., p. 8)

The research questions are framed within this theory. It was the purpose of
this research to infer prospective elementary teachers' understandings about mul-
tiplication with fractions, their methods of constructing and re-constructing un-
derstanding,' common structural dimensions in their re-construction of under-
standing, and particular forms of reasoning supporting their re-conceptualization
of multiplication in the fraction domain.

Methodology

Fifty preservice elementary teachers enrolled in two sections of a required
state university mathematics methods course taught by the researcher contributed
research data in a three-phase qualitative research design:

Phase I (weeks 1-4): Entry-level assessment of understandings of preservice
teachers through one-hour individual audiotaped interviews focused on their work
on a written inventory that requested them to create and solve a word problem
modeled by each of four given fraction and whole number multiplication expres-
sions.

Phase H (weeks 5-10): Instruction about multiplication with whole numbers
and fractionsconceptual models for multiplication, numerical pattc -.ns in multi-
plication with whole numbers and fractions, and situations modeled by multiplica-
tionin order to support the preservice teachers in construction and re-construc-
tion of understanding (rather than to provide and measure the effects of a treat-
ment); collection of coursework; and keeping of field notes of the class sessions
about multiplication.

Phase HI (weeks 11-16): Inferring of understandings and crnstruction pro-
cesses in the preservice teachers' development of understanding, through one-
hour audiotaped individual interviews during which they were asked to describe
their understandings about multiplication with fractions and to conceptually inter-

' Students both constructed understanding about whole number multiplication and
re-constructed understanding about whole number multiplication in the fraction
domain.
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pret a sample of fraction multiplication expressions, through continuing coursework,
and through class field notes.

During and following Phases I-III, the data were interpreted and analyzed to
address each research question. Processes of analysis, including interpreting, in-
ferring, and categorizing forms of reasoning and structures of understanding, were
utilized. Review and evaluation of the interpretations and findings by a cohort of
mathematics education researcher experts. and triangulation of the data through
the complementary data sources for each preservice teacher, were utilized.

Findings

As they entered the methods course. 8 (16%) of the 50 preservice teachers
were able to create word problems modeled by all four of the whole number and

1

fraction multiplication expressions on the written Inventory [24 x 37, 7 x

1 1 2 3
1 -2 x -§ and -3 x -4 1. Eighteen students' (36%) were not able to create a word

problem for any of the three fraction multiplication expressions on the Inventory,
and an additional 18 students (36c/r) were able to create a word problem for only
one of the three fraction multiplication expressions, the expression with one whole

1

number factor [7 x -4 ]. In other words, 36 students, 72% of the students in the

study, entered the methods course unable to describe a situation that would be
modeled by multiplication with a fraction operator. In addition 4 students entered
the methods course unable to construct a word problem appropriately modeled by
the whole number multiplication expression 24 x 37.

Twenty-two students (44%) entered the methods course reporting that they
had been taught or had discovered a form of reasoning about multiplication with
fractions less than 1 [the forms being that multiplying by a fraction less than I
reduces other numbers, divides other numbers, or takes a fraction of. other num-
bers]. Each of the 14 students who succeeded in creating a word problem for one
or both of the Inventory multiplication expressions with a fraction operator was
among this number. The other 28 students in the study (56%) reported that they
had no method for reasoning about multiplication with fractions as they entered
the methods course. Their knowledge was strictly procedural.

Structural Dimensions of Understanding

Structural dimensions or benchmarks of learning common to the preservice
teachers as they constructed and re-constructed understanding about multiplica-
tion during tile study arc described as follows:

The preservice teachers arc referred to alternatively as "preservice teachers" or
"students," They were students in the methods course in which this study was
conducted.
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Understanding the Numerical Effects of Fraction Multiplication

Students provided evidence of constructing knowledge about the numerical
results of multiplying with fractions: that multiplying tr a number less than and
greater than 1, respectively, reduces or enlarges other numbers. During their sec-
ond interviews, 48 of the 50 preservice teachers discussed the numerical results of
fraction multiplication in relation to the multiplicative identify, 1 (The remaining
two students were confused in their understanding.). However, not all students
could interpret fraction multiplication expressions using the commutative prop-
erty, or in terms of the influence of each factor in the expression on the other
factor: fewer than 50% of the preservice te,chers departed the study demonstrat-
ing the flexibility to interpri expressions in two directions.

Conceptualizing a Fractional Part of a NonUnit Whole

For one-half of the students, conceptualizing a fractional part of a quantity
other than one discrete unit (other than 2/3 of 1 cup or 2/3 of I hour, for example),
involved new learning. Even though 14 of the students in the study had learned or
discovered that they could reason about multiplying with fractions using the word
of (e.g., 1/3 of 6 for 1/3 x 6), 10 of these students, in addition to other students in
the study, experienced difficulty physically representing and making sense of ex-
pressions such as "2/3 of 3/4" (2/3 x 3/4). Learning to operate on a non-unit quan-
tity when the operator is a fraction less than I (such as learning to take 2/3 Di- 3/4
rather than 2/3 of I unit) emerged as an important benchmark in the preservice
teachers' continuing development of understanding of multiplication with frac-
tions. As students constructed understanding, some students experienced diffi-
culty, similarly, conceptualizing a fraction greater than 1 operating on a non-unit

1 3 1

whole, such as 1 -3 x -4 or 2 x 4. All students revealed during their second

interviews that they had constructed understanding, in some form. of the taking of
a fractional part of a non-unit whole. Methods students used to conceptualize this
process with operators less than and grcater than differed.

Interpreting Referents of Results

Api oxiinately one-third of the students experienced difficulty identifying
the referents, or units of measure, for fraction multiplication results. They experi-
enced difficulty understanding the whole (or referent unit of measure) to which the
result of the multiplication referred. Most commonly, students who experienced
difficulty interpreted the referent for the result of multiplication using the original
quantity being reduced or enlarged: 3/4 x 1/2 = 3/8, for example, was interpreted
as 3/8 of "1/2 unit- rather than "3/8 unit." Some difficulties in interpreting refer-
ents seemed related to the fact that students attempted to make sense of traction
multiplication through representing the numerical answers to, rather than the con-
ceptual processes involved in, fraction multiplication expressions such as in
attempting to represent the answer of 3/8 (and interpreting this as 3/8 within the 1/
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2 unit), rather than representing the conceptual process of taking 3/4 of 1/2 and
then interpreting the referent for the 3/8 Reasoning about and representing the
conceptual processes involved in fraction multiplication expressions supported
students in interpreting referents for multiplication results.

Understanding of Multiplication as an Invariant Process

One-third of the students described multiplication, during their second inter-
views, evidencing a conceptualization of multiplication as an invariant process
modeling the same situations or illustrating the same conceptual models whether
with whole numbers or fractions. Other students, who could interpret multiplica-
tion expressions with fraction and whole number operators, interpreted as dis-
tinctly different the concepts or models involving whole number operators and
those involving fraction operatorsfrequently a repeated addition or equal groups
model for whole numbers and a "breaking down" concept (in the words of several
students) for fraction operators. Conceptualizing multiplication as an operation
modeling the same concepts or situations with whole number and fraction opera-
tors was difficult. Although students could discuss the numerical effects of multi-
plying by numbers greater than and less than 1. interpreting multiplication with
operators both greater than and less than 1 using the same conceptual model (e.g.,
equial groups, multiplicative compare, and area) was difficult.

Individual Forms of Reasoning and Constructing Understanding

The construction processes revealed by preservice teachers as they developed
understanding of the four structural dimensions described above were distinctly
unique (see Azim, 1995). During their second interviews, students' reasoning and
understandings could be categorized in three categories: students constructing
concepts for the first time during the intervicw--19 students (38%); students re-
constructing concepts-17 students (34%); students building more complex con-
structions on their own-14 students (28%).

Forms of Reasoning Supporting Subjects'
Construction of Understanding

Two particular forms of reasoning seemed to support students' construction
of understanding of multiplication with fractions throughout the study: (1) their
multiplication "sense," or forms of reasoning about multiplication (particularly
with whole numbers), and (2) their fraction "sense." or sense of size relationships
between fractions or fractional quantities. Students who had a morc clearly devel-
oped sense of multiplication with whole numbers (having one or two even implic-
itly constructed conceptual models to draw on) and who could discuss fractional
quantities in relation to each other (such as the relationship that 1/2 is one-third of,

or one of 3 equal parts in, 1

1

drew on these senses to construct meaning for

fraction multiplication. Students who demonstrated a limited understanding of
multiplication with whole numbers (having a very weak or no concept of this op-
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eration), and a limited sense of fraction relationships, expenenced greater diffi-
culty interpreting fraction multiplication. The most powerful finding of this study
was the repeated observation of the influence of the interaction of the levels of
development of these two forms of reasoning on the preservice teacher's recon-
struction of understanding about multiplication. This finding is parallel to a sum-
mary by Sowder (1992) regarding good estimators: "They demonstrate a deep
understanding of numbers and operations, and they continually draw upon that
understanding" (p. 375). Deep understanding of multiplication and of fractions
supported preservice teachers in their construction of understanding about fraction
multiplication.

Other Theoretical Con necti ons

The data in this study support Greer's (1994, p. 77) observation that, "The
invariance of multiplication.., over the numbers is a powerful idea that potentially
can be harnessed to overcome the limitations of intuition." Students constructed
understanding (and started to construct understanding) about multiplication as an
invariant operation through different reasoning processes; knowledge that multi-
plication is invariant supported them in their attempts to reinterpret multiplica-
tion with fractions. Students also revealed evidence of using both quantitative
reasoning (reasoning about quantities without numerical reference) and numerical
reasoning (reasoning about numbers evaluating quantities)two forms of reason-
ing theorized by Thompson (1994)--in their reconstruction of understanding.
Students who constructed each of the four dimensions (described above) to greater
degrees evidenced both numerical and quantitative reasoning in the construction
process.
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THE ROLE OF ONE TEACHER'S MATHEMATICAL
CONCEPTIONS IN HIS IMPLEMENTATION OF A

REFORM-OR1ENTED FUNCTIONS UNIT

Gwen Lloyd, University of Michigan
Melvin R. (Skip) Wilson, University of Michigan

This paper links the conceptions of an experienced high school mathematics teacher to
aspects of his first implementation of a reform-oriented curriculum during a six-week func-
tions unit. The teacher exhibited comprehensive understandings of the function concept,
dominated by graphical representations and a covariation description of function. These
features contributed to classroom emphases on the use of multiple representations to under-
stand dependence patterns in data and characteristics of different types of relationships.

The current reform movement in mathematics education places new demands
on teachers to offer students varied classroom opportunities to develop deep un-
derstandings of the function concept. The envisioned treatment of functions in
grades 9-12 includes modeling real-world situations using functions; representa-
tions and interpretations of relationships using tables, graphs, equations, and ver-
bal descriptions; translations between multiple representations of functions; and
recognition of the variety of problem situations that can be modeled by the same
type of function (National Council of Teachers of Mathematics [NCTM], 1989).
There is little empirical information about how secondary mathematics teachers
cope with the complexity of change as they attempt to incorporate such recom-
mendations into their teaching practice. This paper documents the influence of
one veteran high school teacher's mathematical conceptions on his instruction
during a six-week functions unit using the reform-oriented curricular materials of
the Core-Plus Mathematics Project.

Previous empirical and theoretical work about teachers' and students' under-
standings of the function topic contributed to the conceptualization of this study
(e.g. Even, 1990; Leinhardt, Zaslavsky, & Stein, 1990; Norman, 1992; Vinner &
Dreyfus, 1989). Our framework also builds on the growing body of research and
theory related to teachers' knowledge and beliefs about mathematics and teaching
that has begun to support the notion that teachers' conceptions contribute signifi-
cantly to their instructional practice (Fennema & Franke, 1992). In particular,
recent investigations have reported that experienced teachers' knowledge acts as a
critical filter in the interpretation of reform-oriented mathematics curricula
(Gamoran. 1994; Wilson, 1990). Taken as a whole. this literature emphasizes the
need for further consideration of the complex relationship between teachers' con-
ceptions and their instruction in the mathematics classroom.

Research Design

This study followed an interpretive case study design to investigate the con-
ceptions of Mr. Allen, a I4-year veteran high school mathematics teacher, as part
of a larger, ongoing project examining the experiences of three teachers imple-
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menting the Core-Plus materials for the first time. During the 1994-95 school
year, Mr. Allen voluntarily used the Core-Plus Course 1 materials in a single class
of ninth grade students. The public school district where he teaches is located in a
small urban community in the Northeast United States. Data were collected be-
tween September 1994 and January 1995 using interviews, observations, and class-
room artifacts. All interview data were transcribed.

At the beginning of the school year, Mr. Allen participated in two video-taped
baseline interviews. In the first interview, referred to as the function sort, he was
given the task of interpreting and organizing a stack of 32 cards depicting math-
ematical relationships that varied along these dimensions: family of function, rep-
resentation, and particular characteristics such as functionality or continuity.
These differences supplied a challenging set of situations for Mr. Allen to analyze
and multiple criteria on which to base an arrangement of the cards. The second
baseline interview was used to further investigate his informal and formal descrip-
tions of the function concept and his orientations toward teaching about functions.

Mr. Allen's classroom was observed on a daily basis for 26 consecutive les-
sons (11/11/94 12/22194) while he implemented the Core-Plus Patterns of Change
unit that focuses on varied representations and explorations of real-world func-
tional relationships. Detailed fieldnotes of his teaching were taken, and worksheets,
quizzes, and tests were collected. A videocamera and remote microphone fol-
lowed Mr. Allen as he moved around the classroom, capturing both whole-class
tind small group instruction. Observations were supplemented by four interviews
during which Mr. Allen was asked to comment on certain instructional decisions.
At the conclusion of his instruction with Patterns of Change, he watched selected
videotaped segments from the function sort interview and reflected on his experi-
ence with the unit as it related to the particular segments.

Mr. Allen's Conceptions Prior to Teaching the Unit

Given a choice of formal textbook definitions of function including both cor-
respondence and ccvariation descriptions. Mr. Allen favored definitions involving
univalent correspondences between sets. However, his informal characterization
of function involved "the relationship between two things and ... how a change in
one affects the other," a covariation relationship that he claimed is most clearly
viewed in a graphical display. Despite his contrasting concept image and defini-
tion, Mr. Allen demonstrated flexibility in his thinking as he appreciated the differ-
ent utilities of the two notions of function: his covariation image describes "how
the two variables are working together," but the more restrictive univalent corre-
spondence definition is indispensable because "how [the variables] work together
determines whether it's a function or not." Although Mr. Allen made occasional
use of his formal concept definition. for example to determine the functionality of
unfamiliar relationships, his covariation image dominated his verbalizations and
actions in the function sort interview, during which he repeatedly asked himself
the question, "As one changes, what happens to the other one?" and relied heavily
on graphical representations to interpret the function sort situations. His analysis
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of each relationship consisted of first developing a general sense of how a change
in one variable affects the other, and then attaching a label that indicates the appro-
priate family of function. For instance, to understand a verbal description of the
area and diameter of a pizza, he first expressed that "as the diameter would in-
crease, the area would increase by that factor to the second power," and then con-
cluded that the relationship was "quadratic.-

Mr. Allen's efforts to develop appmpriate labels also illustrate his graphical
proficiency. When he examined cards showing graphs, he created family labels
(e.g. linear, quadratic, etc.) on sight by immediate recognition. In contrast, he
found the information in verbal and tabular representations to be less accessible
and thus made frequent translations to graphs before labeling them. For example,
although examination of the table shown in Figure I led Mr. Allen to observe that
there are "some square numbers on the bottom," he did not achieve a conclusive
family label until he created a graph to help him "see" the relationship.

x -2 -1

1

0 1 2

0

Figure I. A table of "perfect squares- and Mr. Allen's corresponding graph.

Looking at his graph, he announced that "it's parabolic centered around nega-
tive 1," and concluded that the table represents a quadratic relationship. Mr. Allen's
visual strengths also facilitated his construction of a card ordering, based on tradi-
tional teaching sequence, that began in the cards showing graphs and resulted in
similar core orderings in each of the four representations of the sort as follows:
linear, polynomial, exponential and logarithmic, and trigonometric. The conse-
quent organization allowed Mr. Allen to point out connections between different
representations of the same family of function.

To summarize briefly, covariation and graphical representations dominate Mr.
Allen's thinking about functional situations. Covariation notions guide him to-
ward the development of a complete description of a dependence pattern, includ-
ing association with a major family of function. Graphs offer Mr. Allen the best
display of covariation, serve as the primary format to which other representations
are translated for analysis, and thus act as the source for connections between
different rerxesentations of the same family of function.

I. inks Between Mr. Allen's Conceptions and Instruction

Mr. Allen's strong covariation image played a crucial supporting role in his
adaptation to the Core-Plus approach to functions that is summarized in this ex-
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cerpt from the Patterns of Change Student Text: "In many cases, we can describe
the relation between two variables by saying that one variable is a function of
another, particularly if the value of one variable depends on the other" (p. 4). Al-
though his formal correspondence definition and typical classroom introduction of
function appeared to be closely tied to traditional materials and activities, Mr. Allen's
flexible understandings enabled him to comfortably enact the less formal covariation
approach laid out in Patterns of Change and place emphasis on dependence rela-
tionships throughout his instruction. He repeatedly engaged students in discus-
sions framed by the very same questions that he had applied to his own thinking
during the function sort: "is there a relationship?" and "How are the variables
related?" The use of these questions put his own images into action in the creation
of opportunities to encourage students to interpret features of a variety of depen-
dence relationships.

Consistent with the dominance of visual representations in his own thinking
about functions, Mr. Allen gave precedence to graphs in his implementation of the
unit, portraying them as crucial tools that offer the optimal display of patterns of
dependence. As he pointed out to a student, "The.table gives you times and heights,
but the graph gives you the relationship between time and height." The privileged
position of graphs among the representations he used in the classroom was further
evidenced in his numerous additions of "investigative graphing" tasks to assign-
ments, and his urging of students to mak" effective use of the graphics calculators
to quickly create visual representations.

Although Mr. Allen's conceptions and instruction were dominated by graphi-
cal displays of relationships, his classroom actions also demonstrated a high re-
gard for explorations of multiple representations of problem situations. Mr. Allen's
overriding interest in the determination of covariation patterns contributed to his
tolerance of representations other than graphs. He appreciated the centrality of the
variety of tables, graphs, equations, and verbal descriptions in the Patterns of Change

activities because of the different information that each representation provides.
As he explained, although graphs are the most helpful to him personally, "some
people might be able to see the relationship with an equation, and ... making a
table can maybe help them." In accord with his belief that further representations
offer increased opportunities for students to understand a relationship, Mr. Allen
frequently supplemented the Patterns of Change materials with extra representa-
tional tasks, including development of both recursive and explicit rules, construc-
tion of tables and graphs, and writing verbal descriptions of covariation patterns.

In addition to his classroom focus on the variety of perspectives provided by
multiple representations, Mr. Allen emphasized the links between different dis-
plays of the same relationship. Reflecting the strength of the connections that he
exhibited during the baseline interviews, Mr. Allen repeatedly communicated to
students that the "rule, table, and graph all show the same thing." He capitalized
on graphs in his instruction as a starting point from which to stress connections
between multiple representations of the same situation, and to accentuate the fea-
tures that distinguish different families of functions.
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The main themes just discussed may be best illustrated by an example of Mr.
Allen's classroom interactions that occurred during a Patterns of Change lesson
involving the development of tables, graphs, and the explicit equations/m.2.50T
and P=2.50T-450 relating a theater's daily income I and profit P to the number of
tickets sold T. After students had investigated this situation in their groups, Mr.
Allen used the two linear graphs for I and P versus T (as shown in Figure 2) as a
focal point for a whole-class summary discussion.

Figure 2. Reproduction of Mr. Allen's display of two graphs on the chalkboard.

Mr. Allen first drew attention to the constant rate of change in the covariation
relationship between 1 and T hy noting the increasing graph and asking, "How is it
going up? If you sell I ticket, how much income do you get?" This ongoing form
of questioning allowed him to highlight that "it is going up by the same amount
each time," and to subsequently connect the constantly increasing data values to
the linearity of the graph: "That's why you see the dots lining up." Having illus-
trated the constant rate of change ir I. Mr. Allen attempted to demonstrate the
same feature in P by asking "Does a' iyone notice anything about these two lines?"
Mr. Allen related the students' visual observations that the lines are straight, paral-
lel, and increasing back to the table data and equations: "For every ticket you sell,
both are going up by 2.50 for each ticket sold. Notice in the equations, both are
multiplied by 2.50." In a similar manner. he pointed out the different "starting
points" for I and P through comparison of the graphs and equations. Thus with his
demonstrations rooted in graphical displays. Mr. Allen identified distinguishing
features of linearity and established links between their emergence in the varied
representations of the theater situation.

The above illustration exemplifies the tight connections between Mr. Allen's
conceptions and his instructional emphases that were evidenced throughout his
implementation or ''ge unit. His graphical proficiency and personal focus on pat-
terns of covariatiI empowered him to utilize the Core-Plus materials to facilitate
classroom interactions that constructed explicit ties between representations and
types of functional relationships.

Discussion
Our findings corroborate those of other studies suggesting that teachers' com-

prehensive, well-organized conceptions contribute to instruction characterized by
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an emphasis on conceptual connections, powerful representations, and meaning-
ful discussions. In stark contrast to the teacher in the study of Stein, Baxter, and
Leinhardt (1990) whose limiiPd knowledge of functions led to narrow instruction
marked by missed opportunities to highlight connections between concepts and
representations, Mr. Allen applied his flexible understandings to his implementa-
tion of the Core-Plus unit in ways that created such opportunities. Moreover, this
study illustrates the notion that teachers who can make connections between dif-
ferent approaches to content can adjust their teaching to accommodate ideas that
are not traditionally emphasized in the school curriculum. Because Mr. Allen was
able to reconcile the Core-Plus approach to functions with the prominent features
of his own conceptions of functions, the Patterns of Change materials furnished a
way for him to translate his understandings into new but comfortable classroom
strategies.

This paper focuses on the impact of Mr. Allen's conceptions of function On his
instruction with the Core-Plus materials, but there were certainly other important
influences on his teaching. For instance, throughout the year, he faced a tension
between teacher direction and student independence. As Mr. Allen himself sug-
gested, finding a suitable balance will involve developing greater familiarity with
the Core-Plus materials and classroom behavior in a more student-centered class-
room. The resolution of this struggle is particularly important in light Of Mr. Allen's
deep conceptions: the more comfortable he can become with his newly-defined
role as teacher in the reform classroom, the more freedom and energy he will be
able to devote to the application of his comprehensive understandings to even
more meaningful opportunities for student learning.
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EXPERIENCED TEACHERS DO NOT GIVE UP EASILY: A
TEACHER'S STRUGGLES WHEN TEACHING

CONDITIONAL PROBABILITY
FOR UNDERSTANDING

José (Alberto) Contreras, The Ohio State University

Objectives

In this presentation I describe and discuss some teaching episodes in which
an eighth grade algebra teacher, Mr. Kantor, provided meaningful explanations of
the concept of conditional probability (CP). I attempt to understand Mr. Kantor's
explanations and what they reveal about the complex cognitive skill of teaching.
To this end, I focus on (a) Mr. Kantor's content knowledge (CK) and pedagogical
content knowledge (PCK) related to CP, and (b) how this topic is structured in the
textbook.

Participant and Setting

Mr. Kantor holds secondary certification and has been teaching mathematics
for about five years at a middle school in a suburban school district known for high
student achievement.

Theoretical and Empirical Background

Shulman (1987) theorizes that teachers transform their personal understand-
ing of subject-matter knowledge to make it understandable to students. That is. he
contends that teaching is a pedagogical process. Doyle (1992), on the other hand,
argues that this process is both a curricular and a pedagogical process. This pro-
cess draws theoretically upon three main types of knowledge: CK, PCK, and cur-
ricular content knowledge. One means through which teachers transform a cur-
ricular topic is the use of explanations. Teachers' explanations are receiving in-
creased attention in research on teaching (e.g., Borko et al., 1992).

Data Collection

I relied mainly on videotaped lessons to gather information about Mr. Kantor's
explanations. These data were supplemented with questionnaires, open and
semistructured interviews, stimulated recall interviews, and written documents.

Data Analysis and Results

Mr. Kantor posed sever problems involving conditional probability in which
he provided some meaningful explanations of why P( A n B) = P(A).P(B given
A). The analysis also shows that his CK is rich and connected, that his PCK is
growing, and that his CK, PCK, and the textbook have an impact on his teaching.
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Conclusions

These findings suggest that knowledgeable teachers can use their CK and
PCK to provide conceptual explanations, and also provide information about how
teachers knowledge affects their instruction.
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TEACHERS' PERCEPTIONS OF THE ROLE OF' LIMITS
IN THE TEACHING OF CALCULUS

Linda Simonsen, Montana State University

The main goal of this research was to investigate high school advanced place-
ment calculus teachers' subject matter and pedagogical perceptions by examining
the following questions: What are the teachers' perceptions of the concept of
limit, the role of limits, and the teaching of limits in calculus? Are these teachers'
perceptions associated with their participation in a technology enhanced calculus
reform project focused on staff development?

A multi-case study approach involving detailed examination of six teachers
was used. The sample consisted of three "project- teachers who had participated
in a particular calculus reform project and three "independent- teachers who had
not participated in any calculus reform project. The data collected and analyzed
included questionnaires. interviews, observational field notes. videotapes of class-
room instruction, journals, and written instructional documents. Upon completion
of the data collection and analysis, detailed teacher profiles were created with
respect to the questions above. The results of this study were then developed by
searching for similarities and differences across the entire sample as well as com-
paring and contrasting the group of project teachers and the group of independent
teachers.

Results indicated that the teachers perceived calculus as a linearly ordered set
of topics in which the concept of limit formed the backbone for appreciating and
understanding all other calculus topics. The teachers felt the intuitive understand-
ing of limit, was essential to the further understanding of calculus. However, little
class time was devoted to developing this intuitive understanding and little em-
phasis was given to drawing connections between limits and subsequent calculus
topics. The independent teachers devoted tnuch time to discussing formal epsilon-
delta definition and arguments. The complex relationship between teachers' per-
ceptions and classroom practice appeared to be affected by the significant influ-
ence of the teachers' goals of preparing students for the AP exam and college
calculus and the authority given to the calculus textbook.

Differences between the group of independent teachers and the group of project
teachers were found related to the following factors: (a) devotion to the curricula.
(b) planning, (c) use of multiple representations, (d) attitude towards graphing
technology, (e) classroom atmosphere, (f) examinations. (g) appropriate level of
mathematical rigor needed for teaching calculus, and (h) the stability of percep-
tions. These factors, however, were not fully attributed to participation in the
given calculus reform project.
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CARTOGRAPHWS OF COGNITION: REPRESENTING
TEACHERS' CONCEPITAL RELATIONSHIPS

Avril M. von Minden, West Virginia University

In the current investigation, knowledge structure representations of university
mathematics professors, mathematics educators, and public school teachers were
compared. Their perceptions of the semantic relationships in a set of mathemati-
cal concepts were elicited by means of a concept mapping task and a similarity
judgments task. Their responses were submitted to Pathfinder network analysis.
The teachers answered structured interview questions about their ideas on what
constituted important mathematical content and pedagogical concepts, and they
responded to a series of tasks with varied task constraints.

The prediction was that because of their training in both mathematics and
pedagogy, the Mathematics Educator group would respond to the requirements of
both the constrained and the unconstrained tasks in ways that would demonstrate
their expertise in both domains. Their performance across all tasks would infer the
possession of a superior structural knowledge of mathematics content and peda-
gogy to that possessed by the other groups. The findings confirmed this predic-
tion.

Analysis of the quantitative and qualitative data indicated superior perfor-
mance across tasks for Mahematics Educators. In contrast, Mathematicians orga-
nized mathematics content concepts similarly to Mathematics Educators. Their
pedagogical decisions, however, were most similar to Middle School teachers.
High School teachers both proposed and organized content concepts similarly to
Mathematics Educators and made instructional decisions that were most similar to
those of Mathematics Educators and Elementary School teachers. These three
groups appeared to differ in their conceptualizations of teaching and learning.
Mathematics Educators, High School, and Elementary School groups' similarity
appeared to originate in their conceptualizations of teaching as facilitation of con-
ceptual change and learning as interactive. The Mathematicians and Middle School
groups appeared to conceive of teaching as transmission of knowledge and learn-
ing as accumulation of knowledge in an effort to satisfy external demands.

Two-thirds (67%) of the participants organized concepts in the concept map-
ping task differently than they did in the similarity judgments task. Pathfinder
network representations depicted a greater number of links for concepts organized
under the constraint of the mapping task. The inference is that the concept map-
ping task may be capturing aspects of structural knowledge that are missed by
using a similarity judgments task.
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PRESERVICE TEACHERS' CONCEPTIONS OF PROBLEM
SOLVING LEAD TO LEARNING EXPERIENCE MODEL

Peter Appelbaum, The William Paterson College of New Jersey
Rochelle G. Kaplan, The William Paterson College of New Jersey

This poster session reports on an investigation of the mathematical thinking
of one cohort of 96 elementary preservice teachers conducted during the semester
preceding their enrollment in an intensive practicum field experience and math-
ematics methods course. Each subject was assessed on one of four strands of
mathematics curriculum (numeration, patterns and functions. geometry, and sta-
tistics/probability) utilizing problems adapted from the mathematics section of an
academic competency exam given to all eighth grade public school students in the
state of New Jersey. Both the format and the content of the assessment was consis-
tent with the Standards recommended by the National Council of Teachers of
Mathematics and involved the use of higher order thinking skills applied to prob-
lem solving contexts in mathematics. Demographic data and information about
previous college mathematics courses taken by subjects was also obtained.

The assessment problems contained a mix of multiple-choice and open-ended
questions. In addition to indicating a single correct answer. subjects were asked to
show how they solved each problem using words, numbers (including algebra).
and/or pictures (diagrams). They were also asked to provide alternative approaches
for solving each problem. Randomly selected subjects were subsequently clini-
cally interviewed about their test protocols.

Solution strategies for all responses were coded and videotapes of the clinical
interviews were analyzed for strengths of informal conceptions underlying proce-
dures, misconceptions about mathematical relationships, and the nature of math-
ematics. The results of this study indicated that many preservice elementary teachers
possess a working knowledge of arithmetic procedures. but do rot necessarily
apply these procedures in a reasonable or reflective manner. The character of their
conceptions will be presented in the "poster- using: a) graphs of patterns of re-
sponses based on our statistical analysis of the data; b) samples of the subjects'
written responses and an accompanying visual display of our interpretations of
these responses; and c) a diagrammatic model for a recommended learning expe-
rience in mathematics education for preservice teachers based on the findings of
this study.
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TEACHERS' KNOWLEDGE OF REPRESENTATIONS IN THE
DOMAIN OF ALGEBRAIC MULTIPLICATION:

THE CASE OF MR. KANTOR

Jose (Alberto) Contreras, The Ohio State University

One of the underrepresented areas of research on teachers' knowledge is teach-
ers' knowledge of representations. For example, Fennema and Loef (1992) ask:
"Do teachers know the representations of the content they ordinarily teach?" (p.
154). Because most mathematical ideas taught in school can be represented using
a variety of situations, a related question is: What kind of representations would
teachers provide if we asked them? And, because students, and teachers alike, do
not ordinarily receive formal instruction using examples of representations, an-
other question worthy of investigation is: How difficult is it for teachers to provide
representations of mathematical ideas? The results of an in-depth case study to be
displayed and discussed in the poster session shed some light on the answers to
those questions.

The research reported here was part of a larger project whose purpose was to
investigate how two middle school mathematics teachers use their pedagogical
content knowledge when teaching multiplication and division in algebra. Mr. Kantor,
the participant whose knowledge of representations will be the focus of this pre-
sentation, holds secondary certification. He has been teaching mathematics for
about five years at a middle school lccated in a suburban school district known for
high student achievement.

I relied mainly on questionnaires and videotaped teaching episodes to gather
information on Mr. Kantor's knowledge of representations in the domain of alge-
braic multiplication. These data were supplemented with interviews that were
audiotaped and transcribed. Through a content analysis of the lessons of the text-
book related to algebraic multiplication about 41 main mathematical ideas were
found. For each of those ideas, Mr. Kantor was asked to provide, when appropri-
ate, a mathematical definition, a pictorial representation, a story problem repre-
sentation, and a mathematical proof.

The data analysis indicates that Mr. Kantor knows most of the representations
related to algebraic multiplication. For example, when he was asked to illustrate
with a story problem that a negative number times a positive number is a negative
number he said: "How much more or less did you weigh five days ago if you have
been gaining two ounces per day? You weighed ten ounces less." However, he
didn't provide a mathematical proof of some theorems. For example. he failed to
prove that a(-1)=-a.

A matrix showing each of the four types of representations provided by Mr.
Kantor for each mathematical idea asked and the degree of difficulty he had in
providing them is being designed. The matrix will be displayed in the poster ses-
sion presentation.

Reference
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BEYOND RECIPES AND BEHIND THE MAGIC: MATHEMATICS
TEACHING AS IMPROVISATION

Annette M. Sassi. Education Development Center, Inc.
Lymi T. Goldsmith, Education Development Center, Inc.

This paper proposes that post-reform mathematics teaching may be characterized as "im-
provisational." It uses observations of an extended mathematical investigation from a sum-
mer institute for elementary teachers to examine four aspects of improvisational practice:
1) the structuring of the activity; 2) planning and preparing that is both reflective and antici-
patory; 3) an attentiveness and responsiveness in the moment; and 4) an improvisational
understanding of the content itself. The paper concludes that this conceptual framework
may help both teacher educators and researchers understand better how to help teachers
learn this way of teaching because it preserves rather than simplifies its complexity.

In response to the mathematics education reform movement, many teachers
are grappling with how to reconstruct their mathematics teaching. The reforms
being advocated take away much of the certainty of teaching mathematics that
teachers have known in the past and replace it with an indefiniteness that often
leaves teachers feeling that they must invent their math classes on the fly. Yet,
while these reforms challenge traditionally structured classrooms, they are not meant
to suggest that teachers abandon all sense of organization and order.

The challenge for teacher educators is to communicate and model how post-
reform teaching might look when one of its major characteristics is its lack of
prescription. While there are no recipes for creating these new forms of teaching,
neither is it a matter of teaching solely by intuition or "feel." There are pedagogi-
cal and epistemological issues to which teachers must learn to attend closely: for
instance, how to recognize an opportunity for a rich discussion that wasn't planned;
how to determine if a child's mathematical argument is rich enough to explore
more deeply; how to anticipate the kinds of questions that will get students en-
gaged in a substantive mathematical inquiry. It is crucial to help teachers develop
a deep sense of what this teaching is about so that they do not feel as if they've
abandoned certainty in fiwor of a free fall into a pedagogical abyss.

To succeed at this task we need conceptual frameworks that preserve rather
than collapse the complexity of attending to the particularities of individual class-
roomsone of the hallmarks of "constructivist" teaching. While the new peda-
gogy encourages teachers to confront this complexity in their classrooms, it offers
few theoretical constructs of what might he entailed in responding to it. In this
light, work in philosophy On practical reason and judgment is especially relevant.
Nussbaum (1990) in particular, provides a rich analysis of the situated complexity
of deliberating and choosing well. She argues for the priority of the particular and

This paper is based upon work supported by The National Science Foundation under Grant
No. HSI-9254479. Any opinions, findings, and conclusions or recommendations expressed
in this paper arc those of the authors and do not necessarily reflect the views of the National
Science Foundation.
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holds that good deliberation must take into account the contextual features of the
situation. She argues further that the person engaged in practical deliberation must
inevitably improvise, balancing her own general knowledge with the particulari-
ties of the given situation. Several writers have offered practical insights into the
workings of improvisational activity in different domains. In extending this notion
to teaching, we have drawn from analyses of musical improvisation (Sawyer, 1992;
Sudnow, 1978) and discussions of improvisational qualities of other largely inter-
active endeavors such as qualitative research (Oldfather & West, 19'.'4) and play
(Sawyer, in press).

This paper uses observations of an extended mathematical investigation from
a Mathematics for Tomorrow (MFT) summer institute for elementary teachers to
explore the claim that teaching is improvisational. Our analysis focuses on teach-
ers of teachers, rather than on the practice of schoolteachers. While the elemen-
tary teachers participating in the MFT project arc just beginning to consider new
ways to teach, the practice of the MFT staff exemplifies many of the key tenets of
this new pedagogy. Since our interest lies in understanding some important di-
mensions motivating and organizing co9structivist teaching we felt we needed to
turn to mature (though still developing) examples of such teaching to explore its
character.

Method

The mathematical investigation serving as the focus of analysis is called Star-
fish. This is an adaptation of Xmania, an exploration of number systems used at
SummerMath for Teachers (Schifter & Fosnot, 1993). The exercise was part of
the J uly 1995 Summer Institute for MET teachers. and was the first extended math-
ematical investigation that teachers undertook as participants in this two year, pro-
fessional development program.

Data for the analysis presented here comes from the materials used during the
Starfish activity, field notes of observations of teachers work during the Starfish
exploration and of teacher educators' interactions with them, and notes of a post-
institute debriefing meeting with the instructors regarding their teaching during
the Starfish exploration.

The investigation itself begins with the instructors posing a problem within
the context of a fantasy society. Teachers are told that a famous mathematician of
Starfish society unexpectedly died just as she was to make public her newly in-
vented number system. The existing system represented the quantities between 0
and 26 with the symbols 0, A, B, C. D E, F,...Z, and then referred to any quantity
larger than Z as "lots." While the details of the new system died with the profes-
sor, she left some sketchy information about it: the system can represent any
quantity exactly, it can be used to perform any arithmetic operation, and it uses
only the symbols A, B, C. D, and 0. Teachers are then asked to develop a system
consistent with these claims and with the aid of some artifacts which the Professor
left behind. There is no explicit discussion of how teachers might use these "arti-
facts" (which arc base 5 blocks), although they are instructed to use these materi-
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als as an integral part of constructing the system With this introduction, teachers
begin their explorations in groups of three to five

The goals of this activity are several. It aims for teachers to investigate funda-
mental issues about number systems and place value and to expenence some of
the issues children encounter as they learn our base 10, place value system. These
goals form a constant mathematical structure around which the teacher educators
design specific exercises. The activity also aims to give teachers experience in
collaborative mathematical inquiry, and the chance to see the range of ideas that
develop as different people work on the same problem.

Analysis

Our reading of the literature on improvisation and our prior observations of
the MFIs teacher educators lead us to propose four key factors characterizing im-
provisational practice: 1) the structuring of the activity; 2) planning and preparing
that is both reflective and anticipatory; 3) attentiveness and responsiveness in the
moment; and 4) understanding of the content itself. This paper considers these
four factors in the context of the Starfish investigation.

Structuring for possibilities. Consider first what characteristics of this ac-
tivity allow it to have "improvisational potential?" An insight came during a dis-
cussion when two teachers asked why the teacher educators structured it so tightly.
Why weren't they simply given some beans and ask to construct number systems?
A number of the teachers felt that such constraints bound, rather than facilitate,
creative explorations. Yet, improvisational arts have very defined structures. In
improvisational music, for instance, certain musical structures such as a fixed chord
progression bound where the improvisations canor can'tgo at particular times
in the piece.

Similarly, structuring the place value investigation by providing materials which
suggest grouping by fives, and using alphabet letters in place of Hindu-Arabic
numerals effectively pulls people away from the terrain that they know (organiz-
ing quantities into units of 10) and moves them into more unfamiliar territory
(thinking about how to organize and represent quantity). As another teacher later
pointed out, had they been given just beans they would have been tempted to
construct a base 10 system because they already knew how to group by powers of
10. Had they been able to rely on this understanding, they would not have been
challenged as deeply to build from scratch their understanding of unit.s, groupings,
and naming of units. Because teachers were charged with describing their systems
in terms of both the base 5 blocks and the symbols, they wcre constrained from
using the symbols in a base 10 formfor instance, using upper and lower case
letters to get nine symbols. By structuring out an easy reliance on the familiar, thc
teacher educators opened up possibilities for the deep exploration of the unfamil-
iar.

The organization of an improvisational activity also has to allow for creativity
in the moment. The structuring of Starfish has such characteristics. Whcn the
teacher educators planned the activity they did not know what, exactly, would
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emerge from teachers' work. The particular materials and their presentation pur-
posely leave open the possibility of inventing many number systems. By provid-
ing four symbols (in addition to zero) and four block sizes, the teacher educators
construct a mathematical ambiguity that can be resolved in a number of ways.
Should the symbols represent numbers of blocks (A blocks, B blocks... A rods, B
rods, etc.), or should they represent the various sized blocks themselves (A is a
unit, B is a rod, C is a "flat" )? One choice may lead to the construction of a base
system, another to a Roman numeral-type system.

Planning and Preparing. While the tcacher educators had a good sense of
the kinds of discoveries that teachers were likely to make, they still needed to be
ready for surprises. This readiness to respond to the ongoing work involves a kind
of planning and preparing that incorporates considerations of possible scenarios
and responses to them. By analogy, we can turn again to improvisational music.
Preparing for an improvisational performance does not involve running through
an exact arrangement. (In fact, this is impossible by definition, since there is no
exact arrangement of the music to practice, only sketches.) Instead, the musician
anticipates what might happen with other musicians, tries out possible families of
responses to them, and investigates new musical spaces in anticipation of con-
fronting them in the performance.

In many ways, preparing for a math activity like Starfish requires similar plan-
ning and preparation. The teacher educators used past experiences to anticipate
different kinds of outcomes and directions, and conjectured about possible responses
to these circumstances. For example, teachers study the different kinds of systems
that different groups created and talk as a whole group about the different systems.
The teaching staff want the teachers to consider some key issues about number
systems, for examine: what is gained or lost mathematically with different sys-
tems; how important is efficiency; what resemblances to each other do different
systems bear? But the teaching staff are never sure what systems will be created.
Consequently, in anticipating the discussion the teacher educators imagine a range
of possible scenarios. In the event that only base five systems would have emerged.
for instance, the staff imagined that they would stimulate consideration of the ques-
tions above by asking teachers to talk about their false startsthe systems that
people started to create but abandoned because they felt that they weren't work-
ing.

Furthermore, planning for Starfish is ongoing. For example, while the teacher
educators planned to have the teachers do worksheets involving arithmetic opera-
tions in the different invented systems, they did not finalize the particular prob-
lems for the worksheets until they could assess thc range of group understanding
about the different systems. This year the instructors designed the worksheet to
incorporate some specific mathematical misconceptions abiait place value they
observed in this particular group of teachers; the worksheets had never before
included these kinds of problems, because they had not surfaced as requiring at-
tention until now.

Mindfulness and Responsiveness. To work well, this kind of planning and
preparing requires teachers to be especially attentive and responsive to their stu-
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dents in the moment. One cannot plan an activity with contingent elethents and
then fail to listen and watch for contingent outcomes. In the case of constructing
the worksheets on operations. the teacher educators were able to incorforate the
teachers' misconceptions precisely because they were alert and attentive to such
things. In designing these exercises the teacher educators were especiall.:, respon-
sive to the unusually wide range of mathematical abilities represented in this par-
ticular group of participants. While some teachers were struggling with counting
in the different systems, others were trying to figure out how to develop a division
algorithm for base 5. The teacher educators' response to this range was to develop
different worksheets to challenge people at different levels of understanding: one
dealing with issues about counting; one focusing on understanding addition and
subtraction; and one challenging teachers to think about division, fractions, and
"pentimals." While the latter was appropriate for some of the teachers in this
group, it would not be appropriate for all groups of teachers who explore Starfish.
In fact, this was the first time in dozens of experiences teaching Starfish that sev-
eral participants made extended investigations of division and fractions.

Content Knowledge and Context. Teaching which predicates basing in-
structional experiences on the current state of students' knowledge cannot be done
well unless the teacher, herself, understands the content in deep and flexible ways.
To draw another analogy to music, the improvisational musician's knowledge of
music is fluid and situational; she understands the structure and meaning of the
music and knows how to mobilize this understanding to compose in the moment.
In a similar way, these teacher educators know mathematics in a fluid, non-fixed
way. They are able to see the various elements of the domain as interrelated ele-
ments of a continually constructed and re-constructed discipline rather than as
discrete facts, operations, or procedures. (cf. Schifter 1994).

This kind of knowledge is necessary to be improvisationally responsive to
what arises in the moment. The teacher educators need to know the intellectual
terrain well enough to follow what others are doing and to grasp, in the moment, if
students' thinking is consistent with the terrain or not. They also need to under-
stand enough about how understanding develops so that they can image a student's
likely path of understanding (Fennema, Carpenter, & Loef, 1993). Finally, they
need to understand the kinds of mathematical and pedagogical interventions that
will help students to develop these ideas (Shulman, 1987).

In the case of the Starfish activity, the teacher educators were able to help
participants work through ideas by following their reasoning, asking questions
and posing situations which were designed to push on their thinking, and redirect-
ing investigations when they felt it necessary. This was possible to do because the
teacher educators were prepared mathematically for the multiple directions the
activity could go. Had they been less "fluent" in base 5, less familiar with the
Linds of understandings that teachers typically construct when engaged in this
work, or less able to make connections between teachers' thinking and the impor-
tant mathematical ideas inherent in the exploration, they would not have been able
to help keep participants' thinking as active and focused on moving toward greater
understanding than they were.
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Conclusion

Capturing what teaching within the new pedagogy entails is especially diffi-
cult because this kind of teaching has no easy recipes or prescriptions. Further-
more, to codify it would effectively undermine the principles upon which it is
based. This paper has taken to task the challenge of articulating some of the fun-
damental characteristics of teaching from a "constructivist" perspective by char-
acterizing it as "improvisational" and looking at four aspects of improvisational
practice in the context of an extended mathematical investigation. If the charac-
terization of post-reform teaching as improvisational proves through further in-
vestigations and refinements to be robust, then this framework may indeed con-
tribute to a greater specificity of what this kind of teaching entails and what is
required to learn it.
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BUILDING BRIDGES TO MATHEMATICS FOR ALL: A SMALL
SCALE EVALUATION STUDY

Joanne Rossi Becker, San Jost State University
Barbara J. Pence, San Jost State University

Dianne Pors, East Side Union High School District

This paper reports on a small scale evaluation study of a staff development project for high
school mathematics teachers that focussed on new curriculum, updating pedagogy, and
examining issues of equity. After two years of the project, interviews were conducted with
five previous participants who have had varying amounts of staff development. Interview
data were compared and supported by classroom coaching visits and teacher responses to
an Instructional Practices Scale. Although all teachers could provide the rationale for "alge-
bra for all," there were significant differences in the changes they had made in their class-
room instruction that were related to the number of years of staff development in which
they had been engaged. This study confirms that real change comes slowly with in-depth
involvement in staff development over a long period of time.

For a number of years we have been engaged in research in inservice educa-
tion for secondary teachers focussing on teachers' beliefs, their relationship to
classroom practices, and how changes in one may foster concomitant changes in
the other (Becker & Pence, I990a; 1990b; Peluso, Becker & Pence, 1994). As
Grouws (1988) pointed out, there is little information available about the overall
design features of inservice education which maximize changes in teacher beliefs
and classroom behavior. Grouws has called for studies which focus on the impact
of various features of inservice education on classroom practice. This paper ex-
tends previous work to add to the body of knowledge on inservice education.

The Program

The staff development program is now in its third year, and includes several
facets (see Peluso, et al., 1994 for more details about the program). In addition to
a 13-day intensive summer institute, the project includes classroom coaching, five
followup workshops during the academic year, and purchase of manipulative ma-
terials, software and graphing calculators for the schools. Administered in con-
junction with the College Board's Equity 2000 projcct, "Building Bridges" was
designed to provide all high school mathematics teachers in two districts with
basic staff development to focus on: equity in mathematics; innovative curriculum
materials; use of technology; and new inodes of pedagogy. This program was
created to help teachers mcet the challenge of eliminating tracking and placing all
ninth grade students in algebra 1/course I by Fall 1995 as mandated by the Equity
2000 project.

This project and the research reported in this paper were supported by grant #
758-7 of the Dwight D. Eisenhower Mathematics and Science Education State
Grant Program administered by the California Postsecondary Education Commis-
sion. The opinions expressed are those of the authors alone and do not represent
those of the Commission.
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Goals of this Study

In this study we were interested in ascertaining which aspects of the "Build-
ing Bridges" program had the most impact on teachers; whether the program was
able to facilitate change in teachers' beliefs about the teaching and learning of
mathematics; and why some teachers from this project chose to continue into a
two- or three-year project.

Methodology

The main source of data collection was in-depth interviews with the subjects.
The five subjects were selected according to several criteria. First, we wanted to
have a diversity amongst the teachers that was representative of the teachers we
had in the project over the first two years. Second, we wanted teachers who had
only participated in the "Building Bridges" project as well as others who had cho-
sen to apply for the National Science Foundation project (NSF) which provides a
continuation of the "Building Bridges" project. Potential interviewees were iden-
tified according to these criteria, their responses on thc Instructional Practices Scale
(Becker & Pence, 1990a). and experiences of staff during classroom coaching. An
attempt was made to select teachers who exhibited a range of change in their teaching
based on these criteria.

The interview questions probed goals of the project as teachers perceived them;
difficulties their schools were experiencing implementing Equity 2000 goals; inea-
sures their schools were taking to alleviate the difficulties; what a typical math-
ematics class of the subject was like; a description of a rewarding lesson; their
perceptions of their role as mathematics teachers; their beliefs about teaching and
learning mathematics and how that has changed; the role of technology in teach-
ing mathematics; the most and least useful aspects of the program; and, for those
teachers who joined the NSF project, why they did so and what they hoped to gain
from it in the next year.

Subjects

Five teachers were interviewed for this study. This included four female and
one male teacher; one African American, one Vietnamese American, and three
European Americans; and One non-NSF teacher, two who joined NSF for three
years, and two who joined NSF for two years. Two of the teachers. Aretha and
Kim, have about five years teaching experience: two. Kathy and Belinda, have
approximately 15 years experience: and the fifth teacher, Brandon, has 25 years
teaching experience.

Analysis

The interviews were audiotaped and transcribed fully. Responses were ana-
lynd for patterns in responses within and across questions. Results were also
triangulated using qualitative information from classroom coaching visits and quan-
titative data On the Instructional Practices Scale. Due to space limitations results
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from the interviews which were confirmed by other data will be the focus of the
discussion.

Results

Several components were highlighted as having an impact on participants.
The paper will examine each of these components through the statements of the
interviewees.

Equity 2000 Goals. All of the participants seemed to glean from the staff
development the goals of the project and rationale for putting all ninth grade stu-
dents in algebra 1/course 1. There also seemed to be agreement that these were
worthy goals.

Brandon: My understanding is, as presented in a workshop ...is that one, ...
there had been a study... that students who at least go through geom-
etry in high school had a better chance of getting into college and
succeeding. And one of the primary goals was to make sure that
students had exposure, that they would start off in algebra 1... but at
least through geometry so they would have a fighting chance...So
that was the primary goal of Equity 2000 to get students into algebra
and make algebra accessible to students, particularly those who had
been knocked out previously.

Typical Mathematics Class. There were some marked differences in the
"typical" mathematics class of teachers who had been involved in staff develop-
ment, through our "Building Bridges" and NSF programs, for one, two or three
years. In this sample, Brandon had one year of staff development. Karen and
Aretha had two years, and Belinda and Kim had three years.

Brandon described a fairly traditional class as his typical day.

Brandon: In a typical day, say it's inequalities and equations, is to give them a
wide range of examples....I would do so many, because I engage them
from the beginning, I would do so many and they would do so many
primarily on the board ... and then have at least 15 minutes for them
to work on homework in class.

Contrast that to what Aretha and Belinda say; both are making much more use of
cooperative groups and Belinda is actually using two different innovative curricu-
lum materials, one for algebra and another one for geometry.

Aretha: To begin my class I have a warmup question, one or two.... take 10
minutes for the warmup.... That's just a problem from yesterday, you
know typical problems, a little review before I go on. And how I
organize my classroom we work in groups all the time, all the time,
except for the days we have tests.

However, Aretha still does some "traditional" teaching as well as group work,
spending about 15 minutes of each class providing explanations before the group
work.
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Belinda has moved much further away from a traditional style of teaching,
using College Prep Math for her geometry course and Computer Intensive Algebra
for algebra 1.

Belinda: Ok. In geometry I'm teaching the CPM Davis geometry. year two,
and it's all group work. Kids are in groups of four. I place them in
the groups... In the algebra I I do some lecturing as well as going
around helping the kids on the computers. In the geometry I circu-
late around the room and I listen and I make sure that everybody in
the group has the same question before I'll answer the question.

Role of the Teacher. The question of whether the program was able to facili-
tate change in teachers' beliefs about the teaching and iearning of mathematics
may be the most interesting result. Changes in teachers' beliefs proceed slowly.
This study involved individuals who had varying years of institute participation.
The change process can be seen as evolving as we look across the one, two, and
three year experiences. For the person who has been involved for only one year,
there is an awareness of suggested changes but little acceptance. The responses
include references to what "they" say versus what "I" think.

Brandon: One thing I'm finding more of is that they want me, when I say they
I guess the powers to be have decided how it ought to he done, more
of a facilitator than someone just delivering information. I don't
have a problem with that as long as we understand that I think some
days need to be different.

Aretha and Karen both spoke about struggling. Although they were both rela-
tively new teachers and said that they had not changed because they had encoun-
tered similar ideas in their teacher education program, they were experimenting.
This means that they were still maintaining a traditional classroom structure but
they were trying various modifications ii both curriculum and classroom organi-
zation. Even more important, they were reflecting on these experiments and their
own transitions. At this point, they may have more questions than answers. The
questions deal with their role as the classroom teacher. their curriculum, and the
organization of their classroom.

Karen: When I went to college the ideas as far as the changes in teacher's
role were taught to me and I started teaching with that idea. But I
think I got a better idea by going to the summer institutes ... I still do
lecture, hut I do have portions of it where they're working and I'm
trying to help them. It's really changed my view in so many things -

is there really a vital thing that I have to he teaching any more'?

Kim and Belinda, however, have moved to more action-oriented thinking regard-
ing their students and their role with other faculty.

Belinda: It [staff development] has reoriented me to a new way of
teaching...And it involves the kids inure because they are more ac-
tive in the learning...1 just think the more involved they are the more
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they'll learn Obviously it has affected me a lot because I changed
from a lecture teacher to a facilitator

Use of Technology. All of the teachers found that the staff development had
changed their views of the role of technology in teaching mathematics. But of.
course the longer staff development had allowed Aretha, Karen, Kim and Belinda
to spend more time thinking about and using that technology. As a result they
seem more willing to use technology, especially calculators, in algebra I as well as
upper level classes, and have begun to question what exactly we should be teach-
ing in light of the ready availability of technology. The project's ability to pur-
chase graphing calculators for all schools Over the three years has greatly facili-
tated teachers' incorporation of them into their teaching.

Brandon: But the graphing calculator, there's no two ways about it. it has opened
up a whole new world. That has really changed.

Kim: Yeh the technology for me is, made me stop and think about what
was really important to teach.

Most Useful Aspects of Program. Teachers seem to agree that the network-
ing aspect of the project was one of the most important features to them. They feel
they hi ve little time during the academic year to meet with other teachers and
learn from them, and the summer institute particularly provided that opportunity.

Kim: Well getting together with colleagues and talking was very impor-
tant. Seeing their views and how they did things was really impor-
tant because since I didn't have any previous experience with some-
one teaching me a certain way I had to see what other people who
were taking risks were doing and seeing how they were doing it and
trying it and going back. So that was real important.

Technology parts of the workshops were also very valuable although sometimes
frustrating for teachers who had little or no access to computers.

Karen: Oh the most useful I would have to say all of the lessons we have had
on the graphing calculator I have used quite a lot. In fact I discov-
ered I actually know quite a lot about graphing calculators. And
that's been really helpful.

Why the NSF Program. Finally we discussed with Aretha, Karen, Kim and
Belinda, who had chosen to join the NSF program after completing "Building
Bridges," why they had done so and what they hoped to gain from the next year of
the project. Their positive experiences in the initial project stimulated their con-
tinuance; but perhaps more important, they felt the need for further professional
growth and support as they tried to make curricular and instructional changes in
their schools.

Karen: Well toward the end of the first sumer I had really had a good time
and I likened it to going to camp which I never got to do.... I just
really enjoyed it. To he honest with you I. it was nice cause it was
half the time that summer school was, I was going to be getting paid
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for my time, and I knew that I was going to be leaving with a lot of
good teaching things, and it satisfied professional growth for me. So
really it did a Int of things for me.

For Aretha there was the added attraction of working on her Own leadership skills.

Aretha: Ok. First time I see it. learn to become a leader, I say ok I need this
skill because I'm so shy I don't speak for myself much at all. And
I'm very very shy. I'm quiet. So I thought this is for me. I'll learn to
speak for myself and maybe some day I'll gct up there and do some-
thing. So that's why I tried it.

Kim in particular noted the importance of a support system provided by the net-
work of teachers formed in these institutes.

Kim: I think that if I had not continued with NSF I probably would have
just stopped and stayed where I was.... But with the continuoxl pro-
gratns and the support. And now what I'm seeing is this year at least
we're all working on the same things, so we're starting to build the
support in our schools.

Summary

This small-scale evaluation study substantiated what we and others (Clarke,
1994) have found previously: that short term staff development may have some
impact on changing teachers' beliefs and practices, but that real change comes
slowly with in-depth involvement over a longer period of time. Obviously the
"Building Bridges" program had sonie effect on participants; even Brandon, who
has perhaps not made a complete buy-in, has shown some change in use of tech-
nology and multiple representations in his teaching. He knows he should be work-
ing toward being more of a facilitator in class but the process of making that change
seems difficult for him. For the other four teachers, there seemed to be a relation-
ship between the length of inservice ifivolvement and the extent of change in class-
min instruction. All of these teachers seem to be on a journey toward implement-
ing recommended reform in mathematics teaching; the more in-depth staff devel-
opment we can provide, the more comprehensive that journey may be.
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CAN PROSPECTIVE TEACHERS BE AUTONOMOUS DECISION
MAKERS?

Evangelina Dfaz Obando, Florida State University
Elizabeth M. Jakubowski, Florida State University

Grayson H. Wheatley, Florida State University

The purpose of this study was to investigate the impact of a middle grades mathematics
teacher preparation program on prospective teachers' practice during their internship. Us-
ing qualitative data collected from students enrolled in this course, it was found that pro-
spective teachers during their internship displayed a great deal of autonomy in creating
nontraditional learning environments and when negotiating with their supervising teachers.

.Aany calls (e.g., National Council of Teachers of Mathematics [NCTMI, 1989;
NCTM, 1991; National Research Council [NRC], 1989) to implement changes in
content and pedagogy in elementary and secondary school mathematics suggest a
shift from traditional practices to more student-centered activities, in which teach-
ers become facilitators of student's learning rather than dispensers of knowledge.

Recent studies (Thompson, 1992: Brown, Cooney, and Jones, 1990) are sug-
gesting that what teachers think about mathematics is largely influenced by their
experiences long before they engage in a formal teacher preparation program.
Contrastingly, Trowell and Wheatley (1994) found that college students with many
years of traditional teacher-centered mathematics classroom experiences were able
to negotiate rich learning environments in which problem solving, sense making.
and collaboration were highly valued. It was our belief that if prospective teachers
learned to become teachers in an atmosphere where they were allowed to "work at
establishing a culture" in which they can negotiate meanings, explore different
learning approaches, ask questions, listen to responses, and ultimately, make sense
of mathematical situations in various forms then, their teaching practices can re-
fleet the reform recommendations. Providing opportunities for prospective teach-
els to construct discipline specific pedagogical knowledge is one of the priorities
of this project. Furthermore, we believed that participation in such a preparation
program would facilitate the construction of adequate meanings for mathematical
concepts as central to middle school mathematics (Jakubowski, Wheatley, Erhlich.
1993).

Previous research conducted by Shaw and Jakubowski (1991) described a
model for teacher change that was used as a guide in this project not only with the
prospective teachers, but also with the practicing teachers who may become role
models for the prospective middle school teachers. The model includes four main
constructs, "perturbation," "commitment," "vision," and "reflection" (Shaw &
Jakubowski, 1991),

The work reported m this paper was supported by National Science Foundation Grant 4
DUE 9252705. All opinions, findings, conclusions, and recommendations expressed herein
are those of the authors and do not necessanly reflect the views of the fonder.
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Throughout the teacher preparation program a variety of activities were de-
veloped to engage prospective teachers in order to facilitate their development of
a vision of a teacher. These activities were informed by a constructivist perspec-
tive under which individuals actively construct their knowledge, rather than sim-
ply absorbing ideas spoken by another person, or somehow internalizing those
idcas through practice and memorization.

Research Setting

This research is part of a larger research and development project. The aims
of the project were:

1. To plan and implement courses in mathematics learning and teach-
ing and mathematics for prospective middle school teachers based
on problem-centered learning. The research group teams were cre-
ated to revise or design each one of five mathematics and two math-
ematics education courses.

2. The development of a summer enhancement program for middle
grades teachers who were also potential supervising teachers for
school based experiences (e.g.. Summer 1993, Summer 1994). These
teachers were engaged in activities and tasks which were planned for
the designed courses. The main goal of this was to engage these
teachers in prollem-centered learning and to provide the practicing
teachers with opportunities to construct a vision of mathematics that
was consistent with current calls for reform.

3. Students' participation in school-based experiences each semester
prior to their student-teaching. During the last semester in the pro-
gram, prospective middle school teachers are placed in middle schools
for a period of fifteen weeks. An attempt is made to place them with
practicing teachers who have participated in the summer program.

Methodology

Through the use of a qualitative design, several techniques were used to col-
lect data that depicted various perspectives. Classroom observations, interviews
with interns and supervising teachers, interns' reflections, audio and video record-
ings of interviews and class sessions, follow up interviews, meetings with interns
participating in the study constituted the data.

Analysis and interpretation of data was done to identify relevant patterns to
construct a framework for communicating what data collected revealed. Data col-
lected were analyzed on a continuous basis throughout the study. Each interview
and observation was recorded in memos, fielo notes, and transcripts. The data
were categorized according to common themes that later on were grouped. To this
end, explanations were constructed by thc researchers, to elucidate the actions of
the participants. Triangulation of data (Guba, & Lincoln, 1989) was accomplished
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by comparing data from teachers, interns, and a university supervisor to support
assertions and to assure the viability of the interpretations.

Findings

The analysis provided rich descriptions of classroom events, relationships
between courses the participants had taken during their teacher preparation pro-
gram, and decisions the interns made as to what to do in the classroom during their
student teaching.

Lani

Lani, is a white female in her early twenties, married with two children. Lani
found herself dissatisfied in one of her early teaching sessions (at the very begin-
ning of her internship, when she was mainly using a textbook), so she initiated
negotiations with her supervising teacher about the possibility of implementing
alternative teaching strategies.

She began to have students work on activities situated in a cooperative learn-
ing environment, where she organized the class into small groups and provided
students with a task so that students could discuss it in their small groups and
attempt to make sense of the task. An example of that occurred when she was
teaching a unit on fractions. Planning to use tangram sets to help students.make
sense of fractions in a meaningful way (mathematically speaking) . She decided to
have students construct their own tangram sets. Lani's main rationale was that by
having students construct their own set, they would become more familiar with the
different shapes in the set and with different relationships of the pieces. Therefore,
when they later used their tangram sets to solve fraction problems, students' ex-
planations would be more meaningful to them. It seems that Lani had the stu-
dents' understanding of mathematics and student's enjoyment of mathematics as a
primary goal of her teaching. The supervising teacher expressed repeatedly [e.g.,
hi-weekly evaluations, interviews], "Lani continues to establish a classroom envi-
ronment that is conducive to learning. She engages students in a variety of mean-
ingful learning activities...she has also incorporated other methods of teaching in
her lessons...all activities thus far encourage students to construct their own
knowledge...through discussion she constantly encourages students to reflect on
their own knowlcdge...I am impressed with the meaningful activities whk .he
has either made or found."

Uncharacteristic of interns, Lani organized a grade level activity she had de-
veloped and called a "A Pi Day." This required hcr to obtain the cooperation of
other teachers on her team. In this activity students could submit 3-Dimensional
shapes, a poster, a tessellation, and/or a mathematical puzzle. This activity was
characterized by other school teachers. judges. and students as a huge success.

Andy

Andy, a white male in his early twenties, was a Mechanical Engineering ma-
jor for two years prior to becoming a prospective middle school mathematics teacher.
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He had done volunteer coaching of track and wrestling to middle school students.
For his student teaching he was placed at a middle school with a teacher who had
been involved in the project.

From observations of his classes it was evident that Andy cared a great deal
about students' learning. Similarly to Lani, Andy had initiated negotiations with
his supervising teacher in an attempt to implement alternative teaching strategies.
His supervising teacher expressed the following, "I see great potential in his in-
structional methodologies. I like that he takes initiative, and my desire is that this
internship will be a great learning experience for him." In another interview she
said, "He is not relying on me, he has his things that he is trying to do (in his
classroom), and I think that is coming from the middle school program [Andy's
autonomy to initiate or to suggest ideas he wanted to implement in the classroom], .
what I do is to ask him to show me beforehand his ideas on what he plans to teach,
for specific concepts...; He is very secure that I am going to support him. I may not
agree with what he is doing, but I'm not going to tell him "no." I'll let him make
his own decisions." The teacher's ways of describing Andy's style of planning
and teaching was an indication of his confidence and initiative; because of his
preparation, he was able to formulaic effective learning environments for his stu-
dents.

For example, on several occasions, during his teaching, Andy took students
outdoors to conduct mathematics learning activities. He provided meaningful learn-
ing environments for students by using a variety of settings and materials. Also,
Andy enriched his teaching by using segments of videotapes (e.g., "The Alhambra
Past and Present: A Geometer's Odyssey," and "The Story of Pi"), inanipulatives,
and laser disks (from The Jasper Woodbury Series) as a way to facilitate students'
understanding of the mathematical concepts being studied. When additional re-
sources, not available at the school, were needed. he went to the Mathematics
Education Department to get them.

Andy's style of teaching focused on developing connections between math-
ematical concepts and real-life situations. He said that students at middle school
have so much potential that it would be a shame not to take advantage of it to bring
mathematics into their real world. He also said, "If I don't enjoy teaching every-
day in some manner I will convey this attitude to my students." This attitude
typified most of Andy's actions in his classes. The creation of trust between teacher
and students and connecting mathematics to real life situations were the founda-
tion for Andy's teaching practices.

Kathy

Kathy is a white female in her early twenties that was about to get married.
She believed that she could make special contributions to middle grade students
because she is patient. caring and a good listener. It was evident during her inter-
actions with students.

During their teacher preparation courses, Kathy. unlike the other two partici-
pants, was not as active in the classroom as Lani and Andy were. Nevertheless,
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Kathy was very involved in the program and her ideas were sharp and insightful.
Kathy was not placed in a local middle school [for personal reasons] and therefore
was with a supervising teacher who was not engaged in the middle school project
and who Kathy did not already know.

While Kathy was quiet and more passive than Lani and Andy, she took initia-
tives in planning sessions with her supervising teacher. She prepared some activi-
ties before meeting with her supervising teacher, so that during planning time she
could propose those activities as well as alternative instructional strategies such as
small group problem solving. She also believed the main role of the teacher was to
make sure that students understand the concepts being taught during class time.
Hence, she used manipulatives to facilitate her students' learning.

She was very good at providing students with assistance, and during class
discussions she usually allowed two or three students to share their approach to
solving a problem. In fact, her area coordinator supervisor was very impressed
with the type of questions that she asked, such as "how did you get it?," "could you
explain how you constructed that shape," or "what is another way to solve this
problem?" These types of questions evidenced that Kathy was not only interested
in an answer, but that shc was very concerned about the process that would tell her
how specific students were making sense of a situation. Accordingly, the learning
atmospheres she created with her students were conducive to students' learning.

Kathy also initiated the use of personal mathematics folders. It included ma-
terials given and/or constructed by students that were relevant to the topic they
were studying and students' definitions of thc new terminology. She agreed with
her supervising teacher that because of the additional work it represented, she
would implement this folder only in One group. Her rationale for the inclusion of
this activity was that students at middle school age needed to develop a sense of
respmsibility and to become more organized. This rationale was consistent with
her philosophy of teaching in which she had emphasized the importance of pro-
viding students with opportunities to become decision makers. Kathy had been
asked to keep such folders in her preservice courses.

Her supervising teacher was touched by Kathy's attitude toward teaching and
highlighted Kathy's attributes as a beginning teacher by stating, "I have had many
student teachers I from other universities! hut Kathy is the hest intern I have had so
far. On a scale from one to five, I would give Kathy a five."

Conclusions

In this study we have learned that the experiences that Lani. Andy and Kathy
have had (luring their teacher preparation program have been beneficial in helping
them to develop images for the creation of learning environments where students
could learn mathematic,, meaningfully. It was possible to trace many of their ac-
tions directly to their university experiences. Thus participation in this project did
influence these prospective teachers since they all showed initiative in both their
teaching practice and in negotiating with their supervising teacher during planning
time.
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From the participating prospective teachers' experiences we observed the
potential for prospective teachers to become autonomous through participation in
a preparation program similar to the one described herein. However, it remains to
be seen whether this group of prospective teachers will be autonomous when they
begin teaching professionally and no longer have the support of the middle school
project or supervising teacher.

The summer program for middle school teachers helped them be more effec-
tive as supervising teachers by not only being receptive to innovative practices
suggested by interns but by helping them develop successful lessons. Having
teachers who share a vision of inath.-:matics learning with the university math-
ematics education faculty is a crucial element in effective teacher preparation.

In summary, we found evidence that these interns were becoming "emanci-
pated teachers" (as described by Grundy, 1987) who were eager to create alterna-
tive learning environments in their classrooms. When the conditions are provided
and prospective teachers have had experiences consistent with those suggested by
reform calls, we witnessed evidences that prospective teachers can be autonomous
decision makers as suggested by curricular reform documents.
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CREATING A CULTURE OF INTELLECTUAL INQUIRY
IN TEACHER INQUIRY GROUPS

James K. Hammerman, Education Development Center

Creating communities of discourse among teachers that tread the "delicate middle ground"
of theory linked to actual classroom practice can serve the purpose of promoting teachers'
ongoing professional development. Yet both teachers and teacher educators are navigating
relatively uncharted territory in attempting to develop such communities. This paper exam-
ines some of the features of such a community of discourse, the dilemmas faced in creating
and maintaining it, and poses some questions for further investigation.

For teachers to change their mathematics teaching practice in accord with the
NCTM Standards (1989; 1991; 1995) they must make several interrelated shifts
in their knowledge, beliefs, and teaching practice. They must develop new no-
tions about the nature of mathematics and what it means to do mathematics; new
views of how students learn, based on careful listening to students' mathematical
thinking; and new beliAs about what classmoms ought to look, sound and feel
like, and skills in creating and managing such classrooms. (Goldsmith & Schifter,
1993/1994)

Such changes take time. They require extended investigation, inquiry, and
experimentation into issues of mathematics, learning, and teaching. This learning
is ongoingthere are not answers to be acquired hut rather, a complex terrain of
practice to be negotiated and dilemmas to be dealt with (Ball, 1994; Nussbaum.
1990). This means that teachers must not only explore new ideas in professional
development programs, they must also develop habits and inhabit structures which
will enable them to continue their professional development over time. One method
for doing so is through participation in a community of ongoing inquiry into prac-
tice. There, teachers develop ways of talking with one another that are both sup-
portive and critical, basing diwussions of issues in practice on analysis of descrip-
tive data of various kinds (Carini, 1975:Cochran-Smith & Lytle. 1990. 1992; Heaton
& Lampert, 1993; Lord. 1994; Watt & Watt, 1991).

This culture of careful description and deep inquiry into practice is novel for
most teachers. It treads a delicate middle ground between practical "idea swap-
sessions and abstract, theoretical conversations ungrounded in practicetwo forms
of sharing that often feel more familiar to teachers. Navigating this middle ground
creating real intellectual discourse and investigation tied to the particulars of teach-
ing practicerequires new forms of discourse, new ways for teachers to interact,
new assumptions about what's important to look at, and new skills. This is a lot to
accomplish. It is made even more difficult because creating and sustaining a con-
versation in this middle ground is also novel for us as teacher-educators. It is

This paper is based upon work supported by The National Science Foundation under Grant
No. ESI-9254479. Any opinions, findings, and conclusions or recommend-bons expressed
in this paper are those of the author and do not necessarily reflect the views of the National
Science houndation
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fraught with dilemmas and requires many new experiments. Yet creating this con-
versation is important, not only for teachers to develop new forms of practice, but
also to create new roles and communities for teachers, thereby increasing teach-
ers' voices in political and research communities. (Cochran-Smith & Lytle, 1990)

In this paper, I will describe some of what occurs in such a group to create a
conversation in this middle ground. In so doing, I will also describe some of the
questions that I ponder as a teacher educator in understanding and facilitating the
creation of this conversation, and will suggest further questions for investigation.

Project Context and Data

"Inquiry Groups" represent one of several components of the NSF-funded
Mathematics for Tomorrow project. The project works for two years at a time
with school-based teams of teachers from four Boston-area school districts, as
well as with principals and district-level administrators from those districts. Teach-
ers attend an intensive two-and-a-half week institute in each of two summers to
explore mathematics themselves; to attend to student thinking about mathematics
through analysis of clinical interviews, the results of whole class assessments, and
of teacher-written "Episodes" (Schifter et al., In Preparation); and to explore ideas
and techniques for developing classroom practice through inquiry. They then meet
biweekly after-school, in schools, throughout the academic year in district-based
Inquiry Groupsteams of 7 to 14 people who discuss a variety of issues concern-
ing how institute ideas play out in actual classroom practice. A staff member also
consults in each teacher's classroom four times each year, and there are four day-
long workshops annually for all teachers.

The quotes in this paper come from an Inquiry Group discussion that took
place in March, 1995, the second year of working with this group of teachers. The
author was the teacher educator/ facilitator of this group throughout these two
years. In addition to the author, there were seven teacher-participants attending
this session and two researchers taking field notes. The conversation was
audiotaped, and a transcription was made.

Findings and Questions

In analyzing this discussion, we notice several features that are interesting
because of the questions they raise about the nature of this kind of community of
discourse among teachers, and what it means to create such a community. 1) It is
difficult to find a focus that helps the discussion enter and stay in the middle ground
of theory embedded in particulars. Even whcn a question is initially posed well
with solid data to explore, this is a new intellectual space to be in and the conver-
sation often needs refocusing. 2) Teachers do not use solely the shared data brought
to the group. Rather, they extend this data hy describing experiences from their
own classrooms that either support or tend to refute what the shared data shows.
3) Generation of alternative hypotheses about the data moves the conversation
towards the "middle ground" by trying to make sense of the particulars of what
occurred, though this is difficult and occurs infrequently. 4) Reflection on our
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own experiences in the Inquiry Group serves both as yet another data source, and
as the potential basis for developing a self-reflective culture of ongoing inquiry
among teachers. I will take up each of these issues in turn.

One important ongoing task for the group, in individual sessions and over the
course of the year, is negotiating a focus for discussions. This task is important
because it serves to frame the conversation within the balance of theory and prac-
tice that is necessary for critical colleagueship. Helping the group find this bal-
ance and develop criteria for deciding on what is more likely to produce this bal-
ance is a crucial task of my job as the teacher educator. This is not easy. In part, it
represents a new intellectual space for teachers (and many teacher educators)
one which we can only really come to know by experiencing, but which we can
only experience as we create it together in the group.

A lot of effort went into framing discussions well. The usual procedure was
for a teacher (or pair of teachers) to take responsibility each time for bringing
some data from her classroom and a question or set of questions to launch and
focus the discussion. The teacher and the teacher educator would typically talk
several times at length before the session about the data and the focus question.
The intention here was to find data that was rich enough, and a question that was
generative enough to stimulate a lengthy and interesting discussion. We were
planning a day's curriculum for the group.

Ana, a first and second grade teacher who was the focus person here, had two
clear questions: 1) the nature of student discourse and her role in facilitating it; and
2) how to increase participation especially among students who tended to be si-
lent. Both of these questions were of interest to the groupthey had been dis-
cussed several times in the past in different ways.

Ana also had more or less clear data, in this case three conversations which
represented different experiments in facilitating discourse in order to include stu-
dents' voices in the discussion. In the first conversation, Ana paraphrased almost
every students' statement, but found this dissatisfying because, "It didn't give me
a lot of understanding of what kids really understood, what their thinking was." In
the second conversation, she had more focused questions and worked hard not to
paraphrase. We had a quasi-transcriptdetailed field notes, reallyof this con-
versation which we distributed to thc members of the group. Finally, Ana reported
on a third conversation in which she asked students to reflect on their own about
the ideas of the conversation before it started.

Yet even with interesting questions (albeit two, separate, interesting ones)
and clear data, it was difficult to clearly frame and launch the discussion for the
group. Several minutes were spent describing the different data, paraphrasing the
focal questions, and essentially publicly negotiating the focus of the discussion.
Even as the discussion progressed, different members of the group shifted and
refocused thc conversation.

As the teacher educator, I was left wondering how to decide which of these
questions and tangents was more generative; which would lead us to link specific
classroom actions with deeper understanding about implications for teaching and
learning; and what kinds of moves I, and others, could make to refocus thc discus-
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sion when needed. My sense was that by attending to the observable effects of
specific actions, we could focus on what was going on in Ana's head at the time
and the reasons for or implications of her decisions, rather than starting with hypo-
thetical "What if you had tried this?" kinds of statements.

Yet an extended digression into the effects of students' family background on
their participationa teacher's move which at first seemed to be getting us off
topicalso generated hypotheses, counter-examples, and some interesting analy-
sis. What criteria can we use to predict whether a question or focus will move us
to the middle ground? How important is the initial data? What are the features of
the question itself? What moves can serve to shift the focus to this middle ground?
It's interesting that the group decided to continue meeting monthly into the fall of
1995, and asked for help developing skills to focus conversations and keep them
focused.

While negotiating a focus happens both before and during an inquiry group
session, the other issues tend to arise primarily in the session itself. I will present
a single, extended excerpt from one conversation to illustrate them. This excerpt
occurred just a few minutes after the group had read Ana's quasi-transcript, roughly
one-third of the way through the entire conversation.

Rhonda: And I too have the same problem you have which is paraphrasing for
them. And I really make that effort not to do that.

Jim: So let's see. It would be interesting to look through this and see how
often Ana said, "Why?" and what kinds of responses did she get
from that. How often did she paraphrase for kids? How often did
she ask kids to paraphrase?

Rhonda: I don't think you paraphrased at all.

Jim: So let's hear other people.

Kathy: I.ine 46. "So what Larry is saying...," and then you drop it. So that
somebody...

Or I didn't write it down...

Kathy: Well, I like to think that you (laughter) started the question and then...

Ana: I think I did...Yeah. Like Amelia was saying last time that she caught
herself starting and then catch herself. "OK, wait a minute. I shouldn't
be doing this," and then let somebody else do it.

Kathy: I didn't even think that you caught yourself. I thought that you were
just giving the kids a lead in. You know it's another way of saying ..

Oh. that's interesting..

Ana Either one could he. (Others: Right. llh-huh I Cause Rio do that too,
sometimes. I'm not sure what I did on this o asion --whether I
caught myself or if it was a lead in...

Kathy: I don't think it's ever a bad linaudiblel.



Jim: Well in some ways that's a way of asking for a paraphrase. You can
do it in that way. "So what Larry is saying..." It could be a fill in the
blank by paraphrasing.

Kathy: Also the, "Can you...?" Asking kids...I was talking to [inaudible]
about it... I just have words... I can't ask a question like that in my
room cause kids will say, "No I can't." So I say, "We need a volun-
teer to...." Or, "we need somebody to try to blah blah blah."

Jim: So you're looking at line 32 or 34?

In this excerpt, teachers ground their statements not only in the specific shared
data in front of themin this case the quasi-transcript (lines 3-5,8,29)but also
in their own classroom experiences and stories (lines 1 and 25-28). These stories
may serve to "validate" thc data in teachers' own experiences, and to provide
supporting and sometimes disconftrming evidence for the hypotheses drawn from
data (see Carter, 1993). As teachers develop this form of discourse, it will con-
tinue to be interesting to pursue how they view these different types of data. Is

evidence from outside used to dismiss conclusions that might otherwise seem clear
from the shared data? Does it provide the context needed to make the experiences
seem more realistic and practical? Does it serve as the basis for generating alter-
native hypotheses? What other purposes does it serve?

Several alternative hypotheses are proposed to explain a piece of the data in
this excerptin this case, the phrase "So what Larry is saying..." This was inter-
preted variously as someone interrupting to explain Larry's thinking (lines 8-9);
incomplete data (line 10); Ana catching herself in the middle of a paraphrase (lines
12-14); "giving kids a lead in" (lines 15-16); and a subtle way of asking for a
paraphrase (lines 22-24). Several of these were accepted as possible by Ana.
Developing dternative hypotheses to explain teacher moves is a crucial piece of
developing a critical frame of mind about teaching. It also expands a teacher's
potential repertoire of actions. Yet this is often difficult to accomplishmain-
stream teaching culture still reinforces teachers when they evaluate others' teach-
ing, or when they give suggestions. (Lortic, 1975) What would encourage more
of this kind of hypothesis generating behavior? What effects does it have on ac-
tual teaching practice?

People in the group often reflect on our own experiences together. and even
on our Own conversation, to provide examples for the discussion. In this excerpt,
Ana refers back to a previous week's conversation (line 12) saying, "Like Amelia
was saying last time..." Later in thc session, Kathy points to something Jim had
said earlier in that very conversation as an example of asking for a paraphrase in a
more directive way.

Kathy Well you do it You did it just now. "Say more about that." Instead
of, "Can you say more about that?"

This kind of reflecting back on our own conversation is interesting. How
might it serve to help teachers find data relevant to teaching in a wider variety of
situations? How might it be linked to the development of the self-reflectivity

1.1
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needed to publicly develop criteria for behavior and a culture that will make the
group self-sufficient in the long-run? What other functions does it serve?

Creating a community of discourse about teaching that links particulars of
classroom practice to theory-building is a complex endeavor. Many questions
remain about the nature of this discourse, the role of teacher educators in facilitat-
ing the creation of this discourse, and the skills and knowledge teachers need to
sustain such discourse in the long-term.
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EISENHOWER NATIONAL CLEARINGHOUSE FOR
MATHEMATICS AND SCIENCE EDUCATION

Marsha P. Nicol, The Ohio State University

The Eisenhower National Clearinghouse for Mathematics and Science Edu-
cation (ENC) is funded through the U. S. Department of Education to provide K-
12 teachers with a central source of information on mathematics and science cur-
riculum materials. ENC was established in 1992 through a contract with The Ohio
State University and is located in Columbus, Ohio.

The purpose of the Eisenhower National Clearinghouse is to encourage the
adoption and use of K-12 curriculum materials and programs which support state
and national eftbrts to improve teaching and learning in mathematics and science.
ENC has been charged by Congress to collect all Federally funded, commercially
developed, or teacher-created K-12 mathematics and science curriculum materials
into a permanent repository and to disseminate nonevaluative information about
them through an online catalog that is provided free to teachers, parents, and other
educators via an 800 number. The legislation that launched ENC recognized edu-
cators' need to locate effective mathematics and science teaching materials quickly.
Our database is user friendly and is searchable by such fields as subject, author,
grade level, and resource type. For each resource in the database, there is a de-
tailed, objective abstract as well as the table of contents, suggested grade level(s),
availability information, cost, and equipment requirements.

ENC will provide an alternative way to access the ENC catalog and its mate-
rials through two CD-ROMs to be distributed free of charge to every US school
that requests a copy and that has or soon will have a CD-ROM player. CD-ROM
products will include standards documents, teaching improvement information,
and curriculum resources. ENC also produces print documents for educators and
others interested in mathematics and science education. These materials include a
minicatalog with curricular information about special topics, and a newsletter fea-
turing information about the Clearinghouse and promising uses of technology in
education. All print documents are available free on request as well as online.

To connect to ENC, use the telnet command to connect to enc.org oi use Go-
pher to enc.org or World Wide Web client software to www.enc.org. If using a
modem, dial (800)362-4448. Set your communication software to VT100 termi-
nal emulation, no parity, 8 data bits, 1 stop bit, and full duplex. Once the connec-
tion is made press <return> or <enter> once to bring up the welcome screen. Then
type c to connect and login as guest (lowercase, no caps). For more information,
contact ENC at info@enc.org or phone (614)292-7784 or (800)621-5785.
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"UNCONSCIOUSLY LEARNING SOMETHING:"
A FOCUS ON TEACHER QUFSTIONING

Emily Dann, Rutgers University
Ralph S. Pantozzi, Rutgers University
Elena Steeneken, Rutgers University

The mathematical behaviors of a group of seventh grade students have been observed as
part of a longitudinal study of how children build mathematical ideas. The children, having
built representations of their solutions to a combinatorics task, are challenged by their teacher
to explain and discuss their ideas, and to extend them to similar situations. This report
focuses on how teacher questioning facilitates students as they 1) justify their ideas; 2)
extend ideas to problems with similar structure; 3) make connections to previous tasks; and
4) generalize their conjectures in the context of isomorphic problems.

Several children have been observed over the course of a longitudinal study'
of the development of mathematical ideas. During this time, they have been ex-
posed to a constructivist classroom sating, where students are encouraged to build
concrete representations and justify solutions to mathematical tasks. After two days
of investigation into a combinatorics problem, students were asked how they felt
about this activity. One student, Jeff. responded:

I don't know, it feels, like, I know I'm, I'm, it's like I'm uncon-
sciously learning something, like I know I'm doing something
to figure something out, it's just that...yeah, like cause in math
we'll go over a subject, and in science we'll say. well, we're
learning about "Jane Adams" and we'll study her, but in this it's
sort of like you just learn it over, sort of, while you're in the
midkile]... [when you're] doing something.

It seems that Jeff has indicated an awareness that his learning was signifi-
cantly different and unlike that which he has experienced in the past. Notice that
he indicates that he has "unconsciously learned something." Although Jeff may
not have been able to fully articulate his ideas, he did indicate that his learning
occurred in the process of doing mathematics. The problem-solving activities in
which he and his classmates were engaged had been designed to prompt students
to search for meaning and build connections between previous, relevant experi-
ences. It could be useful to analyze the details of the learning experience that
prompted Jeff's response. This paper will detail a sequence of episodes in which
teacher-student interaction and student-student conversations contributed to this
process. We focus on the role of teacher interventions, through questioning and
probing,. while students are actively constructing ideas. Wc will present episodes

' This research is supported in part by a grant from the National Science Foundation #MDR
9053597 to Rutgers, the State University of New Jersey, Robert B Davis, and Carolyn A.
Maher, directors. Any opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily reflect the views of the
National Science Foundation
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that illustrate how teacher questioning plays a part in students' efforts to justify
and extend those ideas.

Theory

Students, when investigating solutions to mathematical problems, often at-
tempt to generalize their solutions based upon recognition of patterns. In addition,
they gain confidence in their extensions as more evidence accumulates in support
of their proposed pattern. This confidence may be confused with deeper under-
standing. For example, in a research study involving ten year old Stephanie's rec-
ognition of a doubling pattern after having built towers from plastic cubes select-
ing from two colors, a conjecture was made that 1024 unique towers could be built
that are 10 cubes tall. (Maher & Martino, in press) One might have reasonably
inferred from Stephanie's recognition of a doubling pattern that she connected the
generation of towers from the pattern. Subsequent teacher probing, however, indi-
cated that Stephanie could not match her generation of actual towers with her
pattern recognition. In fact, in tracing the development of the idea, one finds that
Stephanie took over one and one half years to build this understanding (Maher &
Martino, in press). Vinner (1994) has reported similar findings; he cautions us that
what may appear to be a meaningful generalization on the part of the learner may
actually be "pseudo-conceptual" behavior. By this he means student-teacher and
student-student discussion is based only on teacher cues and student guesses.

Research on teacher questioning (Martino and Maher, 1994) Suggests that
appropriate teacher intervention can facilitate students' building of justifications
of problem solutions, particularly applied at points in time when students are
cognitively ready to revisit their ideas. Questions which stimulate students to jus-
tify and generalize their ideas may give teachers a greater insight into children's
thinking. Questioning used in this way may also provide an alternative model for
students to consider as they engage in discussions about their own work. In fact, a
long-term case study of one student, Jeff, who has been engaged in thoughtful
mathematical problem solving since grade 1, has indicated qualitative differences
in his ability to question other students and listen to their ideas (Maher, Martino,
and Pantozzi, 1995).

The purpose of this research is to analyze the problem solving activity in
which Jeff and his classmates were engaged that prompted him to claim that he
had "unconsciously learned something." Specifically, we will focus on three epi-
sodes of student conversation that was triggered by teacher intervention in the
classroom community that seeks to foster students' construction of mathematical
ideas and creation of generalizations.

Background

The students in this study come from a working class school district in New
Jersey which has been the site of an on-going longitudinal study' in classrooms
centered around problem solving. Since grade I. the students have participated in

2 The study is now in its seventh year.

277 i .

I



Pr

probl in solving sessions under the guidance of a teacher/researcher intermittently
during ¶ ne school r.!.ar. The children were m!venth graders at the time of this study

MeVaods and Procedures

Thirteen children were se;tted around tables in two groups of four and one
grouo of live. A camera at Lach table videotaped the activity. The classroom
exploration took plao.: over threi, das. consisting of two 80-minute sessions and a
third session of 40 minutes. Videotapes were transcribed and analyzed by a re-
seath team, arid the transcripts along with other records were used to produce a
ideo portfolio' to trace the development, among individuals and groups of stu-
dents, of ideas relating to the fairness of the games. The transcripts of the class-
room sessions and fAlow.up student interviews, along with students' written work
and assessments, iesearc her notes, arid iaterpretations of students' work constitute
the data for the study.

Design

As one strand of a longitudinal study, the children have worked on combina-
tories activities. For this research. we reporl on the students' investigations of games
of ehame. The iletivity required that they determine the "fairness" of a game of
,:hance involving rolling sets of dice and called for their determination of a suit-
Sole sample sp,Iee After speculating about the possible outcomes when rolling
threc Onze. the teacher/researcher introduced tetrahedral dice so that the
students could more easily support the conjectures that they had made regarding
the numl-,2! of elments in the sample space. The episodes presented here refer to
the students vrk with the tetrahedral dice.

Episodes

Three episodes fi om the videotape transcripts provide data for this study.

Episode 1: October 27, 1994. The students had shared their ideas about the
number of possibilities when rolling three tetrahedral dice. They were thcn asked
lc consider two other eases, where three dice were rolled and when two dice were
tolled. After some discussion, the students decided that there were four outcomes
for one die and 16 outcomes for two dice.

Teacher NoN, what if I'm rolling three of them [the cheer

Bobby. I've got it.

Magda Sixtv-four

4 NlichelIe Not Wait It's more

' See Maher, C A. & Martino, A.M (under review) Conditions contributing to a young
shad's development of mathematical proof. A 4-year study. Journal for Research in Math-
ematicc Edueahon
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5 Bobby: S ixty - four.

6 Teacher: Why don't you write those out? I'd like you to show me a way
of representing all those outcomes if you're rolling three.

Episode 2: October 27, 1994. Ankur suggested that rolling four dice would
result in 256 possibilities. The students were again asked how it worked with fewer
dice. Ankur responded to the ease of rolling two dice by producing the first two
columns of Figure 1. He made a tree diagram by connecting I to 1, 1 to 2, 1 to 3, 1
to 4, 2 to 1, etc., until there were 16 lines visible. When asked to interpret what he
had done. he produced the 16 ordered pairs in Figure 2.

Figure 1

® li( (,) 1,3 14

2..2 2.3 214

Al 3,J 3.3
It/ de42 oi,3 if

Figure 2

Ankur was asked to extend the idea represented by his diagram:

7 Teacher: Okay, so you've convinced me now that there are sixteen. Okay,
now how would you do it if you were rolling three now?

8 Ankur: Sixty-four.

9 Teacher: 1 want to be able to see them in my head, so show me how you
get these sixty-four. Show me, show me how it works.

10 Ankur: Add four more numbers. [Writing the third column of 1,2,3,4
in Figure 2.1 This one [pointing to the third column in Figure 1]
has four here...you count these too... [the 16 possibilities indi-
cated in columns 1 and 21

11 Teacher Okay, can you work together, work out a way to show me how
you generate [your method?) to get to two fifty-six? Continue
what you're doing and also the way you could keep doing it.
Show me the way you begin to think about it.

In both episodes, the students proposed generalizations based upon their pre-
vious findings. After the students discussed these generalizations, they created
various types of tree diagrams, representing the number of possibilities that they
proposed. Figures 3, 4. and 5 represent a portion of the students' written work.
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Figure 3 Figure 4

Episode 3: October 28, 1994. In this episode, the students discussed their
written work in a small group interview. Michelle began by explaining her work in
Figure 5.

Figure 5

12 Michelle. This 'Figure 51 is sort of a little like theirs [Figure 31 except
theirs is separated.

13 Teacher Can you explain it to me.'

14 Michelle If ).ou roll the one on the first die hut then they all went to one
1the third die shows II and then two and then three and then
fin"- 1referring to the first four charts in higure 51 and then if we
did it with the twos and then threes and then fours 1referring to
the remaining charts some not shown herel

15 Teacher Oh, how neat.

7 'L)
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16 Teacher2: Can I ask something for clarification? These numbers (in the
first column of each chart] go with the first die?

17 Michelle: Yeah.

18 Teacher2: And the middle ones are the second die'? [the second column of
each chart]Okay and how many would there be all together?
How many outcomes? Possibly sixty-four? Help me to see that
in this picture.

19 Michelle: Urn, it just shows like..

20 Jeff: Sixteen for each [number of the first die rolled].

21 Ankur: Yeah.

22 Michelle: There are sixteen down here -yeah, it would be...

23 Ankur: Four here, four here, four here, four here [points to each chart in
Figure 51 four times four.

24 Jeff: Four times four which got sixteen and then you multiplied.

25 Teacher: I don't see that Michelle multiplied though. Can you see it
Michelle?

26 Ankur: These are all the combinations. [Referring to Figure 5 and addi-
tional charts, not shown.]

27 Michelle: This [the first four charts of Figure 5] is just for the one thing
[die]. There's like sixteen for each like like, like if you rolled a
one for the first die number on the chart.

28 Teacher: Huh, the question is, show us sixty-four. I guess I thought I saw
it and now I'm not sure.

Later in the conversation, Michelle suggested how her diagram (Figure 5)
might be extended if additional dice were rolled, while referring to her work in
Figure 4,

29 Teacher: Now if you were to do it, for rolling it four times, what would
your chart look like, how would you do it?

30 Ankur: Another four numbers on the side. [of the charts in Figure 5]

31 Teacher: Another four numbers on the side, what would that look like?

32 Michelle: I guess it would sort of be harder to...like...do It that way.

33 Teacher: Well could you do it though? Is it possible?

34 Michelle: Well it would be like this is, [Figure 4] ah...See here's our num-
ber one. I looked at their chart things. And like it's not exactly
the same, but it sort of is and I remember we did um when we
like did the towers we did like a tree thing. I don't know if any
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of you people remember, but I remember when we did like a
tree thing.

35 Teacher: What was the towers?

36 Michelle: When, I forget, I just knew when we were working on towers.

37 Jeff: Towers of three, and two different colors, how many can you
make...

38 Michelle: And, yeah, then we did it in trees, so when we... I remembered
that so we did it like that. And this is what you would roll on the
first die [pointing to first tier of Figure 41 and this is like what
you would roll on the second die [pointing to second tier]and
this is what you could roll on the third die [points to third tier].

Near the end of the session, Ankur offered a general rule that he had devel-
oped.

39 Teacher: Do you want to tell us what that is? (Referring to a rule Ankur
mentioned previously]

40 Ankur: Well it's the number of sides, that's a four, in this case, times, to
the power of like the number of dice you have [Writes 44 on his
paper. [

41 Teacher: Does that work, if you had a six-sided die and you were rolling
it twice?

42 Ankur: That's six to the second power.

43 Teacher: Tell me, this [pointing to the base number]is the number of sides?
And...

44 Ankur: This, the number here [pointing to the base number] is the num-
ber of sides. And this [pointing to the exponent] is the number
of dice.

45 Michelle: But that's like four times four umes four times four.

46 Ankur: Yeah.

47 Michelle: Oh, okay.

48 Teacher: Okay, so you had a general rule, didn't you? With x's and y's?
You were showing me?

49 Ankur: Yeah.

50 Teacher: How does that work? Show me. Why don't you say...

51 Michelle Is that 144(for the sixty-four9

52 Ankur: No, it's for two hundred fifty-six. Sixty-four is four to the third.
Four times four is sixteen times four.

53 Michelle: Oh, OK.
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54 Teacher: Ankur, suppose I had a twelve-sided die and I was rolling it
three times, what would the rule be?

55 Ankur: 1.velve times twelve times twelve, twelve to the third.

56 Teacher: Ito other students] What do you think?

57 Jeff: I agree.

58 Teacher: So what's the general rule you're telling me?

59 Ankur: It's like if 4 is equal to x (writes x on his paper] and this is y
[writes y as an exponent].

60 Teacher: So what does the x represent? Why don't you write it out?

Conclusions & Implications

These episodes indicate instances (lines 6, 9, and 11) where a teacher/researcher
has posed questions that were designed to promote the interaction of students and
prompt them into explanations and justifications of their ideas. We note that these
questions were directed not only to elicit a response from one student, but to in-
voke the participation of others in the group. Instead of confirming the students'
findings, the questions focused on further elaboration of their proposed generali-
zations (lines 31, 41). In response, Michelle made a connection to a previous task
(line 34), and Ankur suggested a general rule (line 59).

At any point where students offer generalizations, teachers may make the de-
cision to build connecting structures for students. It is in this "territory" where we
believe that teacher decisions are critical. In the episodes presented, the students
were given opportunities to revisit and share their ideas with each other. We sug-
gest that Jeff's belief in having "learned unconsciously" might have arisen through
iis involvement in situations where the bounds of his inquiry were not externally
framed. One implication is that appropriate teacher intervention, and ample time
for students to build mathematical ideas, may be crucial tools in helping students
build further connections between the deep ideas underlying their work.

The teacher questioning and student discussion presented here may serve to
illuminate elements of "unconscious thinking." Such thinking may include the
process of students' building powerful schemata through active reconsideration of
ideas, prompted by teacher questioning.
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BECOMING A TEACHER OF MATHEMATICS:
IMPACT OF THE PRE-SERVICE EXPERIENCE

Gavrielle Levine, C.W. Post Campus, Long Island University

The National Council of Teachers of Mathematics (1989) recommends revis-
ing the mathematics curriculum as well as the way in which mathematics is taught,
starting in elementary school. One serious consequence of implementing these
changes may be increased anxiety for teaching mathematics, resulting in interfer-
ence with teacher preparation and diminished classroom effectiveness (Kelly &
Tomhave, 1985). To address these concerns, the crucial relationships among teacher
preparation, teaching effectiveness (i.e., teaching style), and anxiety for teaching
mathematics have been examined.

A cohort of pre-service elementary school teachers enrolled in a mathematics
methods course initially showed high levels of anxiety for teaching mathematics,
which decreased at the conclusion of the mathematics methods course (Levine,
1993a) associated with shifts in anticipated teaching style (Levine, 1993b). Inter-
views with a subgroup of this cohort examined mathematics teaching style am
anxiety for teaching mathematics during their experience student teaching and/or
classroom teaching to assess the impact of the teacher training experience on class-
room practice. Results of this investigation have implications for teacher prepara-
tion.
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PLANNING TO TEACH GEOMETRY WITH THE
GEOMETER'S SKETCHPAD

Heréndira G. Galindo, Indiana UniversityBloomington

The theoretical framework of this study draws from several correlational studies
based on Myers and Briggs' theory (an extension of the theory of types of Carl G.
Jung). These studies suggest that there are four types of teachers, namely, nurturers.
instructional managers, intellectual challengers, and facilitators. Furthermore,
there is evidence that teaching strategies, methods of teaching. and assessment
methods of school teachers can be categorized according to these four types. The
present study investigates whether this categorization could also be observed in
computer environments.

Nineteen preservice high school mathematics teachers participated in the ge-
ometry workshop designed to serve as a context for the present study. The results
presented here are based on four selected cases representing the four teacher types
mentioned above. Participants were asked to design computer environments, that
is, computer uses and classroom interactions. They had to give an example of how
they would use the software to teach a geometrical relationship or concept and
also a form to assess their activities. They were also interviewed and asked to
describe the teaching strategies, methods of teaching, and assessment methods
that they would put into practice in their computer environments. The data analy-
sis suggests that all teacher types but the instructional manager adopt the role of
facilitators when planning to teach geometry with the Geometer's Sketchpad. The
instructional manc,ger of this study plans to teach in the same way in both the
classroom and the computer laboratory. He sees the curriculum as something fixed,
unchangeable.

The most common type observed in school teacher populations is the instruc-
tional manager. The proportion of this teacher type is even greater in school math-
ematics teacher populations. Type theory suggests that this teacher type is not
open to curricular changes and the present study supports this result; that is, it was
observed that the preservice teacher with an instructional manager approach to
teaching could not adopt new teaching strategies, methods of teaching, and assess-
ment methods. But the point is not how to make these teachers change their ap-
proach to teaching but to help them to adapt to new social conditions and de-
mands. Under the positivist paradigm the relevant question was "How does A get
B to respond as A desires?" Under the new more humanistic paradigms the con-
cern is "What can A do to help B achieve self-realization?" (Lynch, Norem-
Hebeisen, & Gergen, 1981). The question that arises here is: How can this prin-
ciple be applied to teacher education?
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USING TEACHER WRITTEN CASES TO EXPLORE STUDENTS'
MATHEMATICAL THINKING: A VEHICLE FOR

TEACHER INQUIRY GROUPS

Virginia Bastable Summer Math for Teachers
Jill Lester, Summer Math for Teachers

Deborah Schifter, Education Development Center. Inc.

In recent years, the conviction has been growing that cases or stories may be
more helpful than theoretical expositions to people who need to think in new ways
about complex, context-dependent domains like teaching. The current mathemat-
ics education literature provides case studies of classroom teachers written by re-
searchers, case studies conducted by university faculty who also teach mathemat-
ics to students in grades K -12 and make their own teaching the object of .their
research, and cases written by practicing teachers. We, the discussion-group
proposers, extend this work by having teachers write cases in which they explore
the mathematical thinking of their students to share with their colleagues in the
context of our teacher-enhancement project.

The brief (2 -5 page) cases are used as the basis for discussions in which small
groups of teachers work to understand the mathematical issues their students are
grappling with. They provide a method for each teacher to inquire into his or her
own practice and serve as a means to engage with peers in analyzing classroom
process with particular focus on mathematical ideas and students mathematical
thinking.

This discussion session will address the questions: In what ways can such
cases be used to foster a spirit of inquiry into students' mathematical thinking? In
what ways does such work bring the findings of past decades in cognitive research
to light for teachers?

Group organizers will set the context for discussion by providing a brief de-
scription of the project which generated the teacher written cases. Then partici-
pants will read a set of cases presenting classroom episodes which include student
dialogue as they work on a particular mathematical idea. Participants will spend
about five minutes in pairs sharing the issues that are evoked by the cases and then
the whole group will list the various issues. We will then choose one or two to
explore more deeply. The focus of this section of the discussion will be on the
mathematics evoked by the cases.

Next there will be a period of reflection about thc discussion itself and the role
of the cases: In what ways did the cases stimulate our Own thinking? In what ways
could such discussions support teacher education/staff development efforts? What
additional materials would be useful for teachers or teacher educators to help them
use such cases to conduct similar discussions?

The session will close as group organizers provide examples which illustrate
what teachers in their projects learning from writing and discussing such cases.
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AN ANALYSIS OF THE TEACHER'S PROACTIVE ROLE IN
REDESCRIBING AND NOTATING STUDENTS'

EXPLANATIONS AND SOLUTIONS

Kay McClain, Vanderbilt University
Joy Whitenack, Vanderbilt University

The analysis reported in this paper is part of a year-long. first-grade teaching experiment
and focuses on the teacher's proactive role in supporting students' mathematical growth in
an inquiry mathematics classroom. Within the project classroom, the teacher often re-
described and notated students' responses so that what students had done mathematically
might become an explicit topic of conversation. As part of this process, she frequently
introduced either informal or conventional notation to record students' explanations of their
mathematical activity. The introduction of these notational schemes lead to students' de-
velopment of ways of notating their own reasoning. In this way, the notation emerged from
the students' activity while supporting shifts in their mathematical development.

The purpose of this paper is to document crucial aspects of one effective re-
form teacher's proactive rolc in initiating and guiding students' mathematical de-
velopment. Particular attention will be given to how the teacher redescribcd
and notated student responses. This activity will be related both to shifts in dis-
course and to students' development of ways of notating their own reasoning. We
will also attempt to clarify how the development of notational schemes became
realized in the classroom by developing empirically grounded analyses of the teach-
ing-learning process as it was interactively constituted in the classroom (Cobb,
Wood, Yackel, & McNeal, 1992). The intcnt is. therefore, not to develop a pre-
scriptive list of behaviors that purports to guarantee effective reform teaching.
Instead, it is to develop a detailed account of one teacher's practice situated in a
specific classroom. The reported analysis should be of more than local interest
because it might serve as a paradigmatic case that can both help other teachers
develop understandings of their own practice and contribute to the growing re-
search literature on reform teaching.

In the following paragraphs, we first provide a description of the teacher and
her classroom and then outline the data corpus. Against this background, we ana-
lyze the teacher's proactive role in supporting her students' mathematical growth
by redescribing and notating their explanations.

Ms. Smith's Classroom

The majority of the eleven girls and seven hoys in Ms. Smith's Iirst-grade
classroom were from middle or uppe.. middle class backgrounds. There were no
minority children in the classroom, although a mnall percentage attended the school.

The resear.Th reported in this paper was supported by the National Science Foun-
dation under grant No. RED-9353587. The opinions expressed do not necessarily
reflect the views c, the Foundation.
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The students in the class were representative of the school's general student popu-
lation. Although not a parochial school, morals and values were considered to be
part of the responsibility of schooling and children regularly participated in spiri-
tual activities.

Ms. Smith's classroom is of particular interest because an analysis of
videorecorded interviews conducted at the beginning and end of the school year
indicates that the students' conceptual development in mathematics was substan-
tial. Students who, at the beginning of the year, did not have a way to begin to
solve the most elementary kinds of story problems posed with numbers of five or
less had, by the end of the year, developed relatively sophisticated mental compu-
tation strategies for solving a wide range of problems posed with two-digit num-
bers.

The teacher, Ms. Smith, was a highly motivated and very dedicated teacher in
her fourth year in the classroom. She had attempted to reform her practice prior to
our collaboration and voiced frustration with traditional mathematics textbooks.
She explained that her attempts to use a "center" approach left her without the
benefits of productive whole class discussions. Although she valued students'
ability to communicate, explain, and justify, she indicated that she had previously
found it difficult to enact an instructional approach that both met her students'
needs and enabled her to achieve her own pedagogical agenda. When we began
working with Ms. Smith, it soon became apparent that she constantly assessed
both the instructional activities she used and her own practice. In addition, she had
a relatively deep understanding of both mathematics and her students' thinking.
Ms. Smith was seeking guidance with her reform efforts; we were seeking a teacher
with whom to collaborate as we developed sequences of instructional activities.

Data Corpus

Data were collected during the 1993-94 school year and consist of daily vid-
eotape recordings of 103 mathematics lessons from two cameras. During whole
class discussions, one camera focused primarily on the teacher and on children
who came to the whiteboard to explain their thinking. The second camera focused
on the students as they engaged in discussions while sitting on the floor facing the
whiteboard. Additional documentation consists of copies of all the children's written
work; daily field notes that summarize classroom events; notes from daily debrief-
ing sessions held with Ms. Smith; and videotaped clinical interviews conducted
with each student i1 September, December, January, and May.

A method described by Cobb and Whitenack (in press) for conducting leragi-
tudinal analyses of videotape sessions guided the analyses. This method fits with
Glaser and Strauss' (1967) constant comparative methods for conducting ethno-
graphic studies. It involves constantly comparing data as they are analyzed w;11.:
conjectures and speculations generated thus far in the data analysis. As issues
arise while viewing classroom videorecordings, they arc documented and clarified
through a process of conjecture and refutation. Through this process, clasroom
accounts have been identified which can he used to clarify 1) how Ms. Smith's
practices became reali fed in the classroom, and 2) how these practices contributed
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to her students' growth. This paper, which is part of a larger investigation will
focus specifically on redescribing and notating students' explanations and solu-
tions.

Classroom Analysis

Lesh, Post, and Behr (1987) observe that many students have "deficient un-
derstandings about the models and languages to represent and manipulate math-
ematical ideas" (p. 37). In our view, it is essential that students experience sym-
bols in relation to their Own mathematical activity if they are to develop grounded
understanding of their meaning and use. Students might then view symbols and
notations as ways of recording and communicating their thinking that they can use
as the need arises.

In this particular classroom, Ms. Smith often attempted to initiate shifts in the
level of classroom discourse so that what was done mathematically subsequently
might become an explicit topic of conversation. As part of this process. she fre-
quently drew pictures or used either informal or conventional notation as she re-
descTibed students' explanations. Ways of notating therefore functioned as proto-
cols of action (Dirtier, 1989) that grew out of thc students' activity in a bottom-up
manner (cf. Gravemeijer. in press). For example. students often solved an addi-
tion task such as 7 + 8 by partitioning the 8 into seven and one and reasoning.
seven and seven is 14. and one more is 15. Ms. Smith devised a simple method of
notating this activity by using an inverted "V" symbol that came to signify the
partitioning of a number. Ms. Smith would typically follow the "V" notation with
the number sentences that expressed the result of the partitioning (see figure I ).

7 + 8 =

/ \

7 1

7 + 7 = 14

14 + 1 = 15

Figure I. Notating Decomposition of Numbers

On their own initiative, students often referred to this notation to explain their
thinking to other children during whole class discussions. In addition, students
began to use the records as a means of comparing solutions, thereby initiating
shifts in the discourse such that features of their reasoning became an explicit
topic of conversation. We speculate that the students' participation in such dis-
course supported their reflection on and mathematitation of their prior activity.
However, it is important to note that students were not obliged to use the nota-
tional schemes introduced by Ms. Smith. The children did in fact symbolize their
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thinking in a variety of different ways when they were asked to make records so
that other children might understand how they had solved tasks. This lack of
obligation allowed students to develop their own means of representing their rea-
soning by adapting what had been offered.

As an illustration, consider an incident which occurred on December 7. The
task posed by Ms. Smith was a story problem involving a bus There are eight
people on the bus and six more get on. How many people are on the bus now?
Students were asked to work individually on the task, making a record of their
solution process so that others might understand their reasoning. The focus in this
part of the lesson was effectively communicating their mathematical thinking
not imitating a given notational system. During the subsequent whole class discus-
sion, Ms. Smith asked students to share their solution methods verbally as she
redescribed and notated their activity. In this particular instance, the first offered
solution involved using a doubles strategy:

Kitty: I took one off the eight and I put it on to the six to make 7 plus 7 and I
know 7 plus 7 makes 14.

Ms. Smith redescribed and notated (see figure 2).

8 + 6 =
/
7 I

+ 7 = 14

Figure 2. Notating Kitty's Solution

After questions and discussion, Ms. Smith asked for a different way. Jane ex-
plained that she partitioned the numbers differently.

Jane: I stayed with the 6 but I broke it up Into 3 and 3 and whei, i: had the
three it made 11 and three more. . it made.. uhr:i .. it made...it made 13
and one more is 14.

Again, Ms. Smith redescribed and notated the solution (see figure 3), attempting
to clarify to the students how Jane's explanation differed from Kitty's.

8 + 6 =
/ \

3 3

8 + 3 = 11

I 1 + 3 = 14

Figure 3. Notating Jane's Solution
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In addition to Ms. Smith's verbal clarification of the difference in the solutions,
symbolizing the two solutions offered opportunities for the other students to com-
pare the two solutions as they attempted to clarify for themselves how these solu-
tions compared to each other and to their own.

In examining the student work from the previously described task, it is impor-
tant to note that there was diversity in the students' notational schemes. Aghough
students often used elements of the teacher's notation scheme, they did so in origi-
nal ways as they struggled to communicate their thinking. Even when students'
verbal explanations were redescribed and notated by Ms. Smith in a manner con-
sistent with her original scheme, the students worked to devise notational schemes
to fit with their thinking that supported their interpretation of the solution process.
As a consequence, although students might accept ways of talking about their
activity that fit with the teacher's notation scheme, they continued to solve tasks
using very different, personally meaningful notation schemes. This in turn made it
possible for students to develop interpretations and strategies that reflected their
current understanding while experiencing more sophisticated and efficient solu-
tions in class discussions.
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In the sample records shown below (see figures 4 through 7), each child ar-
rived at an answer of 14. However, only the first child's way of notating is consis-
tent with that of the teacher. Although the other three used elements of the teacher's
scheme, they adapted them in original ways.

It should be stressed that, from the students' perspective, Ms. Smith appeared
to introduce notation almost in passing. In addition, the students were not obliged
to followand never practicedparticular ways of notating. The notation was
offered Ms. Smith and became taken-as-shared only through a process of mu-
tual negotiation between her and the students.

As a further note, the teacher's proactive role in guiding the development of
ways of notating appears to have been critical in supporting her students' math-
ematical development. The children increasingly notated on their own initiative
as they solved problems while working both individually and in groups. These
records helped them distance themselves from their ongoing activity and thus re-
flect on what they were doing. Consequently, the use of notation contributed to
the productiveness of whole class discussions by helping to make individual
children's contributions explicit topics of conversation that could be compared
and contrasted. It was as they participated in these discussions that the teacher
guided her students' transition from informal, pragmatic problem solving to more
sophisticated yet personally meaningful mathematical activity.

Conclusion

Throughout this paper, we have attempted to document crucial aspects of Ms.
Smith's proactive role in redescribing and notating students' explanations and so-
lutions. For Ms. Smith, the notational schemes emerged from the students' at-
tempts to explain and justify their thinking; they were not predetermined schemes
introduced into the classroom in a top-down manner. The analysis of Ms. Smith's
role in introducing these schemes indicates that while they became taken-as-shared
through a process of mutual negotiation, the teacher played a central role in initiat-
ing the development of notational schemes that served as protocols of students'
mathematical activity.

The reform movement i mathematics education has emerged as a response to
the consequences of traditional mathematics instruction. Often, reform teaching
was characterized with reference to traditional teaching, and the emphasis was on
what teachers should not do (e.g. funnel students to correct answers and script
lesson plans). Although it was generally accepted that reform teachers should
actively support their students' mathematics development, this was frequently char-
acterized in vague terms such as facilitate or guide. It is only recently that explicit
attention has been given to what specifically effective reform teachers do to sup-
port their students' development. This paper contributes to this growing literature
by documenting the proactive actions of one teacher as she attempted to reform
her practice.
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FACILITATING PROSPECTIVE TEACHERS' USE OF
CHILDREN'S THINKING AND RESULTING

CLASSROOM DISCOURSE

S. L. Sproule, The Florida State University
A. D. Thompson, The Florida State University

Our experience teaching prospective teachers and observing their field expe-
riences suggests weaknesses in the learning experiences we offer them during
methods courses. The primary areas of concern include the prospective teachers'
limited understanding of children's thinking and the lack of depth of classroom
discourse facilitated by the prospective teachers. We are currently addressing these
concerns in the development of a methods course for prospective middle school
mathematics teachers.

The primary vehicles we are using to deal with the limitations include tutor-
ing and clinical interviews. In general, the purposes for the clinical interview ex-
periences include facilitating the development of effective questioning techniques,
encouraging the prospective teachers to listen to their students rather than domi-
nating the discourse. give the prospective teachers an opportunity to deliberately
model or explain children's mathematical thinking in a structured, organized and
hopefully meaningful process.

The interview experience will be enhanced by the inclusion of a tutoring ex-
perience. We maintain that tutoring offers the prospective teacher a teaching envi-
ronment where classroom management issues have been minimized. Thus the tu-
tor (prospective teacher) has the opportunity to focus their attention on the student's
conceptualization of mathematics and discourse inherent in the tutoring experi-
ence.

Diagnostic frameworks will be offered to the prospective teachers to com-
plete a report on their understanding of the children's mathematical thinking expe-
rienced in the interviews and the tutoring sessions. In addition, the prospective
teachers will be provided frameworks to facilitate their decision-making in the
classroom. The frameworks are designed to encourage the prospective teacher to
make their educational decisions regarding the use of calculators, alternative forms
of assessment, problem solving, and grouping practices explicit.
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THE DAY THE CALCULATOR CHANGED: VISUAL
CALCULATORS IN PREALGEBRA AND ALGEBRA

John E. Owens, East Carolina University

Multi-line-multi-operation calculators such as the 11-80 provide eighth-grade prealgebr3
and algebra students with significantly better computational tools tor basic order-of-opera-
tion problems involving integers and signed rational numbers than do calculators offering
only last-entry-or-result displays. Effects are more apparent for weaker students and in
more complicated problems involving the distnbutive property.

The literature on calculator usage to date (with the exception of some recent
studies of graphing capabilities) is based on Last-Entry-or-Result display (LER)
calculators. Historically, studies have tended to focus on the effect of calculator
usage on students' pencil & paper-based computational skills and attitudes toward
mathematics rather than on the nature of students' interaction with the calculator
(Hembree & Dessart, 1992). Calculators tend to be treated as "computational
experts" useful for their ability to do quick and acctirate arithmetic.

More recently calculators have begun to be investigated for a more meaning-
ful role in the learning of mathematics. (Hirschhorn & Senk, 1992; Bitter & Hatfield,
1993). However, the question as to whether or not the visual feedback from the
calculator might not be consistent with (or even in direct conflict with) students'
written or mental representations of an expression seems, in these studies, not an
object for investigation but an obStacle overcome by teaching students the
calculator's mode of entry. This is quite understandable given the current nature
of non-graphing calculators. But the fact that inexpensive dot-addressable dis-
plays are now becoming widely available suggests that this need no longer be the
casereasonably priced calculators can be designed that mimic hand and text-
based operations.

Limited recognition of the potential of Multi-Line-Multi-Operation display
(MLMO) calculators as teaching tools has begun to appear (Vonder Embse, 1992);
but these calls are deficient in two ways: They lack a basis in theory and an em-
pirical research base. This study is the first in a series of planned investigations
into the use of MLMO calculators as tools for doing and learning mathematics and
the nature of student interaction with various calculator displays.

As a first step, students in eighth-grade prealgebra and algebra were tested on
selected skills involving order-of-operation proNems with integers and rational
numbers to determine what, if any, advantage MLMO displays have over LER
displays.

Subjects

Participants in the study were four intact classes ot cinth grade students at a
local middle school. Two of the classes were first-year algebra (the only first-year
algebra classes taught at the school); the others were two of the four eighth grade
mathematics (primarily prealgebra) classes taken by all eighth-grade student:, not
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enrolled in algebra. All four classes under consideration were taught by the same
teacher so as to minimize teacher effects. Data were collected during the final
month of the 1994-95 school year.

All eighth-grade :Audents in North Carolina take a state-constructed end-of-
grade mathematics test consisting of eight components, seven of which are calcu-
lator-active. Texas Instruments' 1I-12 Math Explorer is the recommended calcu-
lator and was used by all students during the year and for this test ("graphing"
calculators have been excluded from use on this test on a state-wide basis). In

addition, students in first-year algebra take a state-constructed end-of-course test
requiring use of a graphing calculator.

Texas Instruments' 1I-81 graphing calculators were used extensively during
the year in the algebra class with minimal preparation on the use of TI-12s in
preparation for the end-of-grade exam. Prealgebra classes used TI-12s extensively
with some introduction to T1-8 Is.

Method

Students completed three forms of an instrument (see Instrtunents. below)
designed to ascertain their proficiency with certain prealgebra and algebra skills.
In each case, classes received approximately three days of review/instruction prior
to the administration. The first instance of the instrument was completed manu-
ally (without calculator); half of the classes (one prealgebra, One algebra) com-
pleted the second instance using LER calculators and the third using MLMO cal-
culators, while the other two classes reversed this sequence (in order to minimize
possible sequencing bias). Administration of the instruments was untimed. Only
students who completed all three sittings of the instruments (61 students-33 al-
gebra and 27 prealgebraapproximately 75% of the original classes) were in-
cluded in the analysis.

Instruments

The instrument consisted of 24 problems, four problems each (two using inte-
gers. two using rational numbers) in six groups: Simple addition/subtraction; simple
multiplication/division; complex addition/subtraction; complex multiplication/di-
vision; simple distributive; and complex distributive (see Figure 1). Problems
were selected and written to conform to the type and format of problems worked
by the students during the year.

Three equivalent forms of the instrument were developed. In each case equiva-
lent problems maintained signs and operations, changing only the numbers to re-
duce student reliance On memory of previous forms to generate answers. For
example, the problem 2- 3 on form I was changed to I - 2 on form 2 and -2-.4 on
form 3.

Equipment

Calculators used in the study were Texas Instruments TI -12 Math Explorer
and T1-80 graphing calculator. The TI-12 was chosen as the LER based on student
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1 2
2-3 -3-1

2
+4-i--3-1

4

4-2+-1+3+-2

31(-2-2 31)
3 3 4

2(-4 3)-2(1 + 4)

Simple A/S

Simple MID

Complex A/S

Complex M/D

Simple Dist.

Complex Dist.

Figure 1. Sample Problems

familiarity with the calculator. The 11-80 is a new calculator, introduced in 1995,

that combines the eight-line display capabilities of the TI-81 with the fraction op-

erations of the TI- 12 (see Figure 2). This calculator was chosen as the MLMO
model based on student familiarity with TI-12 and 11-81 operations.

:1 r
!, 1.711'16

Oil- -4.20::
. 'SO

U.

Fieure 2. Sample TI-80 Screen

Results

Results were analyzed using SPSS-PC
v6.1. Comparing means by question indi-
cated significant differences in all pairwise
combinations (Manual vs LER. Manual vs
MLMO, LER vs MLMO) using t-tests for
paired samples (2-tail significance,
p<.0005).

An analysis of variance for sex-related
differences showed significance (p<.0005)
only for manual calculations in prealgebra.
It is interesting to note that in prealgebra

classes girls outscored boys in each of the three instances (although only manual

comparisons were significant). However, in the algebra classes boys outscored

girls on manual computations, but were outscored by the girls on both LER and
MLMO implementations (although no differences were significant).

Average time taken hy students for LER and MLMO calculations were virtu-

ally identical, while times taken for manual operations were significantly longer
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for both algebra and prealgebra classes. Order of implementation (i.e., LER before
MLMO or vice-versa) was not significant. (see Table I ).

Table I
Mean and Standard Deviation

Algebra Prealgebra
Score Time Score Time

Manual .43/.13 37.65/12.59 .20/.11 26.74/6.44
LER .821.12 19.03/5.99 .62/.15 19.56/7.30
MLMO .931.10 20.00/6.36 .84/.12 20.33/5.60

More detailed analyses were carried out by question. Table 2 describes sig-
nificant differences by question. (See also Figure 3 and Figure 4). Additional
analyses by student were performed hut are not reported in this paper.

Algebra

3 5 9 n 13 15 172 4 6 10 1214 6 131' 9202122232

Question Number

Figure 3. Alitebra by Question

preAlgebra

00 0

BO 0

61

40 0

20 0

0 0

Question Number

Figure 4. Prcalgebm by Question
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Discussion

Order-of-operation and signed number problems are common skills in
prealgebra and algebra curriculums. This study suggests that computational gains
on these problems using calculators are impressivealgebra scores rose from 43%
tt) 82% to 93% and prealgebra from 20% to 62% to 84% (Manual to LER to
MLMO)and that MLMO calculators provide significant gains over LER calcu-
lators. These gains tend to be more pronounced with relatively weaker students
.(i.e., eighth graders in prealgebra versus those taking algebra) and in problems
involving the distributive property.

Although a significant difference exists between LER and MLMO calculators
for algebra students, an examination by question suggests that the bulk of the dif-
ferencefor these students lies in more complicated problems involving the
distributive property and when several ratior.aI numbers are involved. For prealgebra
students, the differences between Ml :d0 and LER scores are more pronounced,
extending over the full range of pri.nlems involving the distributive property.

Possible explanations for this phenomena are that eighth graders taking alge-
bra are more able to deal with reduced visual feedback than their counterparts in
prealgebra and/or that a better understanding of the concept of distribution facili-
tates calculator use (particularly with LER calculators). It is hypothesized that
more complicated problemsorder-of-operation problems with encapsulated brack-
ets (e.g. 3(4-2(5+6))), problems requiring substitutions for variables, problems
involving radicals or exponents, and so onwould further exacerbate the advan-
tages of MLMO over LER calculators. The purpose of this study was to investi-
gate points at which such calculators begin to make a difference in the prealgebra/
algcbra curriculum.

Student reaction to the calculators was pronounced. Prealgebra students who
used the MLMO calculators first, followed by the LER model, were particularly
vocal in their preference for the MLMO. One student from this group, while using
the LER, complained, "You know she (the teacher) has those good (MLMO) cal-
culators in the closet. Why can't we use them?" Another repeatedly got an answer
on the LER she knew to be wrong (a simple problem she had worked manually)
and complained, "I've put this problem n five times and can't get it to give me the
right answer. I'm not going to do it ari, ."

Interestingly, the time taken by stua ents for LER and MLMO calculations
was virtually identical. This seems to a, ;ult, from the observation that, unlike the
young lady described above, students using LER's rarely re-entered a problem as
a check against an answer. Students appeared to look at their calculation on the

MLMO screen prior to execution, occasio:Ially changing obvious mistakes.

Concerns and Implications

If calculators are to be used in middle grades to "(a) introduce new concepts,
(b) provide a computational tool for use in discovery lessons, (c) simplify the
computational aspects of real-life situational problems, and (d) assist students as
they solve problems in group learning situations" (Bitter & Hatfield, 1993), then

Tho
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a calculator that provides better visual feedbackmore in keeping with written
symbolic notation and allows students to obtain more accurate answers is of
utmost importance. For the Ftudents in this study, MLMO calculators were supe-

rior tools for basic prealgebra and algebra computations and seem to better fit

these purposes than do LER models.
A common concern with calculator use is that students can attain correct an-

swers without understanding the underlying concepts, or without mastering basic
pencil-and-paper skills. Several students in this study demonstrated lack of under-

standing (often writing "don't understand" next to a more complicated problem)

or conceptual misconceptions (e.g., 4_ x.2_ = 4 x 2 + x 8_) during the manual

implementation, yet correctly answered equivalent problems using calculators. How

calculators are used in helping students form concepts associated with order-of-

operations and signed number operations must receive high priority in instruc-

tional planning if calculators are to become instructional tools in addition to com-

putational experts.
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THE EFFECT OF THE USE OF NUMBER LINES REPRESEN-
TATIONS ON STUDENT UNDERSTANDING

OF BASIC FUNCTION CONCEPTS

James R. Olsen, Western Illinois University

Researchers and educators are calling for increased use of technology and attention to furc-
tion concepts in school mathematics. Students often have considerable difficulty gleaning
pointwise and global information from Cartesian (IN representations of functions. whethzr
they are hand- or machine-produced. Described here is an interactive computer-based learn.
ing environment (the Function Explorer) which provides dynamic, linked representations
of functions. Table, parallel number lines, and perpendicular number lines representations
dynamically display ordered pairs of the function. A i andomized comparative experiment
is described which was performed to test the effectiveness of the number lines representa-
uons for enhancing student understanding of basic function concepts.

The function concept is unifying and central to the understanding of math-
ematics and its applications. Research from the last two decades has detailed
numerous and deep misconceptions and difficulties students have with the func-
tion concept (see Leinhardt, Zaslavsky, & Stein, 1990). This study was primarily
concerned with the difficulties students have interpreting graphs. While students
can often produce graphs from equations and tables. the reverse process of obtain-
ing pointwise, and especially global, information from graphs is difficult for stu-
dents (see Kieran, 1992). Educators and researchers see the use of computers as
beneficial for the teaching of functional thinking (see Dubinsky & Tall, 1991).

Researchers raise two concerns which hinder the use of technology for teach-
ing functional thinking. First, Kaput (1992) warns that the "retrofitting" of gen-
eral applicatbn (expert) tools as tools for learning mathematics is not easy and
may not he effective. Goldenberg (1991) and other researchers (see Moschkovich,
Schoenfeld, & Axavi, 1993) have found that students are not always gleaning the
correct information, or insights, from the ("perfect") graphs presented by graphing
software and graphing calculators. In fact, novices may pick up on the wrong
aspects of what they seewhat they see being effected by what they know. Sec-
ondly, the (static) Cartesian graph itself is particularly difficult for novices to inter-
pret. Goldenberg. Lewis, and O'Keefe (1992) see "that the act of representing
functions graphically fin R21 has as much potential to produce confusion as en-
lightenment" (p. 240).

This researcher ha,; developed an interactive computer program incorporating
perpendicular number lines and parallel number lines to represent functions. The
design of the representations, user-interfax (the program is titled the Function
Explorer), and learning activities used in this study are based on psychological,
mathematical, and historical considerations. Piaget, Grizc, Szeininska, and Bang
(1977) found that the MN of the function concept, pairthg, is present in the minds
of children at the preoperatory level. This elementary form of cognitive structur-
ing allows the child to conceive of an action of starting with an object and deter-
mining a corresponding object (for example: child, mother; sheep. shepherd).

7
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The primary purpose of the Function Explorer is, upon input by the user, to dis-
play a single ordered pair of the function. The Function Explorer has three repre-
sentations where input of the value of the independent variable is possible: a table,
parallel number lines, and perpendicular number lines. Input in the number lines
representations is accomplished by moving the mouse pointer to the location on
the input ("x") number line. Input via the table is accomplished by mouse-click-
ing the table and typing the value desired. For each new value of the independent
variable, the corresponding function value is (instantaneously) updated. The in-
put-output pair appears simultaneously in all three representations. In the case of
the parallel number lines, the output ("y") is displayed on the output number line.
The parallel number lines elaborate the ordered pair notion, providing the student
a bridge between the tablewhich provides a pair of numbersand the Cartesian
graph (perpendicular number lines)which provides a single geometric point.
The parallel number lines are situated horizontally because this is the orientation
students are familiar with in middle school and algebra textbooks.

The representations of the Function Explorer are dynamic. Interest in proper-
ties of moving bodies helped spurn development of the calculus in the 17th-cen-
tury. Over time however, the direction of motion of a moving body at a point has
evolved to be the tangent to the cun'e (Kline, 1972). Using the perpendicular
number lines representation the student may witness and consider a point moving
in the plane. (Computer speed of at least 33MHz is required for the three linked
representations to update "simultaneously.")

Discrete points may be graphed and entered in the table permanently, by click-
ing the mouse button. However, the program does not produce a complete graph.
The Function Explorer is designed to be a learning environment, by providing a
scientific instrument for investigating functionswhich is more like a microscope
and less like a VCR. The program is intended to aid understanding and not de-
signed to produce human products (i.e., complete _2 graphs).

Parallel number line representation of functions has been investigated by
Friedlander, Rosen, and Bruckheimer (1982) and Arcavi and Nachmias (1993). In
both these cases input and output values on thc respective number lines are con-
nected with lines, and multiple pairs are shown at the same time. The purpose of
this representation was not to make connections to a table and Cartesian graph and
the representation is not dynamic.

A parallel number line representation similar to that of the Function Explorer
(input value on the top number line can be manipulated dynamically, and connec-
tion lines not used) is described in Goldenberg, Lewis, and O'Keefe's (1992) ar-
ticle and in O'Keefe's (1992) doctoral d:ssertafion. O'Keefe found that the dy-
namic parallel number lines environment (DynaGraph program) accurately con-
veyed important features of functions, including dependence, relative change, and
cr.tical values. DynaGraph did not display a Cartesian graph.
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Methodology and Data Sources'

To test the instructional effectiveness of the number lines representations, a
randomized comparative experiment was performed. Four eighth-grade classes
(n=74). all taught by one teacher, were used for this study (two Pre-Algebra and
two Algebra 1 classes). Students in each class were randomly assigned to two
treatment groups. Students in both treatment groups were in the same classroom.
at tire same time. To vary the treatment. each student was given a login name.
When a student logged on to the computer. the correct version of the program was
automatically loaded (depending on the assigned treatment group). The first treat-
ment group (PNL group) used the Function Explorer, with all its representations
displayed (table, parallel number lines, and perpendicular number lines). The sec-
ond group (No PNL group) used a version of the program. which had the parallel
number lines representation hidden (table and perpendicular number lines shown).
All students used their version of the program to solve problems on worksheets
the content of which was taken from the curriculum in use. Data was gathered
from a pre- :.1nd post-questionnaire on functions, an opinion survey, taped student
interviews, and audit trails of learner interaction with the software (a design fea-
ture which keeps track of what representations the user is accessing, and when). A
repeated-measures ANOVA (p = .05) was used to analyze the questionnaire re-
sults.

On day one of the experiment the pre-questionnaire was administered. On
day two, a 5-10 minute introduction/demonstration of the Function Explorer was
given. For the remainder of days two through six, students solved worksheet prob-
lems using the Function Explorer. On day seven, the post-questionnaire was ad-
ministered. The questionnaire had five subtests. Content of the questionnaire
was determined before the worksheet content and subjects were selected. All graphs
on thc questionnaire were Cartesian graphs.

Results

Questionnaire results showed that both groups showed significant improve-
ment on the subtests involving pointwise interpretation and global interpretation
of graphs. There was no significant change on subtests on the definition of func-
tion, use of letters in function notation to stand for varying quantities, and the
relationship between the formula and the graph. There was no significant differ-
ence between the treatment groups, and no time-group interaction was found.

The audit trail data reports the number of uses and length of time a student
used the three representations (table, parallel number lines, and perpendicular num-
ber lines). Since the parallel number lines representation had never been seen by
the students previous to the study, it was unclear if the students would e :en use the
representation. All the representations were used from the outset, and the five-day

I This study Is a dissertation study completed by the author at the University of Northern
Colorado (Ph.D. in Educational Mathematics). I .Canung activities, function questionnaire.
and additional numeric data from this expenment arc available from the author
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averages showed students in the PNL group used the parallel number lines repre-
sentation 26% of the time, the perpendicular number lines 17% of the time, and the
table 10% ot the time. The five-day averages in the No PNL group showed the
students using the perpendicular number lines 46% of the time and the table 10%
of the time. Students reported in the surveys and interviews that they preferred the
number line representations over the table because it was quicker (using the mouse)
than typing in numbers. However, they did use the table for output. That is, they
would mouse-point to an input value, and watch the table for the input-output pair.

Audit trail, interview, and survey results establish that the use of the represen-
tations varied significantly between students. Some students who had the parallel
number lines, preferred rather to use the perpendicular number lines. On the other
hand one student said she rarely used the perpendicular number lines and went so
far as to say, "Take it out," because it was confusing. Some students felt the paral-
lel number lines representation was clearer than the perpendicular numbr lines
because the values of x and y were separate and more readable. The students did
feel that the program helped them understand functions and graphs, and that the
program was easy to use. The students liked the individual control the program
offered. Those who compared the program to a graphics calculator, preferred the
program because it was "easier to get exact answers," and the user control af-
forded by the mouse.

Discussion

This study has shown that interpretation of graphs can be taught successfully
with number lines representations. One of the things that makes the global inter-
pretation tasks difficult for students is that they must think about, and report sets cf
numbers and intervals of numbers, rather than one discrete number. The ability to
use the mouse pointer to move back and forth within an interval to select (and
input) values, helped students think about intervals of numbers.

No improvement was shown on the questionnaire subtests on the definition of
function, use of letters in function notation to stand for varying quantities and the
relationship between the formula and the graph. First, these concepts were not
taught during the study. Secondly, these notions are abstractions, and "just being
in the presence" does not cause the student to construct these generalizations.

Future research is needed to better determine the appropriate use of multiple
representations of functions. Many of the students in this study could answer thc
worksheet questions in the presence of the dynamic representations, but could not
answer the analog questions reading a (static) Cartesian graph. Follow-up "off-
line" learning activities may enhance the on-linc activities. Th,.se representations
need to be tested at other levels and with other concepts. These dynamic represen-
tations may be ased to teach concepts from integer arithmetic to the calculus con-
cepts of change.

The parallel number lines representation may give students who are not yet
able to interpret Cartesian graphs access to function concepts. This may become
increasingly important as school algebra is reorganized around the concepts of



functions, families of functions, and mathematical modeling (see Heid. 1995). The
Function Explorer is not designed to replace other graphing technologies, but is
more as a forerunner, preparig students to more effectively interpret machine-
produced graphs.
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CONSTRUCTION OF CONCEPTS OF TRANSFORMATIONS USING
TECHNOLOGY IN A LANGUAGE DIVERSE CLASSROOM

,luli K. Dixon, University of Nevada

The effects of instructional environment, English proficiency, and spatial
visualization on eighth-grade students' (N = 241) construction of the rigid motion
transformation concepts of reflection and rotation were investigated. Use of The
Geometer's Sketchpad in a computer lab was compared to traditional classroom
textbook-based instruction. Also investigated were the effects of instructional en-
vironment and English proficiency on students' two- and three-dimensional visu-
alization.

The constr activist view of teaching and learning mathematics as well as
Vygotsky's zone of proximal development were influential in the formation of a
dynamic instructional environment based on use of The Geometer's Sketchpad in
a computer lab. The constructivist view of teaching and learning mathematics com-
bined with the zone of proximal development requires that the instructional envi-
ronment of the learner be such that collaborative inquiry is emphasized and ac-
commodated. Students working in pairs at computers to construct the properties of
reflection and rotation using computer software that allows for student conjectures
and provides visual feedback is consistent with these requirements. The choice of
the computer program and design of associated student activities were based on
Cummins' (1Q84) theory of context embedded versus context reduced instruction.
The Geometer's Sketchpad provides in text clues through the dynamic, visual pre-
sentation of geometric properties. Together with activities, The Geometer's
Sketchpad was used to aid in students' acquisition of the concepts and vocabulary
involved with the rigid motion transformation concepts of reflection and rotation
in a context embedded rather than a context reduced instructional environment.

A three factor, nonequivalent control-group design was used for the study.
Validity and reliability were addressed during a pilot study. English proficiency
was measured by performance on the Language Assessment Battery; visualization
level (high, medium, or low) was assigned based on scores on the Paper Folding
Test. After controlling for initial differences using the Card Roeation Test, it was
concluded by analysis of covariance that students experiencing the dynamic envi-
ronment significantly outperformed students experiencing a traditional environ-
ment on researcher made and expert content-validated measures of the concepts of
reflection and rotation as well as on a measure of two-dimensional visualization
(the Card Rotation Test). The students' environment did not significantly affect
their performance on a measure of three-dimensional visualization (thc Paper Fold-
ing Test). English proficiency was not a !,ignificant predictor for any of the depen-
dent variables.
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USING CLASSROOM DISCOURSE TO FACILITATE
MATHEMATICS UNDERSTANDING

Ramakrishnan Menon, Nanyang Technological University

This study was conducted in a Grade 3 (n = 9,3 girls & 6 boys) remedial class
to see whether classroom discourse through discussion, student-constructed ques-
tions (e.g. Menon, 1994; Silverman. Winograd, & Strohauer, 1992) and calcula-
tor-based pattern-searching could help students' motivation for, and understand-
ing of. mathematics. The teacher. with 6 years teaching experience, taught the
class after she had discussed some approaches with me.

By the end of the study, all students generated, and solved, meaningful one-
step word problems and had improved multiplication and word problem skills.
They found interesting patterns for csrtain multiples, realized the connection be-
tween multiplication and repeated addition, mastered their multiplication tables
and, after some time, even refused to use the calculator as it was much faster to
compute mentally. They also stated they liked and understood mathematics better.

One interesting aspect of the study was that students' improved understand-
ing in class seldom transferred to test situations. They reverted to old habits (e.g.,
computing blindly, without checking on the reasonableness of the answer) when
confronted with a test paper, but when they were reminded to look for similarities
between the test queFtions and thc exercises they had done in class, they did much
better. Possibly. the test questions were in a context different from that of the
class--very much like students who in classroom situations could not do compu-
tations which were structurally the same as those they could successfully do in a
rcal-life situation, such as shopping (e.g. Stigler & Barancs. 1988).

While the teacher in this study had a number of advantages compared to a
teacher in a normal class (e.g., a small, almost homogeneous group of underachiev-
ers, and a two-hour block in which to try out activities and exercises), some of the
approaches might be successfully implemented in a "regular" classroom.
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THE GOLDEN RATIOMATHEMATICS OF BEAUTY:
A LEARNING SOFTWARE IN HYPERCARD

Kyoko Suzuki and Eric G. Tobiason
University of Illinois at Urbana-Champaign

This presentaf,on intends to demonstrate a software written in HyperCard 2.1

for learning "the Golden Ratio" for secondary school children aged 12 18. The

objectives of this study are:

1) creating learning materials of mathematical concepts with fun and

easy access for secondary school children,

2) providing interactive activities using computers, and

3) providing supplemental learning materials of general mathematical
topics bridging mathematics and daily life.

The Golden Ratio is a well known mathematical topic, which relates to vari-

ous fields in the real-world phenomena. There are some books for adults describ-

ing the topic, but few books for secondary school children offering fun and easy

access. Easily accessible environment is an important feature of learning materi-

als for those who express mathematics anxiety. This is a big reason to choose

cartoon characters as "buttons" in HyperCard when developing the software. Car-

toon characters also can motivate children to work on the learning material.

What are big differences between computers and books? First, this software

can provide non-linear sequences of information so that users can select any order

of information retrieval. There are two panels which allow users to choose a topic

to study: general panel and math panel (see Figure 1). Second, computer software

can provide animation which tntertains users. This software is freeware.
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STUDENTS' CONCEPTIONS OF LIMITS AND LIMIT EXPLORER.

William J. Hardin, Syracuse University

This poster session will describe a research project to investigate the effects
of differing pedagogical approaches to teaching the mathematical concept of limit
on students' conception of limits and on procedural ability. The session will also
include a demonstration of Limit Explorer, a software package that is designed to
provide interactive animations of t ie standard pictures related to limits. Concep-
tual understanding is viewed in light of Tall and Vinner's (1981) notion of concept
image. Procedural ability is the ability to apply procedures and does not always
require conceptual understanding.

Studies have been done on students' conceptions of limits (Davis & Vinner,
1986; Williams, 1991), but these studies did not compare differing pedagogical
approaches. These studies found that students could have incorrect conceptions of
limit and yet still solve traditional limit problems.Other studies (Heid 1988, Palmiter
1992), compared the effects of using computers to teach calculus with a traditional
pencil-and-paper approach, but did not specifically address limits. Thus, there is a
lack of comparative studies on students' conceptions of limits.

This study will add to the existing body of knowledge of students' concep-
tions of limits and the use of calculators and computers to teach calculus by ad-
dressing the lack of comparative studies on students' conceptions of limits. This
study may also yield valuable information for those educators who wish to im-
prove students' conceptual understanding of limits. It is hoped that I can refine
Williams' limit classification model to include graphical depictions of limit as
well as Movshovitz-Hadar, Inbar and Zaslavsky's (1987) error classification model.
Finally, the Limit Explorer software, developed specifically for this study, will he
a new tool for instruction of limits as well as other calculus concepts.
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TEACHING MATHEMATICS IN A COMPUTER-INTENSIVE
ENVIRONMENT: ONE TEACHER'S MATHEMATICAL

UNDERSTANDINGS AND USE OF TOOLS

Glen Blume, The Pennsylvania State University

This case study' examined a teacher's knowledge of mathematics and use of
computing tools when solving niathematics problems in a computer-intensive en-
vironment and their relation to his implementation of a reformulated, computer-
intensive first-year algebra curriculum (Fey et al., 1991).

Neal, an experienced mathematics teacher, was c ,e of 30 teachers who par-
ticipated in a four-week summer institute focusing on computer-intensive math-
ematics, understanding students' understandings, and teaching and learning issues
related to implementing computer-intensive mathematics curricula; implemented
a year-long computer-intensive algebra course (Fey, et al., 1991); and participated
in a one-week institute the following summer.

The author and members of the research teams administered task-based inter-
views to Neal prior to and after the four-week institute and during the institute the
following summer; administered three pedagogy scenario interviews, and con-
ducted eight observations of Neal's classes (whole group and computer-lab inter-
actions) that included pre- and post-observation conferences with Neal. Verbatim
transcripts of the interviews, classroom observations, and conferences were pre-
pared and analyzed.

Neal demonstrated an ability to explore mathematics in a computer-intensive
environment and to explore an unfamiliar tool. His exploration of the tool over-
shadowed his exploration of mathematics, however, and while Neal stated that he
encouraged students to experiment, that experimentation was largely confined to
learning capabilities of the tool rather than exploring the mathematics inherent in
the problem situations. Neal's students used a computer algebra system but he is
hesitant to implement computer symbolic manipulation prior to by-hand manipu-
lation. Neal's emphasis on curve fitting reflects a focus on the ,:urve fitter and the
process of curve fitting rather than on the fitted function and its characteristics and
questions related to issues of mathematical modeling.
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VISUALIZATION AND STUDENTS' PERFORMANCE IN
TECHNOLOGY-BASED CALCULUS

Enrique Galindo, Indiana UMversity

The relationship between college students preferred mode of processing mathematical in-
formationvisual or nonvisualand their performance in calculus classes with and with-
out technology was investigated. Students elected one of three different versions of an
introductory differential calculus course: using graphing calculators, using the computer
algebra system Mathematical", or using no technology. A total of 139 studencs participated
in the research. Presmeg's Mathematical Processing Instrument (MPI) was used to deter-
mine students' visual processing preference. The interactions of students of different visual
processing preferences with the software Mathematica were also investigated using task-
based interviews. Results from the sections using graphing calculators suggest that appro-
priate uses of technology may equally benefit students of different cognitive styles.

Lie was an intuitionalist; this might have been doubted in read-
ing his books, I however] no one could doubt it after talking with
him: you saw at once that he thought in pictures. Madame
Kovalevski was a logician. Among our students we notice the
same differences; some prefer to treat their problems 'by analy-
sis,' others 'by geometry.' (Poincare, 1900/1907, p. 17)

In the midst of calculus reform in the U.S.A. many of the new approaches to
the calculus make use of computers or calculators with graphing capabilities.
However, individuals vary in their preferences for using visual methods of solu-
tion when solving mathematics problems. Among mathematicians, both visualiz-
ers and nonvisualizers have made important contributions to the progress of math-
ematics, as illustrated by the quote from Poincaré (1900/1907). Furthermore, there
seems to be agreement on the importance of mental imagery in thinking and in the
act of creation (Hadamard, 1945; Koestler. 1967; Shepard, 1978). Among stu-
dents, according to Krutetskii (1968/1976), the ability to visualize abstract math-
ematical relationships and the ability for spatial geometric concepts do not deter-
mine the extent of mathematical giftedness but only its type. However, several
research studies suggest that there is a negative association between students' de-
gree of visuality :.nd their performance in school mathematics (Lean & Clements,
1981; Presineg, 1986). This previous research has been conducted in classes that
use no technology, and the differences in mathematical achievement favoring stu-
dents who are nonvisualizers have been observed both at the senior high school
level, and at the freshman college level. Nevertheless, the author's research on
calculus courses suggests that technology, and software with multiple-representa-
tion capabilities, can be used to promote conceptual understanding and equally
favor both visualizers and students who arc nonvisualizers (Galindo, in press, 1994).
Some results from this research will be discussed in this paper. Students' interac-
tions with the software Mathematica will also be examined.
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Importance and Status of Visualizatioo
in Mathematics Education

With an increased emphasis on the study of patterns (National Research Coun-
cil, 1989; Steen, 1988), visualization is acquiring an important role in mathemati-
cal endeavor. Computergenerated graphs are enabling the mathematician to vi-
sualize the content of abstract theorems (Pool, 1992), and new conjectures are
suggested by the eye (Mandelbrot, 1983). The current status of visualization in
mathematics is best summed up by Steen (1990) as follows:

Thanks to computer graphics, much of the mathematiciati's
search for patterns is now guided by what one can really see
with the eye, whereas nineteenth-century mathematical giants
like Gauss and Poincare had to depend more on seeing with their
mind's eye.... For centuries the mind has dominated the eye in
the hierarchy of mathematical practice; today the balance is be-
ing restored as mathematicians find new ways to see patterns,
both with the eye and with the mind. (p.2)

It seems thus natural to think that if we want students to do mathematics the
same way as mathematicians do it, computers and visualization should also have
an important role in mathematics education. However, it seems that visualiation
has had for a long time a low status in school mathematics.

Although it is generally accepted that visual representations offer a powerful
introduction to the complex abstractions of mathematics (Bishop. 1989), and that
for some subjects such as geometry it is believed that visualization is a necessary
tool in concept formation (Hershkowitz, 1989), there arc a number of students'
difficulties with visualization that have been reported in the mathematics educa-
tion literature (Clement. 1985. 1989; Goldenberg, 1988, 1991; Yerushalmi &
Chazan, 1990). Not only do students have difficulty visualizing concepts and
interpreting graphs, but instances of students' reluctance to use visual methods
have been reported (Balomenos, FerriniMundy & Dick, 1988; Eisenberg &
Dreyfus,1991; Vinner, 1989). Dreyfus (1991) points out that teachers and educa-
tors contribute to the low status of visualization in school mathematics:

The message is that visualization may be a useful and efficient
learning aid for many topics in high school and college math-
ematics, but nevertheless an aid, a crutch, a step, sometimes a
necessary and important step, but only a step on the way to the
real mathematics. (p. 34)

One of the possible consequences of the low status of visual methods in school
mathematics is the differential performance in mathematics courses of visualizers
and nonvisualizers. Lean and Clements (1981) found that first year engineering
students who preferred to process mathematical information by verballogical
means tended to outperform more visual students on mathematical tests. Presmeg
(1986) found that visualizers are seriously under-represented among high math-
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ematical achievers at the senior high school level, and she provides some explana-
tions for this phenomena. The question then arises of whether these differences in
mathematical performance in favor of the nonvisualizer student can also be ob-
served in classes that use computers and graphing calculators, that is, technology
with multiple-representation capabilities.

Visualization and Mathematical Performance in
Technology-Based Calculus Classes

Participants in this study were enrolled in the first course of a threequarter
calculus and analytic geometry sequence for science and engineering majors. The
purpose of the course was to provide students with a solid foundation in one
variable differential calculus. Students elected one of three different versions of
the course. One approach used graphing calculators and the textbook Calculus a

Graphing Approach (Finney, Thomas, Demana, & Waits, 1993); another used the
computer algebra system Mathematice and the textbook Calculus and Mathematica

(Brown, Davis, Porta. & Uhl, 1992); and the last used no technology explicitly and
the textbook Calculus (Finney & Thomas, 1991). Eighteen out of twentysix sec-
tions of th :. calculus course participated in the study, with approximately 25 stu-
dents enrolled in each section. The eight sections using graphing calculators and
the eight sections using no technology used the lecturerecitation format. Perfo--
mance in these classes was evaluated using three midterms, several gqizzes, ane, a
final exam. The two sections using Mathematice had five 48minute sessions
every week in the computer laboratory. The students in these sections were evalu-
ated considering individual and group homework, literacy sheets, participation, 6
inclass quizzes, one midterm and one final exam. The 18-item Mathematical
Processing Instrument (Presmeg, 1985, 1986) was used to determine students'
visual processing preference.

From the three calculus approaches, a total of 139 students participated in the
research. Out of 36 possible points, MPI scores varied from 6 to 29, with a median
of 17. It was found that the MPI scores were nocmally distributed and the cogni-
tive styles of visualizers, nonvisualizers, and students of the harmonic type, were
found among students in every calculus approach. One research question investi-
gated the relationship between college students' preferred mode of processing
mathematical information and their performance in calculus classes with and without
technology. It was found that students who arc nonvisualizers obtained signifi-
cantly better scores than visualizers in the calculus sections using no technology,
and in the calculus sections using the software Mathematica. On the other hand,
there were no significant differences in the calculus scores obtained by visualizers
and nonvisualizers in the sections using graphing calculators. These results and
their implications for the use of technology in mathematics educajon are discussed

elsewhere (Galindo, in press).

323
I I



.

Students' Interactions With The Software

Another research question investigated the interactions of students of differ-
ent visual processing preferences with the software Mathematica. Task-based
interviews of students of each cognitive style from the sections using the comput-
ers were conducted. Students to be interviewed were selected using purposeful
sampling, in particular two strategies; theory based, or operational construct, sam-
pling and maximum variation sampling. The theoretical construct used for the
selection process was mathematical visuality. Two students of each cognitive style
were selected for the interviews, thus a total of 6 students were interviewed.

There were two goals for the task-based interviews. The first goal was to
gather more information about the student's preferred mode of solving mathemat-
ics problemsvisual or nonvisual. The MPI was used early in the course to this
end, but it was desired to investigate if students' work in the calculus wouid ve

evidence about their visual orientation that was in agreement with the MPI results.
A second goal of the task-based intei views was to look at the ways in which
students of different degrees of visuality use the software wher solving mathemat-
ics problems. Mathematica software has different types of toolstools to graph
functions. tools to solve equations symbolically, and tools to do numerical calcula-
tions. The course puts great emphasis on graphical methods for solving problems
and encourages visual thinking. It was desired to investigate if students would use
the software in ways that reflect their visual orientation, or if they would mostly
rely on the graphical methods emphasized in class.

The problems solved during the interviews were analyzed and scored using
the same point system used in the NIPI. A problem was given 2 points if it was
solved using visual methods. A problem solved by numerical or symbolic meth-
ods was assigned 0 points, and problems solved by a combination of methods or
problems where it was hard to tell the method used. were given 1 point. Students'
work during the task-based interviews provided further evidence about their vi-
sual orientation. After scoring students solutions to the interview problems using
the MPI rubric described above, it was found that the methods of solution used by
the students during the task-based interviews reflect the visual orientation indi-
cated by the MPI. Students who obtained a high MP1 score tended to use graphic
methods of solution and preferred to use the plotting capabilities of the software.
whereas students with low MPI scores used numeric and symbolic methods of
solution and the corresponding software commands.

As for the interaction of the students with the software, it was found that the
Rxils used by the students did correspond to their visual preferences, with visually
oriented students preferring to use graphical methods to solve problems, and
nonvisualizers preferring to use commands such as Solve, or Ni Solve]. If students
tend to use software tools that correspond to their visual preference, why is that
nonvisualizers seem to outperform visualizers in the Mathematica sections? Some
possible explanations are examined in the next section.
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Conclusions

The data obtained from both the sections using Matitematica and the sections
using no technology provided evidence of a negative relationship between MPI
score and total calculus score for the students taking these approaches. Thew
results show that differences in mathematics final scores between visualizers and
nonvisualizers prevail at the college level and that they are not easily removed.
The fact that no significant differences were found between calculus performance
and degree of visuality in the sections using graphing calculators, suggests that
appropriate uses of technology may equally benefit students of different cognitive
styles. Mathematics education research should seek to investigate the appropriate
conditions for this to take place.

It was also found that the students' visual orientation observed during task
based interviews and the software tools they use correspond to the degree of visuality
indicated by the MPI. Furthermore, the negative association between course scores
and degree of visuality found in the Mathematica sections seems to be the result of
the long symbolic sentences that students must enter for Mathematica to plot a
graph. The visualizers in these sections needed to go through an analytic expres-
sion in order to take advantage of the graphs. Thus, educators and software de-
signers should be aware of the restrictions that Computer Algebra Systems may
impose on students of different cognitive styles, as well as of their effects on stu-
dents' performance in mathematics.

Another important variable that must be considered is the role of the teacher.
The present study was repeated for the Mathematica sections during the following
quarter, when an experienced Ph.D. in mathematics taught the sections using this
calculus approach; no significant differences were found this time in the calculus
performance of students of different cognitive style. Furthermore, the interactions
between the teacher's cognitive style and the student's visual preference, as well
as their effect on student's performance, need to be investigated in computer
based environments that encourage visual thinking.

Presmeg (1985), identified 17 classroom aspects which are reported in the
literature to be facilitative of formation and use of visual imagery in school math-
ematics. Among such aspects we find: conscious teacher attempts to generate
imagery in pupils hy the use of instruction to form images, and the creation of
dynamic situations to think in moving pictures, (h) teacher formatn and use of
their own imagery, and (c) a pictorial presentation of the topics. classrom
aspects conducive to the students formation of mental imagery in courses that
make use of technology need to he investigated.
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EXPLORING STUDENTS' RESPONSES TO VISUAL PROBLEMS
AT THE HIGH SCHOOL CALCULUS UEVEL

Preety Nigam, Syracuse University

In recent years, there has been a spate of research articles aimed at reform-
ing" calculus at the undergraduate level (Confrey. 1993; Heid. 1988). Much of
this research has focused primarily on two areas: visualization and the use of tech-
nology. It is perhaps a happy coincidence that the two areas have become signifi-
cant simultaneously, as much of the technology available for teaching today, of
which the graphing calculator is an example, offers features which allow students
to draw and enalyze graphs easily. This study focuses its attention on high school
students in order to see whether visualization plays a role in their understanding of
concepts in calculus and whether they can usc visual models to solve problems.
Further, it intends to explore their attitude towards visual-based mathematical prob-
lems and the use they make of the graphing calculator in solving such problems.

The National Council for Teachers of Mathematics' (NCTM ) Curriculum and
Evaluation Standards for School Mathematics (1989) emphasizes the fact that
understanding in mathematics is making connections between ideas, facts and pro-

. cedures. where the definition of "ideas" includes external representations of a con-
cept. Further, it advocates the use of multiple representations while teaching. Vi-
suahzation is one such form of representation which could he particularly useful
since it can provide a concrete aspect of what may he some very abstract ideas.

For this study. volunteers were sought from two sections of an introductory
calculus course in a suburban high school. The students were randomly assigned
to small groups of one. two or three students. The researcher then conducted task-
based interviews with the students, where the tasks consisted of a series of math-
ematical problems with strong visual content. The students were encouraged to
discuss the problems and explain in detail the approach they were using to inves-
tigate the problem and arrive at a solution.

While the data from this study is in the process of analysis, it is expected that
the results from this study will add to the body of research aimed at revising the
curriculum in calculus in a significant way. By documenting students' responses
towards visuLl problems, it will help to illuminate the visual models that students
construct in order to solve mathematical problems and the possible difficulties
they may encounter while constructing them. This information will prove useful to
educators who wish to enhance their students' conceptual understanding. In addi-
tion, the study will also aid in studying the usefulness of one of the features of the
graphing calculator namely. graphing.
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OPERATIONAL SENSE IN FIRST GRADE ADDITION

David Slavit, Washington State University

This paper outlines a theoretical perspective for studying student understandings of the
concept of addition. The notion of operational sense is defined as a way to describe the
notion of addition as a mathematical object, paving the way for an application of the theory
of reification at this level. Previous frameworks relative to problem solving are also incor-
porated. The report of a year-long investigation in a first-grade classroom is then provided.
It was found that understandings of specific aspects of operational sense were beneficial to
successful problem solving strategies on part-unknown action tasks. These understandings
were also beneficial to the ability to transfer knowledge of addition to a finite group setting
(clock arithmetic). Hence, a connection was found between specific kinds of knowledge of
arithmetic and the students ability to model the actions of a problem. Limitations of the
framework and study are also discussed.

In this study. 1 examine if aspects of the theory of reification (Sfard and
Linchevski, 1994) can be used to operationalize student understandings of early
arithmetic. Reification involves the transitioning of understandings in line with
actions and processes to more permanent ur derstandings in line with mathemati-
cal objects. Gray and Tall (1994) provide several nice examples of where reification
may occur in a student's mathematical career, including the reification of the count-
ing process into object-oriented conceptions of number.

Operational Sense

Because I was interested in student understanding, and not just problem solv-
ing behaviors, I attempted to lay out a theoretical basis that would be 1) consistent
with the theory of reification, 2) useful in exploring student understandings of
addition, and 3) useful in relating these understandings to existing theories of prob-
lem solving (Riley. Greeno, and Heller, 1983: Briars and Larkin, 1984; Carpenter.
1985). I defined operational sense in an effort to satisfy these requirements. A
base definition of operational sense could involve the ability to use Ole operation
on at least one sct of mathematical objects (such as the ability to add positive
integers). But this is clearly a minimal conceptualization. I maintain that opera-
tional sense which promotes deep understandings of the operation involves vari-
ous kinds of flexible conceptions which can be interrelated by the leaner. From
this perspective, operational sense could involve (additive components in paren-
theses):

1. A conceptualization of the base components of the process. (This
involves an understanding of the decomposition of addition tasks
into uniform counting or, perhaps later, a devised strategy such as:
7+8=15 since 8=3+5, so 7+8=7+3+5=10+5=15).

2. Familiarity with properties which the operation is able to possess
(commutativity, invertibilty, associativity, existence of an identity).
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3. Relationships with other operations. (In addition to the relation-
ships the operation of addition has with its inverse (subtraction), the
distributive property in any field provides a means of connecting
two operations, such as addition and multiplication. Further, multi-
plication is often initially understood as repeated addition).

4. An awareness of the various symbol system.s associated with the op-
eration (digits, +, >, etc.).

5. Familiarity with operational contexts. (The use of action, compari-
son, and part-whole situations are familiar contexts for the operation
of addition).

6a. Ability to use the operation on abstract objects. (This involves the
use of addition without a reliance on concrete quantities. Here, the
process of addition is being used to act on clearly understood quanti-
ties, with no need to rely on thc base components of the process,
such as counting, or on concrete representations. such as unifix
blocks).

6b. A knowledge of operational facts.

7 . Ability to relate the use of the operation across different mathemati-
cal objects. (Addition on integers, modular systems of different bases,
fractions, decimals, finite groups, variable expressions (symbolic
functions), graphs (graphic functions), vectors, and sequences all share
a fundamental relationship in regard to the process, even though the
mathematical objects are very different. The ability to sec connec-
tions across these systems can be quite powerful in establishing an
advanced operational sense of addition).

8. Ability to move back and forth between the above conceptions.

Some of the above dimensions of operational sense have been previously investi-
gated. For example, Cobb and Wheatley (1988) discuss, in considerable detail,
the manner in which second grade children use operational sense to solve two-
digit addition tasks, as well as how these children were able (or unable) to reify the
notion of ten. Much work has been conducted on the effects of situations and
contexts on problem solving strategies (e.g.. Carpenter, 1985). However, the au-
thor knows of no such study which takes the perspective outlined above in collec-
tively investigating first graders' development and use of operational sense. Fur-
ther, because the evidence at this level suggests that mathematical behaviors will
not always fit in to predispositioned frameworks. I expected to modify the above
perspective as the data accumulated.

Since the study was conducted at the first grade level, it was obvious that
many students would not develop some of the above components of operational
sense to any relevant degree. Components 1-4, 6. and 8 were specifically investi-
gated in this study.
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Project Design

Data Collection Schedule

This project investigated the degree to which an operational sense of addition
was achieved by students in a first grade classroom in a small, northwestern city.
Videotaped interviews were conducted with 17 students a total of 5 times from
October through May. Transcripts of some of the interviews were made. Class-
room observations and instructor interviews were conducted approximately once
per week to provide descriptions of the instruction.

Interview Data

Each of the student interviews contained a series of tasks designed to elicit the
students' operational sense of addition. Number size was in line with the current
level of instruction. Student responses to the tasks assisted in designing future
interviews. The tasks were analyzed for patterns in student problem solving ten-
dencies and the level of operational sense displayed. Each interview contained an
addition story task of each of the forms a+b= a+ .c. and -4-b=c. These tasks
were designed to provide information regarding computational ability and prob-
lem solving strategies. The stories were predominantly action type tasks that in-
cluded names and objects familiar to each specific child. Probing or clarifying
questions were consistently given during and following the working of the tasks in
order to elicit more detailed information about the solution strategy and the under-
standings held by the student. Frequency counts were generated in regard to cor-
rectness and classification of solution strategy. Additional analysis was conducted
on these tasks in regard to the level of operational sense present in the solution
strategies. For example, a counting backward strategy implicates the child in re-
gard to an ability to invert the operation. and counting strategies and invented
algorithms provide evidence as to the manner in which addition was understood in
regard to its base processes. A variety of other tasks, some of which are described
in the discussion below, provided more detailcd information in regard to the devel-
opment of various aspects of operational sense.

Results

Instruction

'The instructor was an experienced teacher with a Master's Degree in Elemen-
tary Education. The students grew quite close to her throughout the year. In my
view, the instructor provided an educational context quite conducive to learning
mathematics. This included opportunities for the students to make conjectures,
discuss solution strategies. experience mathematics in a variety of situations and
representations. and to reflect on the mathematics being discussed. The instructor
rarely forced an algorithm or universal way of doing mathematics into the discus-
sion, leaving this to her students. It is worth noting that. despite these qualities. I
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was most impressed with her ability to positively stimulate the development of her
students as young boys and girls.

The instructor incorporated classroom activities that I would classify as pro-
moting an operational sense of addition. These included numerous counting, esti-
mation, and pattern activities, general addition tasks that explore different ways of
adding two numbers to achieve the same result, skip counting, story problems in a
variety of contexts, discussions of zero, and tasks which discuss commutativity.
In addition, aspects of operational sense were found in student-initiated. comments
during classroom discussion.

Development of an Operational Sense of Addition

A discussion of the data addressing the students' development of specific as-
pects of operational sense will now be given. This will be followed by a more
inferential reporting of the students' overall development of an operational sense
of addition.

Counting. All students demonstrated at least some degree of knowledge re-
garding the role of counting as a base process for addition. Counting strategics,
facts, or heuristics were used by all of the students on result-unknown tasks (a+_.)
during each interview. This was also the case on part-unknown tasks (a+_=c and

+b=c) with the exception of three students who consistently guessed or repeated
the total, making no use of their counting abilities. However, this was clearly a
result of their inability to understand the problem context rather than a limitation
of their ability to relate the counting process to the additive situation.

Properties. Commutativity, invertibility. and the zero identity were additive
properties which the tasks were designed to specifically address. Tasks addressing
commutativity involved a result-unknown task stated in its two conimutative forms.
The manner in which the student solved the second task was observed. An imme-
diate answer to the second question followed by discussion that appropriately ad-
dressed the order-irrelevant nature of thc numbers involved implicated the student
on the use of commutativity in the solution process. The use of a counting strategy
on the second task suggested that commutativity was not used. Four students
consistently recognized commutative situations and applied these understandings
in problem solving situations throughout the year. Ten students had difficulty
during the initial interview, but showed uses of commutativity the remaining time.
Three students held veq unstable notions of commutativity, using this property
sporadically throughout the year on these tasks. In addition, four students used
count-on strategies on initial-unknown tasks, suggesting that commutativity was
used to support the count-on procedure.

The identity property was investigated through the use of tasks of the form
(a-t-_=a): "What's your favorite number (FN)? 1'111 going to figure Out my FN hy
adding a number to your FN. Is there anyway that I could have the same FN as
you'? (if needed, a specific number was introduced into the wording of the task)."
No student was successful on all four of the Identity tasks from Interviews 1,2,4,
and 5. Ten of the students expressed knowledge of the zero identity in a very

.334



sporadic manner across the interviews, seemingly forgetting and remembering the
zero property from one interview to the next Two students did not use the prop-
erty at any time

A subtraction task immediately following a related addition task (e g , 3+_=9
and 9-3=_) given during Interviews 3 and 4 were used to analyze the students'
ability to invert the operation of addition and relate it to subtraction. No student
used invertibility to answer the subtraction task during Interview 3, with most
successful strategies involving counting backwards with blocks. Three students
made explicit references to the inverse relation among the two related tasks during
Interview 4, and three others made comments suggesting some connection was
made. Analysis of subtraction stTategies on all part-unknown additive tasks were
also made, and 6 of the 17 students used subtraction techniques to answer the
additive tasks at some point throughout the year.

Relationship to other operations. The ability to relate addition to the opera-
tion of subtraction has just been discussed. A multiplication task was given during
Interviews 3 (repeated addition) and 5 (array). Five of the 17 students were suc-
cessful on the repeated addition task, and 9 (including the previous 5) students
were successful on the array task. Count-all with blocks and heuristics were the
most frequent strategies used.

Knowledge of symbol system. Before the first interview, 10 of the 18 stu-
dents could count to 100, 2 other students missed one decade, and the remaining
five students could not count higher than 30. Only two students were able to
correctly write all ten digits, with 5,7, and 9 the most common digits to be written
backwards. All but four students could produce the symbol "+". These limitations
quickly dissipated and were not a noticeable barrier in student development.

Use on abstract objects. Five students relied on concrete objects when work-
ing each task throughout the year. The remaining students showed varying de-
grees of an ability to perform the process of addition at a more abstract level,
including the use of facts and heuristics on additive tasks. However, only one
student made consistent use of heuristic.; throughout the year, with most of the
other student uses emerging during Interview 5.

Other tasks provide additional data on this aspect of operational sense. One
task during Interview 3 asked to determine which was bigger: 10+3+5 or 13+5.
Seven students stated 10+3+5 was larger because "it has more numbers." Of the
four students who correctly stated their equivalence, only two explicitly mentioned
the equivalence of 10+3 and 13, while the other two found each sum. During this
interview the students were also asked if they knew 4+4, and then were immedi-
ately asked if they knew 4+5. Of the 12 students who immediately knew 4+4, 2
used a fact to answer 4+5, 5 Ilsed a heuristic, and 5 students had to use a counting
strategy. Th: students were also asked to state how many ways they knew to add
two numbers logether so that they equal nine. During Interview 1, 8 students
could think of no number pairs, 6 students stated one number pair (5 of these said
4+5), and two, four, and five number pairs were stated by one student each. But
during Interview 4, 6 students gave 8 or more number pairs. and all but one student
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gave at least two number pairs, including 6 students who also involved subtrac-
tion. Only four students used blocks or fingers on this task during Interview 4.

Overall Analysis. It api,ears that flexible understandings of addition in re-
gard to base processes are central in the development of other aspects of opera-
tional sense. However, some students developed notions such as commutativity
before such development. It is hypothesized that these students developed very
fragile notions of number as an object which they could apply to a commutative
setting, irrespective of counting strategies. All of the investigated additive proper-
ties were mentioned during instruction, hut commutativity was acquired much more
readily than identity or invertibility.

Six of the seven students who exhibited correct strategies on initial-unknown
tasks at least 80%. of the time also displayed solid understandings of commutativ-
ity or invertibility (or both). Because these students either performed a counting
back strategy or commuted the number sentence and used a counting on strategy,
an understanding of these properties was vital in their solutions. These students
also made the greatest usc of heuristics. The five students who did not show one
correct strategy on the part-unknown tasks throughout the year also showed no
understanding of invertibility and little or no use of heuristics. In addition, a trans-
fer task given during Interviews 4 and 5 asked the students to determine what time
it would be 5 hours after 9:00 A.M. A picture of a clock was given to those stu-
dents who initially showed difficulty, and the class had just completed a fcw les-
sons on telling time. Though not universal, a pattern in the data was found be-
tween success on this task, correct solution strategies, and knowledge of additive
properties.

Implications

This study attempted to combine students' ability to reify addition with an
analysis of problem solving strategies in studying the mathematical behaviors of
first graders encountering addition. Problems did arise from the use of this frame-
work. These included measures of specific understandings of operational sense as
well as the narrow scope of a first grade curriculum in relation to the broad defini-
tion of operational sense. However, the numerous kinds of data and the connec-
tions between specific components of understanding and problem solving allowed
for some conclusions tc he made.

Riley et al. (1983) suggest that there exists specific knowledge about additive
structures that affects problem solving behavior. Others (Briars and Larkin. 1984:
Carpenter, 1985) suggest that problem solving behaviors more closely relate to the
actions and contexts of thc problem. It appears that some connection exists be-
tween types of knowledge associated with addition and the types of strategies stu-
dents use. Knowledge of specific properties allowed students to better model the
actions present in the tasks. This study provides both a means of combining the
above two perspectives and data to support the compatibility of the theories.
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PLACE-VALUE: PROBLEM-SOLVING AND WRITTEN ASSESSMENT
USING DIGIT-CORRESPONDENCE TASKS

Sharon Ross, California State University, Chico
Elisa Sunflower, California State University. Chico

The purpose of this study was to examine the effects of researcher-developed lessons on
students understanding of two- and three-digit numeration. Digit-correspondence tasks,
often used for individual interview assessment of place valuc understanding, were adapted
to be used as problem-solving tasks. The tasks were presented to three classes, grades 3-5.
Students were given ample opportunities, in cooperative groups and as a whole class, to
discuss and exchange points of view. In the selected classaioms the social norms estab-
lished by the teacher encouraged such exchanges. A scoring rubric was developed for a
whole-class. digit-correspondence task requiring individual written responses. Only 18% .

were successful on the preassessment. Of the 58 students initially unsuccessful, 717c were
successful after the instructional intervention as measured by a delayed postassessment.

In digit-correspondence tasks, students are asked to construct meaning for the
individual digits in a multidigit numeral by matching the digits to quantities in a
collection of objects. As measured by such tasks, even in the fourth and fifth grades
no more than half the students demonstrate an understanding that the "5" in "25"
represents five of the objects and the "2" the remaining 20 objects (Kamii, 1982;
Ross. 1986; Ross, 1910).

Constance Kamii has argued that young students' developing understanding
of place value is eroded by traditional algorithmic instruction in addition and sub-
traction, where individual digits are all treated as "ones" (Kamii & Lewis, 1993)1.
Significant gains in conceptual understanding of place value have been demon-
strated among first and second grade children participating in full-year studies
where students are encouraged to invent their own methods for multidigit addition
and subtraction (cf. Fuson & Smith, 1994; Hiebert & Wearne, 1992; Kamii, 1989).

In this study we examined the learning among older students who in prior
grades had experienced traditional algorithmic instruction for multidigit addition
and subtraction. In earlier work we had individually interviewed numerous stu-
dents using digit-correspondence tasks, and had often wondered how children would
react if they heard the ideas of other students and had an opportunity to react. We
designed this study with two questions in mind. What would students learn from
their peers if they share their thinking alx)ut the meanings cf the digits in digit-
correspondence tasks? What could be learned about student thinking by examin-
ing their individual responses to a written whole-class assessment instead of by
using individual interviews.

Method

We worked in a fifth grade classroom of 22 students. a fourth grade classmmn
of 20 students, and a combination class that included 19 third and 10 fourth grad-
ers. The three heterogeneous classrmins were selected because of thc teachers'
experience and expertise with problem-based instruction. The teachers had suc-
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cessfully established social norms to encourage students to exchange points of
view with rcspect to their mathematical thmking. All three teachers had worked
collaboratively with the univPrsity-based research team over a period of three years
in a grant-supported teacher leadership program In the program they studied
construct, vist theories of learning mathematics and collaboratively designed cur-
riculum and practiced instructional strategies to be consistent with those theories.

The instructional intervention was conducted in February and March, when
students were accustomed to the classroom routines and to problem-based instruc-
tion. We were in each classroom over a period of five or six consecutive days.
Written assessment tasks and four 90-minute lessons were presented.

Written Digit Correspondence Assessment Tasks

We designed tasks that could be administered to the whole class, rather than in
individual interviews. Each student received a picture of 35 objects. Aided by an
overhead projector transparency of the picture, the researcher elicited a consensus
that the number of objects in the picture was 35. The researcher then wrote "35" on
the transparency and said "Thirty-five stands for the 35 beans (or squares). She
then circled the "5" in one color and asked the students to do the same. She then

. asked, "What does this part of 35 have to do with how many beans are in the
picture? Write down what you think and color the picture to show what you mean.
After allowing for response time, she circled the "3" with another color, asked
students to do the same and asked "How about this part? What does THIS part
have to do with how many beans are in the picture?"

For the preassessment, the picture of 35 objects arranged in a rectangular five-
by- seven array. A second version, picturing 35 objects in an ungrouped collection,
was administered at the close of the instructional period, and again in June which
was three months after the instruction.

Lessons

Each lesson tr-gan with a problem-solving task to set the stage for the digit-
correspondence (experimental) task, which was to decide what the parts of the
number had to do with how many objects are in a collection. The stage-setting
tasks were designed to reflect typical intermediate-grades curriculum (topics in-
cluded area, multiplication, and division), and to provide entry for all students.
Manipulative materials and/or drawings were part of all the tasks. A set of detailed
lesson descriptions including samples of student work is available from the au-
thors.

144 Squares. Students were asked to decide, in groups, whether or not three
gridded paper shapes were thc same amount of paper (area). The rectangular shapes
were 12cm x 12cm (144). 13cm x 11cm (143). and a shape 6cm x 24 cm with one
square centimeter cut off each corner (140). Students reached consensus that the
yellow square was the largest. with an area of 144 square centimeters. In the digit-
correspondence task, students were asked "what does this part of 144 (circling
each individual digit beginning with the 4 in the units place, then the tens digit and
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finally the "I") have to do with how many square centimeters are in the yellow
shaper We provided each group a transparency picture of the 12 x 12 square for
preparing their presentation to the whole class.

124 Cubes. In this lesson we used a "factory" context of filling orders for
cubes. Base ten blocks were available as imxiels for cubes "prepackaged" in sets
of ten and one hundred. We asked. "How many ways can you fill an order for 124
cubes?" Making a list was modeled as a problem-solving strategy. For the digit-
correspondence task. each group was assigned one of the non-standard ways to fill
the order (e.g., seven long packages and 54 individual cubes) and asked to "decide
which blocks would fill the order for each of the three parts of the number" (dig-
its).

26 Wheels. Students were asked to determine how many toy wheels were
contained in a clear plastic bag, based on the following two clues: "There are
enough for six cars. There are two left over." After students reached a consensus
that there would be 26 wheels we asked what each part of 26 (the "6" and then the
"2") had to do with "how many you have." A diagram of the six cars (each with its
four wheels) and the remaining two wheels was provided each student as they
worked individually and a transparency version was provided to each group.

62 Wheels. "If each car has four wheels, how many cars can be fitted with 62
wheels'?" After arriving at a consensus of 15 cas, we asked. What does each part
(the "2" and the "6") of 62 had to do with how many wheels you have? Students
made their own drawings.

Typically, a member of the research team presented the task. researchers and
the classroom teacher circulated among groups during the cooperative-group work
time, and the classroom teacher led the whole-class discussion while groups pre-
sented their results on overhead transparencies. Teachers used questions and com-
ments to focus attention on differences and similarities among the ideas presented,
and often asked students to elaborate by showing with the picture. Special care
was taken to provide neither any direct instruction about the "tens and ones" mean-
ings of the digits nor any judgments about the correctness of the ideas presented.

Transcripts of the lessons were based on note-taking by a trained observer and
audio recordings. All individual written work and group work, which was usually
in the form of overhead projector transparencies, were collected for analysis.

Results and Discussion

We sorted the individual written assessment papers into categories of similar
responses and developed a descriptive rubric of nine distinct categories. Reading
the 71 preassessment papers was discouraging. Twelve students failed to respond
to the questions, and 32 invented meanings that gave no hint of the "3" represent-
ing 30. One student gave the response that the "5" meant five squares and the "3"
suiod for three squares. All the other students attempted to account tor the whole
collection of 35 squares: "rows of live" and "counting by threes" (even accounting
tor the remainder) were common responses. Fourteen students used the language
ot tens and ones in their written responses, but we could not be sure they were
talking about the collection o,ficivarvs in the picture or simply describing the names
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they had learned for the "coloms" (sic). Eight students wrote responses that strongly
suggested that they might understand the meanings of the digits, but included no
pictorial evidence of a 30 and 5 partitioning. Only five students gave truly con-
vincing written and pictorial evidence of understanding.

With only one or two students in each classroom demonstrating understand-
ing at the beginning of the instruction, we were concerned that there would be
insufficient numbers of knowledgeable peers for the social-interaction design to
produce changes in student conceptions. However, students found the lessons en-
gaging and were soon immersed in making sense out of the digits. They examined
many ideas, and lively debate often occurred as students exchanged points of view
about the meaning of the individual digits. The task that elicited the most heated
debate was "26 Wheels." One viewpoint was that the "2" stood for twenty wheels
(usually in five cars), and that the "6" stood for the remaining six wheels. Other
students were equally adamant that the "2" stood for the two wheels left over and
the "6" stood for the six cars or the wheels on the six cars.

The responses on the postassessments were generally both more correct and
more expansive than those on the preassessment. In the delayed postassessment,
23 students described the "3" in 35 as representing not simply 30, but also as three
sets of ten; 10 of the 23 partitioned the accompanying picture into sets of ten while
the remaining 13 partitioned it into 30 and 5. An additional 29 saidents wrote that
the digits represented five squares and 30 squares; 15 of these included pictures.
We concluded that there might be three reasons for the improvement. One is that
students constructed meanings for the individual digits in a multidigit numeral that
were more consistent with our place-value numeration system than those they held
before the instructional intervention. Another is that they became better at ex-
pressing their mathematical thinking after the experience of talking and writing
about their ideas, and hearing and seeing other students' ideas. Finally, because
relatively few students used the p..ctures to show what they meant in the
preassessment, we chose to prompt he use of coloring the pictures more asser-
tively in administering the postassessments.

Some small groups seemed to get stymied with a single incorrect interpreta-
tion because it was the viewpoint of a student in their group who was a respected
leader in the classroom. Students in these groups might have benefited more had
we changed the groups so that they could have experienced a more fluid exchange
of ideas. Although we were constrained to present the lessons on consecutive days,
the lessons might have been more effective if spaced across the school year, be-
cause teachers change the composition of the collaborative of groups every few
weeks.

To evaluate changes in student thinking about the digits. we compared the
preassessments with the postassessments in terms of success. All responses that
related the "5" in 35 to a set of five objects and the "3" in 35 to the remaining set
of 30 objects or three sets of ten objects were defined as "successful." On the
preassessment, the work of only 13 of the 71 students (18%) demonstrated that
they knew that the "3" represented thirty of thc objects; thes, 13 were also suc-
cessful On both the immediate and delayed postassessments. On the immediate
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postassessment, 45 additional students (63%) were successful, falling to 41 (58%)
on the delayed postassessment. Among those who were initially unsuccessful, 65%
of the third graders, 76% of Cie fourth graders. and 63% of the fifth graders were
successful on the delayed postassessment. Two were absent and 15 (21%) remained
unsuccessful on the postassessments.

Conclusions

The digit-correspondence instructional tasks used in this study are "worth-
while" as defined in the NCTM Professional Teaching Standards (National Coun-
cil of Teachers of Mathematics, 1991). By presenting a few digit-correspondence
tasks in a problem solving mode and allowing students to exchange points of view.
teachers may be able to help more students in grades three through five construct
an understanding of the meanings of the digits in a multidigit numeral.

In the NCTM's Mathematics for the Young Child, Thompson recommends
that teachers use digit-correspondence tasks to interview individual students as a
way to diagnose place-value understanding (1990, 106-107). Teachers of older
students may find the whole-class, written format described in this study to be a
useful alternative.

Understanding place value is important to achieving good number sense, esti-
mating and mental math skills, and to an understanding of multidigit operations.
The results of this study contribute to a growing body of evidence that students can
construct important mathematical concepts and structures through social interac-
tion and communication with their peers about worthwhile mathematical tasks.
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RURAL STUDENTS' INFORMAL KNOWLEDGE OF DIVISION

Sarah B. Berensm, North Carolina State University
Draga Vidakovic, North Carolina State University

This preliminary study examined the meanings, models, and strategies of rural students in
grades 3-8 for solving simple, whole number division problems. Findings suggested that
students have multiple meanings for division words such as share andfair share. Cultural
factors and diversity in the classroom may be assotated with these multiple word mean-
ings. Students in this study worked from three division models: partitim quotative, and
splitting. The majority of students selected the partitive model as their model of choice.
Younger students selected the quotauve model more than older students. Among four strat-
egies, older students used division facts more often than younger students. Younger stu-
dents depended on addition/subtraction strategies more than older students. A number of
students at every grade level used multiple strategies.

The division ideas of rural students in grades 3-8 were examined in this pre-
liminary study. Previous studies investigated children's and teachers' division con-
cepts and processes in relation to a number of external variables including prob-
lem type, context. number type, representations, and rule violations or misconcep-
tions (Harel, Behr, Post, & Lcsh, 1994; Greer, 1992; Tirosh & Graeber, 1990).
Children in grades 1-3 were interviewed by Kouha (1Q89) to identify the division
strategies used to solve simple division problems. Fischbein, Deri, Nel lo, and Marino
(1985) concluded that the model of choice among students in grades 5 and 7 was
the partitive division model. The quotative model influenced only grade 9 stu-
dents' choices. Others have proposed that there are more division models, and of
particular interest to us was Confrey's (1994) splitting model.

Division is one strand of the multiplicative conceptual field described by
Vergnaud (1994). He asserted that the multiplicative conceptual field should first
consider the intuitive, iinplicit, or informal mathematical knowledge of students.
The theoretical framework of Vergnaud (1994) reflects the constructivism of
Vygotsky who included a described teaching as the mediated meanings of situa-
tions, words, and symbols between teacher and student (Vygotsky, 1986). Teach-
ing provides the social interactions. but from a constructivist perspective the learning
is a personal process, unique to every student. Vygotsky (1986) observed that chil-
dren before adolescence have very different meanings than those of adults for
situations, words. and symbols (Voight, 1994). To better understand the multiple
meanings, models, and strategies that students bring to the classroom, this study
investigated thy informal knowledge used by rural children in grades 3-8 to solve
simple, whole number divis,on problems.

Method

The students in this preliminary study were from a large, rural county in South-
eastern United States. Within the county there was a wide range of cultures. Many
students' families have lived in their farming communities for generations, other
I amities are transient or migrant agricultural workers. In this county school system
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there are 16,067 K-12 students of which 72% arc white and 23% are African Ameri-
can Hispanics (3%) make up a small percent of the school population followed by
Native Americans and Asian students ho together account for less than I% of the
student population In March 1995, 35% of the K-12 school population received
free or reduced lunch indicating low socio-economic status.

Data for this study were collected in two ways. Teachers of grades 3-8 con-
ducted structured video interviews of smne of their students (n=55) and gave a
paper/pencil assessment to all of their students (n=451). In the structured inter-
views, students were encouraged to talk about sharing in their lives. Then teachers
asked students to determine if and explain why a particular distribution of candy
was a fair share. The interview also included a simple, open-ended division prob-
lem that suggested sharing division and involvcd dividing a bag of candy. The first
item on the paper/pencil assessment asked students to explain in words and pic-
tures how they would solve a simple. partitive division problem. Next students
were asked to write a story problem from a picture that suggested partitive divi-
sion.

Analyses and Results

Data from the interviews and the paper/pencil instrument were examined to
determine the meanings that 3-8 students gave for share and fair share, their mod-
els for division, and the strategies that they used to solve simple, partitive division
problems. The analyses of the data involved multiple sorts to code the'responses.
Agreement between the categories established by previous studies and our catego-
ries provided information for final adjustments to the categories. Then the data
were tabulated to reflect the frequency of each category. Student profiles were
used to report the frequency of strategy responses because students had more than
one strategy for a single item.

Meanings

Sharing is recommended in methods textbooks as a meaningful way to intro-
duce young children to partitive division. However, Vygotsky (1986) stated that
children, up until adolescence, have very different meanings of words than adults,
although they have learned how to use the words to communicate with adults. In
the interviews, students were asked about their definitions of sharing, and to ex-
plain if the teacher's arbitrary distribution of candy was an example offair share.
Multiple sorts of these responses were coded to establish the following categories
of meanings for both share and fair share: 1) equal amounts in meaning, 2) math-
ematical meaning, and 3) cultural meaning. The first category was tabulated if
students mentioned equal shares. The second category was tabulated if students
gave a description of division. I the student's definitions of share and fair share
indicated that cultural factors were involved, then tabulation was made in the third
category.
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Among 55 interviewed ,tudents. there were 15 students whose definitions of
sharing included ideas of equality, and 31 students whose definitions offair shar-
ing included ideas of equahty Older students tended to include ideas ot equality
more than younger students, for the meanings of both words The analysis of whether
studenis associated division with sharing and fair share gave the following re-
sults. Only 4 students included division in their definitions of sharing (1 for 3-4
gr.; 2 for 5-6 gr.; 1 for 7-8 gr.). Two students included division as part of their
definition of fair share. Many students. who gave non-mathematical definitions.
showed great diversity in their meanings of share, and indicated a wide variety of
cultural values. They included:

To loan personal items such as toys. clothes, etc.

Taking turns with another person.

Doing things with another person.

To keep a secret with a friend or sibling.

If they have nothing. you give them something of yours.

Giving to someone if they deserve it.

To give others the same amount, including one's self so notxxly gets
upset.

If you have something that the other person wants, and they have
something you want. then you give each other those things.

To give the other person more because I can get whatever I want
anytime.

Everyone is treated fairly when you have something.

Older people, like parents or older siblings, can get more than younger
children.

Not sharing all the candy so that you can save some for another day.
Only take a few.

Among students in grades 3-4, 71 r lc included cultural factors in their definitions of
,haring. For students in grades 5-6 and grades 7-8, 74q and 59(4 respectively
included cultural factors in their definitions. When asked if a particular distribu-
tion was aftiir share, the evidence of cultural values decreased greatly among all
students' meanings (5(.4 overall) and as previously seen, a corresponding increase
in notions of equality among groups was noted.

Models

Primitive models used in solving division problems were reported by Fischhem
et al. (1985) and included the partitive and the quotative models of division.
Fischbein described the partitive model as sharuiR diasion. where something or a
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collection of things is divided into a number of equal parts or groups. He defined
the quotative model as measurement division, where the student is required to find
how many times a given quantity is contained in a larger quantity. In addition,
Confrey (1994) has proposed a third primitive model of splitting division. Much
like a binary tree, the students make successive halvings or pairings in the splitting
process to produce multiple versions of the original. These new versions are cre-
ated by either magnifying or shrinking the original version. Interview transcripts
in our study were examined to tabulate how many students used each of the three
models. Also, note was made of the students who determined the dividend before
solving the open-ended problem.

Table 1 presents the frequency distributions of the different models in percent
for grades 3-4, 5-6, and 7-8. We found that more than half of the students (51%)
did not count the candy to determine the dividend. Sixty-four percent of the stu-
dents in grades 3-4, 56% of the students in grade 5-6, and 39% of the students in
grades 7-8 did not know the dividend before starting their solutions.

Table 1
Frequency of Primitive Models Used by Students in Grades 3-4, 5-6, and 7-8 to
Solve an Open-Ended Division Problem

Model 3rd & 4th grade
% Categorical Responses (n)
5th & 6th grade 7th & 8th grade totals

(n=14) (n=18) (n=23) (n=55)
Partitive 50 (7) 67 (12) 78 (18) 67 (37)
Quotative 36 (5) 28 (5) 22 (5) 27 (15)

Splitting 14 (2) 6 (1) 5 (3)

The partitive model for division was used more frequently by students at all
grade levels. This may be because the problem involved dividing candy, suggest-
ing a sharing model of division. However, 27% of the students selected a quotative
model for the problem. Few students (5%) used the splitting model. A larger per-
cent of the older students used the partitive model while the younger students used
it less. Among those selecting a quotative model, there was a larger percent of
younger students and a smaller percent of older students who selected the model.
No students in grades 7-8 selected the splitting model.

Strategies

The paper/pencil instrument was used to collect data about the division strat-
egies of students in grades 3-8. Multiple sorts established the categories of the
solution strategies of simple, partitive division problems. These categories were
compared to those reported by Kouba (1989) and modified as follows: 1) addition/
subtraction, 2) dealing out, 3) multiplication, and 4) division. Two dealing out
strategies were noted among the students one in which the student distributed
one or two to each group (divisor) consecutively, and the other in which the stu-
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dent dealt out all the objects (quotient) at one time to a number of groups. The first
dealing out process required multiple circuits of the groups up to the limit of the
dividend. The second dealing cut process required only one circuit of dealing out
where the number of groups formed were limited by the dividend. Since students
may have used more than one strategy within a response, student profiles were
used to represent the different combinations.

The profiles of students' division strategies arc reported below in Table 2. In
the student profile, a "1" indicated that a particular strategy was present, while a
"0" indicated the absence of the strategy. Reading from left to right the cell coinbi-
nations are addition/subtraction, dealing out, multiplication, and division. For our
study, a "1001" profile indicated the student employed an addition/subtraction strat-
egy and a division strategy to solve simple, partitive division problems. Also, the
profile indicates that the student did not use any dealing out or multiplication strat-
egies. Of the 451 students who took the paper/pencil instrument, there were 134
who gave incomplete or no response. The percents shown in Table 2 are calculated
on the 317 students whose answers indicated a particular strategy.

Table 2
Student Profiles for Grades 3-4, 5-6, and 7-8 and the Frequency of Strategies
Used to Solve Partitive Division Word Problems

Prof ile 3rd & 4th grade
(n=64)

% Categorical Responses (n)
5th & 6th grade 7th & 8th grade

(n=102) (n=151)
totals

(n=317)
0001 22 (14) 47 (47) 56 (84) 46 (145)
0010 23 15) 25 (25) 18 (27) 21 (67)
0100 8 (5) 5 (5) 3 (4) 4 (14)
1000 31 (20) 6 (6) 5 (8) 11 (34)
0011 5 (3) 8 (8) 9 (14) 8 (25)
0101 1 (1) 3 (4) 1

0110 1 (1) < 1 (1)
1001 6 (4) 4 (4) 4 (6) 4 (14)
1010 5 (3) 1 (1) 1 (2) 2 (6)
1100 2 (2) 1 (2)
1011 2 (2) 1 (2)
0111 1 (2) 1 (2)

Generally, older students selected division as a strategy more than younger
students. Younger student preferred addition/subtraction strategies more than older
students. There wcre a total of 55 students who had more than one strategy to
explain their solutions to the partitive division word problems.

Discussion and Summary

This was a preliminary study to examine the informal meanings, models, and
strategies of rural students in grades 3 8 when solving primitive division prob-
lems. Primitive is a dewriptor used in the sense that both the quotient and the
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divisor were whole numbers greater than one but smaller than the whole number
dividend (Harel, et al., 1994; Fischbein et al., 1985). It appears, that for some rural
students there were strong cultilral values associated with and affecting their mean-
ings of sharing. Giving someone more because one has enough may be indicative
of the value that farmers place on helping one's neighbors. Saving some candy for
another day seemed to us to be a survival strategy for a child living in poverty. The
multiple meanings of share and fair share suggested that teachers cannot assume
that all of their students have the same meanings of words used in the mathematics
classrooms, especially if the students are culturally diverse. We view the different
meanings of words of teachers and students as an interesting research area to pur-
sue. Our findings concerning models are somewhat different than Fischbein et al.
(1985) with respect to older students' success with quotative division. This may be
because Fischbein's quotative problems involved decimal numbers while ours were
whole numbers. We found that a higher percent of the younger students selected
the quotative model when compared to the percent of older students. A future
research question for investigation, as suggested by Kouba (1989), is to study in-
dividual students' use of multiple models of division, and in particular, the split-
ting model. We found that students used multiple strategies to solve these division
problems, and perhaps they use multiple models as well. The extent to which stu-
dents can apply the strategies identified in this study to division problems involv-
ing other models and division of rational numbers are other areas for future re-
search.
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ADDITION OF WHOLE NUMBER SCHEMES FOR STANDARD
TWO AND STANDARD THREE PUPILS

Norami Bino Idns. The Ohio State University

The main purpose of this study is to recognize the addition of whole number
schemes mastered by primary school pupils, on the basis of their behaviour and
explanation when solving problems in the addition of whole numbers. Four cat-
egories of whole number addition problems were given to the pupils: mental il-
lustration, open-sentence problems, place value concept and "box" problem.

The subjects of this study consisted of three standard two pupils and three
standard three pupils from one of the national primary schools in Kuala Lumpur,
Malaysia. These pupils were chosen by their class teacher based on their perfor-
mance on the 1989 First Term Examination.

The analysis and behaviour descriptions of the pupils were carried out based
on videorecorded interviews and comments made by the researcher while con-
ducting the interviews. Four whole number addition schemes have been recog-
nized: counting all, counting on, counting on from the biggest addend and algo-
rithm technique.

Several pupils were acknowledged to be using the basic commutative con-
cept, place value concepts and the number concepts that are related to solving the
problems of whole number addition .
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610 East University Ave., 1228 SEB
University of Michigan
Ann Arbor, MI 48109
gwend@urnich.edu
2-162, 2-233

Jane-Jane Lo
Dept. of Mathematics
Cornell University
18 Smugglers Path
Ithaca, NY 14850
JANEJANEL@AOL.COM
1-383

Chris Lovell
Old Dominion University
Virginia Beach, VA 23456
2-73
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Cheryl A. Lubinski
Dept. of Mathematics
Campus Box 4520
Illinois State University
Normal, IL 61761
cal@math.ilstu.edu
2-143

Armando M. Martinez-Cruz
National University of Mexico
Ofnas, Admas. 2, ler Piso,
Ave. Universidad 3000
Mexico City, Mexico, D.F. 04510
mcruz@servidorunam.mx
1-277



Joanna 0. Masingila
Dept. of Mathematics
215 Carnegie Hall
Syracuse University
Syracuse, NY 13244-1150
jomasing@sued.syr.edu
1-325

Marguerite M. Mason
405 Emmet St.
Ruffner Hall
University of Virginia
Charlottesville, VA 22902
mnim4v@virginia.edu
1-307

Susann M. Mathews
Dept. of Mathematics and Statistics
Wright State University
Dayton, OH 45435
smathews@desire.wright.edu
1-165

Sue Tinsley Mau
IUPUI
Indianapolis, IN 46227
smau@indyvax.iupui.edu
2-62

Richard Mayer
School of Education
University of California - Santa
Barbara
Santa Barbara, CA 93106
mayer@psych.ucsb.edu
1-229, 1-373

Robert Mayes
Dept. of Mathematical Sciences
University of Northern Colorado
Greeley, CO 80639
rmayes@hopper.univnorthco.edu
1-302

Kay McClain
Box 330 GPC
Vanderbilt University
Nashville, TN 37203
MCCLAIKL@ctrvax.vanderbiltedu
2-290

J. Randy McGinnis
University of Maryland at College
Park
College Park, MD 20742
jm250@umail.umd.edu
2-137

Douglas B. McLeod
Math Sciences/CRMSE
San Diego State University
San Diego, CA 92182-0315
dmcleod@sciences.sdsu.edu
1-240

Betsy McNeal
Graduate School of Education
3700 Walnut St.
University of Pennsylvania
Philadelphia, PA 19104-6216
betsym@nwfs.gse.upenn.edu
1-261

David E. Meel
999 Killarney Drive Apt. #1
Carnegie Mellon University
Pittsburgh, PA 15234-2652
meel@vms.cis.pitt.edu
1-142

Melissa Mellissinos
San Diego State University
San Diego, CA 92182
mmelliss@sunstroke.sdsu.edu
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Ramakrishnan Menon
School of Science
National Institute of Education
469 Bukit Timah Road
Nanyang Technological University
Singapore 1025
menonr@nievax.nie.ac.sg
2-314

Harold Mick
Dept. of Mathematics
Virginia Tech
Blacksburg, VA 24061-0123
mick@meth.vt.edu
1-300

Michael Mikusa
401 White Hall
Kent State University
Kent, OH 44240-2549
mmikusa@Phoenix.kent.edu
1-129

Mathew Mitchell
School of Education
2130 Fulton St.
University of San Francisco
San Francisco, CA 94117
mitchellm@usfca.edu
1-337, 1-339, 2-51, 2-63

Rosemary Mitchell
Straley Elementary
Princeton, NJ 24740
1-427

Anne Morris
I33C Willard Hall
Educational Development
University of Delaware
Newark, DE 19716-0101
ahmorris@strauss.udel.edu
2-17
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Bryan Moseley
Dept. of Educational Psychology
University of California - Santa
Barbara
Santa Barbara, CA 93106-9490
bryan@edstar.gse.ucsb.edu
1-164, 1-229, 1-373

Judit Moschkovich
Institute for Research on Learning
2550 Hanover St.
Palo Alto, CA 94304
judit_moschkovich@irl.org
1-333

John C. Moyer
Dept. of Mathematics, Statistics, &
Computer Science
P.O. Box 1881
Marquette University
Milwaukee, WI 53201-1881
johnm@mscs.mu.edu
1-359
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Patrick Mwerinde
Mathematical Sciences Dept.
105E Pearson Hall
University of Delaware
Newark, DE 19716
mwerinde@math.udel.edu
1-349

Ricardo Nemirovsky
TERC
2067 Massachusetts Ave.
Cambridge, MA 02144
Ricardo_Nemirovsky@terc.edu
1-291

Sacra Nevaire Nicholas
Room 114 Collings Hall
Oklahoma University
Norman, OK 73069
2-85



Marsha P. Nicol
Eisenhower National Clearinghose
for Mathematics and Science Educa-
tion
1929 Kenny Road
The Ohio State University
Columbus, OH 43210
mnicol@enc.org
2-275, 2-201

Preety Nigam
Dept. of Mathematics
215 Carnegie Hall
Syracuse University
Syracuse, NY 13244
pnigam@mailbox.syr.edu
2-328

Tracy Noble
TERC
2057 Massachusetts Ave.
Cambridge, MA 02144
Tracy_Noble@terc.edu
1-291

Evangelina Diaz Obando
219 MCH Mathematics Education
Florida State University
Tallahassee, FL 32306-3032
ediaz@irazu.una.ac.cr
2-262, 2-200

James R. Olsen
Mathematics Dept.
1 University Circle
Western Illinois University
Macomb, IL 61455
jr-olsen@hgu.edu
2-308

Judith Olson
Dept. of Mathematics
1 University Circle
Western Illinois University
Macomb, IL 61455
olsonj@ccmail.wiu.bgu.edu
1-184

Melfried Olson
Dept. of Mathematics
1 University Circle
Western Illinois University
Macomb, IL 61455
olsonm@ccmail.wiu.bgu.edu
1-184

Albert D. Otto
Campus Box 4520
Illinois State University
Normal, IL 61790-4520
otto@math.ilstu.edu
2-143

John E. Owens
129 Austin
East Carolina University
Greenville, NC 27858
maowens@ecuvrn.cis.ecu.edu
2-301

Ralph Pantozzi
154 Hana Rd.
Edison, NJ 08817-2045
pantozzi@gandalf.rutgers.edu
2-276

Barbara J. Pence
Dept. of Mathematics and Computer
Science
San Jose State University
San Jose, CA 95192
1-210, 2-255
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Randolph A. Philipp
6475 Alvarodo Road
Suite 206
San Diego, CA 92120
RPhilipp@mail.sdsu.edu
2-122

Elizabeth Phillips
Dept. of Mathematics
101 Wills House
Michigan State University
East Lansing, MI 48824-1050
ephillips@math.msu.edu
1-101

Susan Pirie
Faculty of Education
2125 Main Mall
University of British Columbia
Vancouver, BC, Canada V6T 1Z5
spirie@unixg.ubc.ca
1-123

Louise Poirier
Departemente de didactique
Universite de Montreal
C.R 6128
Succursale Centre-Ville
Montreal, Quebec, Canada H3C' 3J7
2-203

Dianne Pors
East Side Union High School District
2-255

Mary K. Porter
St. Mary's College
South Bend, IN
1-325

Donald T. Porzio
Dept. of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115-2888
dporzio@math.niu.edu
1-228

Thomas R. Post
175C Peik Hall
University of Minnesota
Minneapolis, MN 55455
postx001@maroon.tc.umn.edu
1-377

Roland G. Pourdavood
University of Oklahoma
Norman, OK 73019
2-104

Norma C. Presmeg
Curriculum & Instruction
Florida State University
Tallahassee, FL 32306
npresmeg@garnet.acns.fsu.edu
1-314, 2-31

170

Ronald V. Preston
Austin Bldg. 129
East Carolina University
Greenville, NC 27858
rvpresto@indiana.edu
2-168

Richard M. Preyer, Jr.
Dept. of Education
Kennedy Hall
Cornell University
Ithaca, NY 14853-4203
rmp5@cornell.edu
1-430



Terry M. Price
Dept. of Teaching and Learning
Washington State University
Pullman, WA 99164-2132
tprice@mail.wsu.edu
1-268, 1-319

Susan Prion
School of Education
1880 Grove St.
University of San Francisco
San Francisco, CA 94117
prions@usfca.edu
1-337, 1-339, 2-51, 2-63

Sidney L. Rachlin
Dept. of Mathematics
129 Austin
Greenville, NC 27858
marachli@ecuvm.cis.ecu.edu
1-343

Thomas G. Ral ley
Dept. of Mathematics
The Ohio State University
Columbus, OH 43210
1-235

Anne M. Raymond
Dept. of Elementary Education
Indiana State University
Terre Haute, IN 47809
eeraymon@befac.indstate.edu
1-182, 2-14

Barbara R. Smith Reed
School of Education
University of California Santa
Barbara
Santa Barbara, CA 93106
reedr@bcvms.bc.edu
1-229, 1-372, 1-373

Michelle K. Reed
ERIC Clearinghouse for Science,
Mathematics, and Environmental
Education
1929 Kenny Rd.
The Ohio State University
Columbus, OH 43210
reed.253@osu.edu
2-4

David A. Reid
Dept. of Secondary Education
341a Education South
University of Alberta
Edmonton, Alberta, Canada T6G
2G5
reidd@gpu.srv.ualberta.ca
1-123
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Beverly S. Rich
Campus Box 4520
Illinois State University
Normal, IL 61790-4520
bsrich@math.ilstu.edu
2-143

Billie F. Risacher
Mathematics and Computer Science
Dept.
One Washington Square
San Jose State University
San Jose, CA 95192-0103
risacher@jupiter.sjsu.edu
2-16

Cheryl Stitt Roddick
705 Tall Oaks Blvd, #20
Auburn Hills, MI 48326
cstitt@magnus.acs.ohio-state.edu
1-134
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Sharon Ross
1652 Park Vista Dr.
Dept. of Math & Statistics
California State University - Chico
Chico, CA 95928
sross@oavax.csuchico.edu
2-338

Ada lira Saenz-Ludlow
The University of North Carolina at
Charlotte
Charlotte, NC 28223-0001
sae@unccvm.uncc.edu
1-152

Umaru A. Saleh
109 Poucher Hall
SUNY at Oswego
Oswego, NY 13126
Saleh@oswego.oswego.edu
1-140

Manuel Santos T.
Cinvestav-IPN-Mexico
Dakota 379; Col. Napoles
D.F. 03810, Mexico
Lsantos @mvax 1 sed.cinvestav.mx
1-365

Annette M. Sassi
Education Development Ctr.
55 Chapel St.
Newton, MA 02158
asassi@edc.org
2-249, 2-187

Grace Hotchkiss Scarano
Dept. of Education
Kennedy Hall
Cornell University
Ithaca, NY 14853-4203
gmh5@cornell.edu
1-421

Bonnie Schappelle
San Diego State University
San Diego, CA 92182
BSchappe@sunstroke.sdsu.edu
1-240

Deborah Schifter
Education Development Center
55 Chapel St.
Newton, MA 02158-1060
dschifter@edc.org
2-289
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Mary Ellen Schmidt
307 Ovalwood Hall
1680 University Drive
The Ohio State University
Mansfield, OH 44906
schmidt.22@osu.edu
2-68

Elizabeth Senger
Dept. of Curriculum & Instruction
Louisiana State University
Baton Rouge, LA 70808
senger@asterix.ednetisu.edu
2-205

Kenneth L. Shaw
4750 Collegiate Drive
Florida State University
Panama City, FL 32405
kshaw@garnet.acns.fsu.edu
2-133

Barry E. Shealy
593 Baldy Hall
SUNY at Buffalo
Buffalo, NY 14260-1000
bshealy@ubvms.cc.buffalo.edu
2-109



N

Edward A. Silver
Learning Research and Development
Center
3939 O'Hara Street
Pittsburgh, PA 15260
eas@vms.cis.pitt.edu
1-61

Linda Simonsen
Dept. of Mathematical Sciences
Montana State University
Bozeman, MT 59717-0240
simonsen@math.montana.edu
2-242

Rose Sinicrope
Dept. of Mathematics
East Carolina University
Greenville, NC 27858
masinicr@ecuvm.cis.ecu.edu
1-427

Arthur R. Skelly, Jr.
Rickards High School
2-31

David Slavit
322 Neill Hall
Washington State University
Pullman, WA 99164-3113
dslavit@wsu.edu
1-284, 2-331

Vladimir Sloutsky
College of Education &
Center for Cognitive Science
The Ohio State University
Columbus, OH 43210
vsloutsk@magnus.acs.ohio-state.edu
2-17

Margaret Schwan Smith
706 LRDC
3939 O'Hara St.
Pittsburgh, PA 15260
pegs@vms.cis.piti.edu
2-181

Vincent Snipes
159 Her long Dr., Apt. 1
Tallahassee, FL 32310
vsnipes@garnet.acns.fsu.edu
2-69

Alejandro Solano
Mathematics Education
219 Carothers Hall
Florida State University
Tallahassee, FL 32306-3032
asolano@garnet.acns.fsu.edu
1-314

Jesse Solomon
Brighton High School
Boston, MA
jso1omon@k12.oit.umass.edu
1-291

S. L. Sproule
Curriculum and Instruction
Florida State University
Tallahassee, FL 32306-3032
ssproule @mailer.fsu.edu
2-297

Robert E. Stake
University of Illinois
stake@uxl.cso.uiuc.edu
1-240

Elena Steencken
10 Seminary Place
Rutgers University
New Brunswick, NJ 08903
steencke@gandalf.rutgers.edu
2-276



Mary M. Sullivan
Dept. of Mathematics
1071 Blue Hill Ave.
Curry College
Dedham, MA 02026
msulliva@curry.edu
1-338

Elisa Sunflower
California State University Chico
Chico, CA 95929
2-338

Kyoko Suzuki
210 Education Bldg.
1310 S. Sixth St.
University of Illinois at Urbana-
Champain
Champaign, IL 61820
k-suzuki@students.uiuc.edu
1-183, 2-315

Sylvia R. Taube
University of Texas Pan American
West University Dr.
Edinburg, TX 78539
SRTAUBE@PANAM.EDU
1-428

Anne R.Teppo
Dept. of Mathematical Sciences
Montana State University
Bozeman, MT 59715
teppo@math.montana.edu
1-147

Marcia L. Tharp
3409 Sandpiper Rd.
Old Dominion University
Virginia Beach, VA 23456
MLT10Of @eag le.cc.odu.edu
2-73

A. D. Thompson
Curriculum and Instruction
Florida State University
Tallahassee, FL 32306-3032
2-297

Carol A. Thornton
Mathematics Dept.
Illinois State University
Normal, IL 61790-4520
thornton@math.ilstu.edu
1-169

Sandra Davis Trowel!
Teacher Education
Box 870213
The University of Alabama
Tuscaloosa, AL 35487-0231
strowell@bamaed.ua.edu
2-65

ci
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Pamela Turner
105 Aderhold Hall
University of Georgia
Athens, GA 30602
pturner@moe.coe.uga.edu
2-115, 2-155

Marta Elena Valdemoros
Centro de Investigaciony Estudios
Avanzados del LPN
Nicolas San Juan 1421
Colonia del Valle
Mexico, Distrito Federal, 03100
1-407

Laura Van Zoest
Dept. of Mathematics
Western Michigan University
Kalamazoo, MI 49008
laura.vanzoest@wmich.edu
2-130



Draga Vidakovic
CRMSE
Box 7801; 315 Poe Hall
North Carolina State University
Raleigh, NC 27695-7801
draga@poe.coe.ncsu.edu
2-344

Avril von Minden
608 Allen Hall
Dept. of Ed. Foundations
Horrabin Hall-80
Macomb, IL 61455
avon @wvnvm.wvnet.edu
2-243

Sharon B. Walen
SIMMS Project
Montana State University
Bozeman, MT 59717-2281
walen@math.montana.edu
2-6

Tad Watanabe
Towson State University
Dept. of Mathematics
Towson, MD 21204
tad@midget.towson.edu
1-383, 1-390, 2-137

David Webb
School of Education
University of California Santa
Barbara
Santa Barbara, CA 93106
1-229, 1-373

Grayson H. Wheatley
Mathematics Education
219 Carothers Hall
Florida State University
Tallahassee, FL 32306-3032
gwheatle@garnet.acnsfsu.edu
1-247. 1-314, 2-13, 2-262, 2-2(X)

Joy Whitenack
Vanderbilt University
Nashville, TN 37203
WHITENJW@etrvax.vanderbiltedu
2-290

Steven R. Williams
Dept. of Mathematics
Brigham Young University
Provo, UT
williams@math.byu.edu
2-6

Linda Dager Wilson
Dept. of Educational Development
University of Delaware
Newark, DE 19711
Idwilson@strauss.udel.edu
1-253

Melvin (Skip) Wilson
610 E. University, 1228 SEB
University of Michigan
Ann Arbor, MI 48109
skipwils@umich.edu
2-162, 2-233

Patricia S. Wilson
105 Aderhold Hall
University of Georgia
Athens, GA 30602
pwilson@moe.coe.uga.edu
2-91

Erna Yackel
Purdue University Calumet
Dept. of Mathematics, Computer
Science, & Statistics
Hammond, IN 46323
yackeleb@nwi.calumet.purdue.edu
1-3
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Vicki Zack
5822 Einstein Avenue
Montreal, Quebec
Canada H4W 2X6
vicki_z@ceo.sts-systems.ca
1-354

Richard A. Zang
Mathematics Dept.
University of New Hampshire at
Manchester
Manchester, NH 03102
raz@christaunh.edu
1-199

Rose Mary Zbiek
289 Lindquist Center North
University of Iowa
Iowa City, IA 52242
rzbiek@education-
po.education.uiowa.edu
2-214
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